
CS 161 (Stanford, Winter 2023) Section 2

1 Master Theorem

Recall the Master theorem from lecture:

Theorem 1 Let T (n) = aT (n
b
) +O(nd) be a recurrence where a ≥ 1, and b > 1. Then,

T (n) =


O(nd log n) if a = bd

O(nd) if a < bd

O(nlogb a) if a > bd

What is the Big-Oh runtime for algorithms with the following recurrence relations?

1.1 T (n) = 3T (n2) +O(n
2)

1.2 T (n) = 4T (n2) +O(n)

1.3 T (n) = 2T (
√
n) +O(log n)

2 Single-dimensional Tarski’s fixed point theorem

Given a 1-indexed sorted array A of n integers such that A[1] ≥ 1 and A[n] ≤ n, a (very)
special case of Tarski’s fixed point theorem says that there is some i such that A[i ] = i .

2.1 Algorithm Design

Design an algorithm for finding such an i .

2.2 Runtime Analysis

Analyze the runtime of your algorithm in 2.1.

3 Maximum Sum Subarray

Given an array of integers A[1..n], find a contiguous subarray A[i , ..j ] with the maximum
possible sum. The entries of the array might be positive or negative.

3.1 Brute Force

What is the complexity of a brute force solution?

1



3.2 Divide-and-Conquer

The maximum sum subarray may lie entirely in the first half of the array or entirely in the
second half. What is the third and only other possible case?

3.3 Algorithm Design

Use the cases in 3.2 to arrive at a more efficient algorithm. What is the complexity of your
algorithm?

3.4 Further Optimization (Optional)

Can you do even better using other non-recursive methods? (O(n) is possible)

4 Space Complexity

Given an array of size n − 1 containing all the integers between 1 and n except for one (not
necessarily sorted), design an algorithm to find the missing number using O(1) extra space.

2


	Master Theorem
	T(n) = 3T(n2) + O(n2)
	T(n) = 4T(n2) + O(n)
	T(n) = 2T(n) + O(n)

	Single-dimensional Tarski's fixed point theorem
	Algorithm Design
	Runtime Analysis

	Maximum Sum Subarray
	Brute Force
	Divide-and-Conquer
	Algorithm Design
	Further Optimization (Optional)

	Space Complexity

