1 Random Variables and Expectation

Plucky has an n-sided die that will generate numbers in $\{1,2, \ldots, n\}$ uniformly at random. She is bored and she has decided to start and keep rolling her die until she has seen all the numbers in $\{1,2, \ldots, n\}$ at least once

We want to calculate how many die rolls it takes in expectation for Plucky to stop.
For each $i \in\{1,2, \ldots, n\}$, we define a random variable X_{i} : its value is equal to the number of additiona die rolls we need to see the i-th unique value after having already seen $i-1$ unique values.

What is the type of probability distribution that the random variable X_{i} follows?
O Binomial
O Bernoulli
O Poisson
O Geometric

Correct

Assume Plucky has started rolling her die and she has seen $i-1$ unique values so far. What is the probability of seeing a new number that she has not seen before in her next die roll?
○ $\frac{1}{n}$
○ $\frac{i}{n}$
O $\frac{n-i+1}{n}$
○ $\frac{1}{i-1}$

Correct

What is $\mathbb{E}\left[X_{i}\right]$?
O n
○ $\frac{n}{i}$
○ $\frac{n}{n-i+1}$
○ $i-1$

Correct

What is the expected total number of die rolls, until Plucky sees all the n values at least once?
$\bigcirc \Theta(n)$
$\bigcirc \Theta(n \log n)$
$\bigcirc \Theta\left(n^{2}\right)$
$\bigcirc \Omega\left(n^{2} \log n\right)$

Correct

2 Randomized Algorithms

Can we use the random pivot selection idea in QuickSort for the selection problem?
Assume we modify the k-select algorithm that we saw in previous lectures; instead of picking the pivot cleverly, we just pick a uniformly random element as the pivot each time. We call the resulting algorithm QuickSelect.
What is the worst case runtime of QuickSelect?
$\bigcirc \Theta(n)$
$\bigcirc \Theta(n \log n)$
$\bigcirc \Theta\left(n^{2}\right)$
$\bigcirc \Omega\left(n^{2} \log n\right)$

Correct

What is the probability that our random pivot partitions the array into two parts, each of size at most $\frac{3 n}{4}$?
○ $\frac{3}{4} \pm O(1 / n)$
O $\frac{1}{2} \pm O(1 / n)$
O $\frac{1}{3} \pm O(1 / n)$
O $\frac{1}{4} \pm O(1 / n)$

Correct

Assume we group QuickSelect's recursive calls into multiple phases. Phase i is when the size of the array is in the interval

$$
\left((3 / 4)^{(i+1)} n,(3 / 4)^{i} n\right]
$$

Note that we start at phase 0 with an array of size n.
For each phase we define a random variable X_{i}, whose value is the number of recursive calls in that phase. Using the answers to previous questions, calculate an upper bound for $\mathbb{E}\left[X_{i}\right]$. Which of the following is the (asymptotically) smallest upper bound on $\mathbb{E}\left[X_{i}\right]$?
○ $3+O(1 / n)$
O $2+O(1 / n)$
O n
$O(\log n)$

Correct

What is the expected (average case) runtime of QuickSelect?
$\bigcirc \Theta(n)$
$\bigcirc \Theta(n \log n)$
$\bigcirc \Theta\left(n^{2}\right)$
○ $\Omega\left(n^{2} \log n\right)$

