## 1 Recursion trees

Consider the recurrence relation $T(n)=5 T\left(\frac{n}{4}\right)+2 n$
What is the number of problems in level 4? (We use the convention that the root problem of size $n$ is on level 0.)
O 1024
O 125
O 625
O 4096

## Correct

What is the size of each problem in level 5 ?
O $\frac{n}{512}$
O $\frac{n}{3125}$
O $\frac{n}{1024}$
O $\frac{n}{625}$
Correct
What is the total contribution in level i?
O $\left(\frac{4}{5}\right)^{i} \times 2 n$
O $\left(\frac{5}{4}\right)^{i} \times 2 n$
O $\left(\frac{4}{5}\right)^{(i-1)} \times 2 n$
O $\left(\frac{5}{4}\right)^{(i-1)} \times 2 n$

Which one is true for $T(n)$ ?
$\bigcirc T(n)=\Theta\left(n^{\log _{4} 5}\right)$
$\bigcirc T(n)=O\left(n^{2}\right)$
$\bigcirc T(n)=\Omega(n)$
O All of the above!

## 2 The master theorem

Remember that the master theorem applies to recurrences of the form

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+O\left(n^{d}\right) .
$$

Consider the recurrence relation $T(n)=3 T\left(\frac{n}{81}\right)+10 \sqrt{\sqrt{n}}$. What are the values of the parameters $a, b, d$ ? Write fractional values in the form of $0 . x$ or $0 . x x$.
$a=$

| 3 |
| :---: |
| Correct |

$b=$
81

Correct
$d=$
0.25

Correct
Which one is true for $T(n)$ ?
$\bigcirc T(n)=\Omega(n)$
$\bigcirc T(n)=\Theta\left(n^{2}\right)$
$\bigcirc T(n)=\Omega(\log (n) \sqrt{\sqrt{n}})$

## Correct

## 3 The substitution method

Consider the recurrence relation $T(n)=2 T(n / 2)+3 T(n / 3)+n^{2}$. Which one is the smallest valid bound for $T(n)$ ?
$\bigcirc T(n)=O(n)$
○ $T(n)=O\left(n^{2}\right)$
$\bigcirc T(n)=O\left(n^{3}\right)$

## Correct

Which one would be the best guess to substitute $T(n)$ with if we wanted to prove the above bound? (Which bound would be provable by induction as in the substitution method and is the tightest such bound.)
$\bigcirc T(n) \leq 12 n$
○ $T(n) \leq n^{3}$
$\bigcirc T(n)<6 n^{2}$
○ $T(n) \leq 2 n^{2}$

