
CS 161 (Stanford, Winter 2023) Homework 1

Style guide and expectations: Please see the “Homework” part of the “Resources” sec-
tion on the webpage for guidance on what we are looking for in homework solutions. We
will grade according to these standards. You should cite all sources you used outside of
the course material.
What we expect: Make sure to look at the “We are expecting” blocks below each
problem to see what we will be grading for in each problem!

Exercises. The following questions are exercises. We suggest you do these on your own.
As with any homework question, though, you may ask the course staff for help.

1 Exercise: Complexity Bounds (6 pt.)

For each blank, indicate whether Ai is in O, Ω, or Θ of Bi . More than one space per row can
be valid.

[We are expecting: All valid spaces in the table to be marked (checkmark, “x”, etc.). No
explanation is required.]

(The first two lines are already filled out for you as an example.)
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2 Exercise: Big-Oh Definitions

Prove the following:

2.1 (2 pt.)

f (n) = 2n + 2 is O(n), but f (n) = 22n+2 is not O(2n).

2.2 (2 pt.)

f (n) = O(g(n)), where f (n) = 6n and g(n) = n2 − 3n.

[We are expecting: For both parts, a short but formal proof.]
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Problems. The following questions are problems. You may talk with your fellow CS
161-ers about the problems. However:

• Try the problems on your own before collaborating.
• Write up your answers yourself, in your own words. You should never share your

typed-up solutions with your collaborators.
• If you collaborated, list the names of the students you collaborated with at the

beginning of each problem.

3 Worst-Case Analysis

A player has a square grid board of x rows and x columns. They place a piece on the board,
which will explore it in search of a red star. The piece explores the board following a set
pattern. The piece starts on the bottom left corner of the board, and moves right alongside
the entire row, covering all its positions. Upon reaching the end of the row, it moves k
positions up, thus reaching a new row. In this new row, the piece will move left alongside
the entire row, covering all positions, and at the end of the row, it moves 2k positions up.
The piece will sequentially apply this procedure, exploring the board in a zig-zag pattern, and
always doubling the number of positions it goes up at the end of each row, from k to 2k ,
to 4k , to 8k , and so on. The piece will stop exploring the board if it finds the red star or
if it reaches the top-right corner of the board. We assume the board always has a number
of rows and columns that allows the piece to end its path exactly on the top-right corner,
without overshooting the last row. A sample exploration pattern is illustrated below.

Figure 1: Exploration pattern on a board with x = 16 rows and columns for a piece using
k = 1. The red star is placed in a random location.
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3.1 First part (4 pt.)

For the case with k = 1, what is the worst-case number of steps the piece will take, in terms
of the x rows and columns of the grid, before stopping?

[We are expecting: The worst-case complexity in Big-Oh notation, followed by a concise
explanation]

3.2 Second part (2 pt.)

In the explained pattern the piece moves alongside the path continuously, covering the path
one row at a time. Now instead, the piece has the same positions to cover as in the path
explained in the first part but will explore the positions on that path one column at a time.
The piece starts at the bottom-left corner then jumps k position up, then 2k positions up,
then 4k positions up, and so on until the top of the first column. Then the piece jumps to
the bottom position on the second column and does the same, repeating the pattern until
reaching the top position on the last column of the board. Note that the visited positions
by the piece are the same in both exploration patterns despite the non-continuous path in
the second pattern. What would now be the worst-case number of steps? We still consider
k = 1 and that the star is in an unknown position.

[We are expecting: The worst-case complexity in Big-Oh notation, followed by a concise
explanation]
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4 Gauging Complexity from Code

Refer to the algorithms below for solving these problems.

Algorithm 1: Search an element in an array of length n
Input: An array A of size n and an element e
Output: Index of element e
i ← 0
while i < n do

if A[i ] = e then
return i

i ← i + 1
return −1 // If element e is not found

Algorithm 2: Replace an element in an array of length n with a given element
Input: An array A of size n, an element e present in the array and the new element E
Output: Updated array
i ← 0
while i < n do

currElement← A[i ]
if currElement = e then
A[i ]← E
return A

else
A[i ]← currElement

i ← i + 1
return A // If element e is not found, return the original array

Algorithm 3: Sort an array of length n
Input: An array A of size n
Output: Sorted array
for i ∈ [0, n − 1) do

/* Declare i as the index having the current smallest element */
smallest← i
for j ∈ [i + 1, n) do

/* Find the smallest element in the range [i , n) */
if A[j ] ≤ A[smallest] then

smallest← j

swap(A[i ], A[smallest]) // Swap numbers present at index i and smallest

return A
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4.1 (3 pt.)

Give the worst-case run-time complexity for each of the algorithms above.

[We are expecting: Worst Case runtime complexity in Big-Oh notation for each of the above
algorithms]

4.2 (3 pt.)

Suppose that we run each algorithm by passing in the following inputs

• For Algorithm 1: An element e and an Array A of size 100 such that e is not present
in A.

• For Algorithm 2: An element e and an Array A of size 100 such that e is present in A
at the 5th index.

• For Algorithm 3: An array A of size 100 such that A is already sorted.

4.2.1

What will be the value of i when Algorithm 1 has finished running?

4.2.2

What will be the value of i when Algorithm 2 has finished running?

4.2.3

How many times will the command swap(A[i],A[smallest]) execute by the time Algorithm 3
has finished running?

[We are expecting: A numerical quantity of each of the sub-question.]
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5 Algorithm Design (10 pt.)

The following definitions will be important for this problem:

Degree of a polynomial: The degree of a polynomial is the highest degree of the individual
terms which have a non-zero coefficient. For example the degree of P (x) = 3x4+2x2+3x+1
is 4 (because the coefficient of x4 is non-zero)

Product of two polynomials: The product of two polynomials a, b gives a polynomial c =
a × b with degree deg(c) = deg(a) + deg(b). Consider the following example:

Example product: For a = x4 + 3x − 5, b = x − 1:

c = a × b = (x4 + 3x − 5)× (x − 1)
= x5 − x4 + 3x2 − 3x − 5x + 5
= x5 − x4 + 3x2 − 8x + 5.

Your objective: You will design an algorithm to efficiently multiply polynomials. Design an
algorithm that takes two integers n and m, and also n polynomials, each of degree m, and
returns the product of all of these polynomials. You are given a function MultiplyPoly(a, b)
which multiplies two polynomials in O(deg(a) + deg(b)) time and can be used as a sub-
routine.1.

Below are two examples of the desired behavior of the algorithm.

Example 1.

Input:

1. n = 3

2. m = 2

3. P1 = x2 − 1

4. P2 = −2x2 + x − 3

5. P3 = 6x2 − 5x

Output:

−12x6 + 16x5 − 11x4 − x3 + 23x2 − 15x

Example 2.

Input:

1. n = 2
1This is a simplified assumption, as in reality the fastest known algorithm for multiplying

two polynomials, the Fast Fourier Transform (FFT), is a little bit slower with running time
O (deg(a) + deg(b) log((deg(a) + deg(b))). You don’t need to know anything about FFT for this problem.
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2. m = 4

3. P1 = 2x4 − x2 + x − 1

4. P2 = −x4 + x3 + x2 − 3x − 3

Output:

−2x8 + 2x7 + 3x6 − 8x5 − 5x4 + 3x3 − x2 + 3

[We are expecting: A succinct but clear English description, pseudocode implementation,
and running time analysis.]
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