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9/19/2017 Mary Wootters

This is an example solution set to a (short) fake problem set, HW0.pdf.

Exercises

1. In this exercise we explored the performance of the estimateMean function defined in HW0.ipynb.

(a) Fix an array A of size n. We will show that the expected value of estimateMean(A) is equal to the
mean of A. Suppose that the 10 indices chosen randomly by estimateMean(A) are j1, . . . , j10 ∈
{0, . . . , n− 1}; notice that these are random variables. Using linearity of expectation, we have

E {estimateMean(A)} = E
1

10

10∑
i=1

A[ji]

=
1

10

10∑
i=1

EA[ji].

Since ji is uniformly distributed in {0, . . . , n− 1}, by definition for each i we have

EA[ji] =
1

n

n−1∑
j=0

A[j] = µ,

where µ is the mean of A. Then we have

E {estimateMean(A)} =
1

10

10∑
i=1

µ = µ,

which is what we wanted to show.

Style note: The solution above shows the sort of detail we expect when we ask for a formal
proof. One solution that would not receive full credit is the single sentence “Each sample has the
right mean, so by linearity of expectation the average does too.” This sentence has the right idea,
but it needs a lot more detail to count as a formal proof.

(b) In the code, we are looked at random arrays that consist of numbers between 0 and 100. It seems
pretty unlikely that the estimate is off by more than 20, and how unlikely this is does not seem
to depend on n. Empirically, the probability that the error is larger than 20 is about 0.025.

In a bit more detail, in the IPython notebook, the provided function getErrorData(n) produces
a list of the differences estimateMean(A)− µ over 1000 trials. I ran this function for n = 30, n =
100, n = 1000, and plotted the results, shown below.
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As we can see on the graph, the histogram looks pretty similar for all three values of n. Moreover,
the amount of mass outside of the range [−20, 20] is very small. I computed the empirical proba-
bility, for each of these three values of n, that the error was more than 20, and it was 0.024, 0.025,
and 0.024, respectively.

Based on this data, I conclude that, when the lists are generated in this way (random sequences of
n numbers between 0 and 100), the probability that the estimate is off by more than 20 is about
0.025, and that this is independent of n.

Style note: Here, I did not include any code, even though I did modify the code in HW0.ipynb

to generate that plot above. In some cases it might make sense for you to copy-and-paste code
snippets into your write-up; but in general you won’t turn in your modified .ipynb file.

Problems

1. Collaboration: I collaborated with my fellow CS161 student Jessica Su on this problem.
However I typed up my own solutions.

In this problem we’ll design two algorithms to find “peaks,” as defined in the problem statement.

(a) Style note: Here are two acceptable ways of writing pseudocode for a solution.

Soln. 1. To find a peak in time O(n), go through every element in the array and check if it is a peak.
More precisely, we could use the following pseudocode.

Algorithm 1: findPeak1 returns a peak.

Input: An array A of length n
Output: An index i so that A[i] is a peak.
for i ∈ {1, . . . , n} do

if A[i] is larger than its neighbors then
return i

Soln. 2 To find a peak in time O(n), go through every element in the array and check if it is a peak.
More presisely, we ccan use the following Python code.
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def findPeak1(A):

n = len(A)

# first check the boundaries, i=0 and i=n-1

if A[0] >= A[1]:

return 0

if A[n-1] >= A[n-2]:

return n-1

# now scan through the rest and return the first peak we find.

for i = range(1,n-2):

if A[i] >= A[i-1] and A[i] >= A[i+1]:

return i

Style note: Simple Python code is okay, if it is accompanied by an English description, and
is well-commented. However, complicated Python code (or complicated code in any other
language) is discouraged. Your solution should be easily interpretable by a human.

(b) We can do better than the O(n)-time algorithm in part (a), using a divide-and-conquer algorithm.
We give pseudocode for this divide-and-conquer algorithm in Algorithm 2.

Algorithm 2: findPeak2 returns a peak

Input: An array A of length n.
Output: An index i so that i is a peak.
/* First do the base case: */

if n ≤ 2 then
return argmaxi∈{0,...,n−1}A[i]

/* Now choose an index p to partition around. */

p← bn/2c;
if p is a peak then

return p

else if A[p] < A[p+ 1] then
/* Then there is a peak in the second half of the array. */

return findPeak2(A[p+ 1 :]) + p+1 ;
/* We adjust the index since the peak was in the second half. */

else if A[p] > A[p+ 1] then
/* Then there is a peak in the first half of the array. */

return findPeak2(A[: p])

In words, this algorithm is doing the following:

• We choose a midpoint, p.

• If p is a peak, then we’re done.

• If p is not a peak, then one of its neighbors has an array value larger than it. If A[p−1] > A[p],
then there must be a peak somewhere in the left half of the array; and if A[p + 1] > A[p],
then there must be a peak somewhere in the right half of the array. We recurse on (one of)
the appropriate halves.

The correctness follows from this logic. Style note: According to the block of text after the
problem, a formal proof of correctness is not required, so I did not give one.

For the running time, notice that with each recursive call to findPeak2, the size of the input
is divided roughly in half; this means that findPeak2 is called O(log(n)) times. Within each
call (not including the future recursive calls), the algorithm does O(1) work, checking a constant
number of cases. Thus, the total running time is O(log(n)). Style note: The problem asked for
an informal analysis of the running time, so that is what I gave.
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Style note: Figure 1 gives working Python code that finds a peak in time O(log(n)). However (without
very very very good exposition) it would not receive full credit for this problem, because it is extremely
hard to read!!

import numpy as np

from random import choice

def findPeak2(A):

var = len(A)

return tmp(A, 0, var)

def tmp(A, x, y):

# print(A, x, y)

if y-x <= 26:

return A.index( max( [ A[i] for i in range(x,y) ] ) )

z = ((x + y)/2).__trunc__() + 2

try:

w = A[z+1]

except:

w=0

if A[z] >= A[z-1]:

return z.real

if (z-1)**3 < 0:

if A[z] >= A[z+1] or np.sqrt(4) < choice( [0,1] ):

return z

for i in range(y-x):

if (z == 0 and A[z] >= A[z+1]) or A[z] >= max( [A[z-1], A[z+1]] ):

return z

if A[z] > A[z-1] and A[z] > A[z+1]:

return tmp(A, x, w)

if A[z] < A[z-1]:

return tmp(A, x, z)

else:

return tmp(A, max([z+1,z]), y)

Figure 1: Example of what not to turn in.
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