
CS 161 (Stanford, Winter 2023) Section 3

1 Recurrence Relation

Solve the following recurrence relation using any of the methods we have learned in class.

T (n) = T (n/2) + T (n/4) + n for n > 4, and T (n) = 1 for n ≤ 4.

2 Expectation

2.1

True or False: Expected runtime averages the runtime over the outcomes of random events
within the algorithm and make no assumption about the input.

2.2

I have an algorithm that takes positive integers (n, i) where 1 ≤ i ≤ n. The algorithm rolls
a n-sided die repeatedly until the die returns any value ≤ i . What is the expected runtime in
n? Worst-case runtime? Rigorous proof not necessary :)

3 All On the Same Line

Suppose you’re given n distinct ordered pairs of integers (x1, y1), (x2, y2), ..., (xn, yn), where
for all i , j , xi ̸= xj and yi ̸= yj . Recall that two points uniquely define a line, y = mx + b,
with slope m and intercept b. (Note that choosing m and b also uniquely defines a line.)
We say that a set of points S is col l inear if they all fall on the same line; that is, for all
(xi , yi) ∈ S, yi = mxi + b for fixed m and b. In this question, we want to find the maximum
cardinality subset of the given points which are collinear – in less jargon, we’re looking for the
maximum integer N such that we can find N of the given points the same line. Assume that
given two points, you can compute the corresponding m and b for the line passing through
them in constant time, and you can compare two slopes or two intercepts in constant time.

This is a challenging problem – so we’re only going to pseudocode at a high level!

3.1

Design an algorithm to find a maximum cardinality set of collinear points in O(n2 log n) time.
If there are several maximal sets, your algorithm can output any such set. Some hints:

• O(n2 log n) = O(n2 log n2), which looks like sorting n2 items.
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• Start small; how would we verify that 3 points are on the same line?

3.2

It is not known whether we can solve the collinear points problem in better than O(n2) time.
But suppose we know that our maximum cardinality set of collinear points consists of exactly
n/k points for some constant k . Design a randomzed algorithm that reports the points in
some maximum cardinality set in expected time O(n). Prove the correctness and runtime of
your algorithms.

Some hints:

• Your expected running time may also be expressed as O(k2n).

• You algorithm might not terminate!

For your own reflection: Imagine that you, an algorithm designer, had to pick one of the
algorithms in part (a) or (b) to implement in the autopilot of an airplane, as part of the
route-planning of a self driving car, or in any other scenario in which human lives are at
stake. Given what you know about the performance and worst-case scenario of each of the
algorithms, which algorithm would you choose and why?

4 Light Bulbs and Sockets

You are given a collection of n differently-sized light bulbs that have to be fit into n flashlights
in a dark room. You are guaranteed that there is exactly one appropriately-sized light bulb
for each flashlight and vice versa; however, there is no way to compare two bulbs together or
two flashlights together as you are in the dark and can barely see! (You are, however, able
to see where the flashlights and light bulbs are.) You can try to fit a light bulb into a chosen
flashlight, from which you can determine whether the light bulb’s base is too large, too small,
or is an exact fit for the flashlight. If the bulb fits exactly, it will flash once, in which case you
have a correct match. (Note that the flashing light does not allow you to visually compare
bulbs/flashlights to other bulbs/flashlights.)

Suggest a (possibly randomized) algorithm to match each light bulb to its matching flash-
light. Your algorithm should run strictly faster than quadratic time in expectation. Give an
upper bound on the worst-case runtime, then prove your algorithm’s correctness and expected
runtime.
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