1 Random Variables and Expectation

Plucky has an *n*-sided die that will generate numbers in $\{1, 2, ..., n\}$ uniformly at random. She is bored and she has decided to start and keep rolling her die until she has seen all the numbers in $\{1, 2, \dots, n\}$ at least once.

We want to calculate how many die rolls it takes in expectation for Plucky to stop.

For each $i \in \{1, 2, ..., n\}$, we define a random variable X_i : its value is equal to the number of additional die rolls we need to see the *i*-th unique value after having already seen i - 1 unique values.

What is the type of probability distribution that the random variable X_i follows?

O Binomial

O Bernoulli

O Poisson

Geometric

Correct

Assume Plucky has started rolling her die and she has seen i - 1 unique values so far. What is the probability of seeing a new number that she has not seen before in her next die roll?

 $O_{\frac{1}{n}}$ $O_{\frac{i}{n}}$ $\bigcirc \frac{n-i+1}{n}$

 $O_{\frac{1}{i-1}}$

Correct

What is $\mathbb{E}[X_i]$?

O *n*

 $O_{\frac{n}{i}}$

 $igodot \frac{n}{n-i+1}$

 $O_{i} - 1$

Correct

What is the expected total number of die rolls, until Plucky sees all the n values at least once? $O \Theta(n)$

 $\Theta(n \log n)$

 $O \Theta(n^2)$

O $\Omega(n^2 \log n)$

Correct

2 Randomized Algorithms

Can we use the random pivot selection idea in QuickSort for the selection problem?

Assume we modify the k-select algorithm that we saw in previous lectures; instead of picking the pivot cleverly, we just pick a uniformly random element as the pivot each time. We call the resulting algorithm QuickSelect.

What is the worst case runtime of QuickSelect?

 $O \Theta(n)$

- $O \Theta(n \log n)$
- $\Theta(n^2)$
- **O** $\Omega(n^2 \log n)$

Correct

What is the probability that our random pivot partitions the array into two parts, each of size at most $\frac{3n}{4}$?

 $O_{\frac{3}{4}} \pm O(1/n)$

- $\frac{1}{2} \pm O(1/n)$ $O_{\frac{1}{3}} \pm O(1/n)$
- O $\frac{1}{4} \pm O(1/n)$

Correct

Assume we group QuickSelect's recursive calls into multiple phases. Phase i is when the size of the array is in the interval

$$\left((3/4)^{(i+1)}n,(3/4)^in\right].$$

Note that we start at phase 0 with an array of size *n*.

For each phase we define a random variable X_i , whose value is the number of recursive calls in that phase. Using the answers to previous questions, calculate an upper bound for $\mathbb{E}[X_i]$. Which of the following is the (asymptotically) smallest upper bound on $\mathbb{E}[X_i]$?

O 3 + O(1/n)

- 2 + O(1/n)
- O *n*
- $O O(\log n)$

Correct

What is the expected (average case) runtime of QuickSelect?

- $\Theta(n)$
- $O \Theta(n \log n)$
- $O \Theta(n^2)$

O $\Omega(n^2 \log n)$

Correct