
CS 161 (Stanford, Winter 2023) Homework 7

Style guide and expectations: Please see the “Homework” part of the “Resources” sec-
tion on the webpage for guidance on what we are looking for in homework solutions. We
will grade according to these standards. You should cite all sources you used outside of
the course material.
What we expect: Make sure to look at the “We are expecting” blocks below each
problem to see what we will be grading for in each problem!

Exercises. The following questions are exercises. We suggest you do these on your own.
As with any homework question, though, you may ask the course staff for help.

1 Greedy Activity Selection (3 pt.)

Activity Selection is a classic algorithms problem. It works as follows: you are given a schedule
with n activities, each of which has a start and finish time. You must select a subset of the
greatest possible size, subject to the constraint that none of the activities within overlap.

Below is an example schedule.

start times:
a1 a2 a3 a4 a5 a6 a7 a8
1 3 3 3 3 5 8 5.5

finish times:
a1 a2 a3 a4 a5 a6 a7 a8
2 4 4 4 4 7 12 10

a1

a2

a3

a4

a5

a6 a7

a8

Time

Two valid solutions to this schedule are {a1, a2, a6, a7}, and {a1, a3, a6, a7}. Two invalid
solutions are {a1, a2, a6} (We only include three activities when we could include four) and
{a1, a2, a6, a8} (two of the activities overlap).

Consider the following greedy algorithm for activity selection. The idea is that at each step,
we greedily add a valid activity with the fewest conflicts with other valid activities. (An
activity is valid if it doesn’t conflict with an already selected activity).

1

def g r e e d y A c t i v i t y S e l e c t i o n (A c t i v i t i e s) :
r e s u l t = {}
i n i t i a l i z e o v e r l a p coun t s a r r a y OV
OV = in i tOV (A c t i v i t i e s)
wh i l e s i z e (OV) > 0 :

a1 = argmin (OV) #a c t i v i t y w i t h the l e a s t o v e r l a p s
r e s u l t += a1
A c t i v i t i e s −= a1
A c t i v i t i e s −= { a c t i v i t i e s t h a t c o n f l i c t w i t h a1}

#r e i n i t i a l i z e OV u s i n g s m a l l e r s c h e d u l e
OV = in i tOV (A c t i v i t i e s)

r e tu rn r e s u l t

The number of conflicts to begin with (represented in the array OV) are:

a1 a2 a3 a4 a5 a6 a7 a8
0 3 3 3 3 1 1 2

The algorithm (breaking ties arbitrarily) could choose a1, then a6, then a7, then a2.

Is this algorithm correct?

[We are expecting: Either a short English explanation for why this algorithm always succeeds,
or a counterexample to show that it doesn’t.]

2 Knapsacks with Nondiscrete Items

In this exercise we’ll practice designing and analyzing greedy algorithms. We’ll look at a
continuous variant of the knapsack problem that we saw in class. You have a knapsack with
a capacity of Q ounces and there are n items; the difference between this exercise and the
version that we saw in class is that you can take a fractional amount of each item. For
example, perhaps one item is 3.6 ounces of brightly colored sand; you can choose to take
2.5235 ounces of sand for your knapsack if that’s how much you want.

Each item i has a value per ounce vi > 0 (measured in units of dollars per ounce) and a
quantity qi > 0 (measured in ounces). There are qi ounces of item i available to you, and for
any real number x ∈ [0, qi], the total value that you derive from x ounces of item i is x · vi .

Your goal is to choose an amount xi ≥ 0 to take for each item i in order to maximize the
value

∑
i xivi that you receive while satisfying:

(1) you don’t overfill the knapsack (that is,
∑
i xi ≤ Q), and

(2) you don’t take more of an item than is available (that is, 0 ≤ xi ≤ qi for all i).

Assume that
∑
i qi ≥ Q, so there always is some way to fill the knapsack.

2

2.0 (0 pt.)

Suppose that you already have partially filled your knapsack, and there is some amount of
each item left. What item should you take next, and how much?

[We are expecting: Nothing, this part is worth zero points, but it’s a good thing to think
about before you go on to the next part.]

2.1 (3 pt.)

Design a greedy algorithm which takes as input Q along with the tuples (i , vi , qi) for i =
0, . . . , n − 1, and outputs tuples (i , xi) so that (1) and (2) hold and

∑
i xivi is as large as

possible. Your algorithm should take time O(n log n).

Note: If you have a list of tuples (ai , bi , ci), it is perfectly acceptable to say something like
“Sort the list by ci" in your pseudocode.

[We are expecting:

• Pseudocode AND an English explanation of what it is doing.

• A justification of the running time.

]

2.2 (3 pt.)

Fill in the inductive step below to prove that your algorithm is correct.

• Inductive hypothesis: After making the t’th greedy choice, there is an optimal solution
that extends the solution that the algorithm has constructed so far.

• Base case: Any optimal solution extends the empty solution, so the inductive hypothesis
holds for t = 0.

• Inductive step: (you fill in)

• Conclusion: At the end of the algorithm, the algorithm returns a set S∗ of tuples (i , xi)
so that

∑
i xi = Q. Thus, there is no solution extending S∗ other than S∗ itself. Thus,

the inductive hypothesis implies that S∗ is optimal.

[We are expecting: A proof of the inductive step: assuming the inductive hypothesis holds
for t − 1, prove that it holds for t.]

2.3 Ethics (2 pt.)

Suppose you work as an admissions officer at a prestigious university and you thought perhaps
using an algorithm to help rank applicants would help streamline the admissions process.

3

However, you know that greedily admitting applicants with the highest SAT/ACT score would
not necessarily result in the best class of students. Hence, you decide to take other criteria
into account, such as community involvement, leadership and distinction in extracurricular
activities, and personal qualities and character.

Using the concept of incommensurability, explain why an algorithm might have a difficult time
deciding how to rank two applicants.

• Two things are incommensurable when we lack a common measure of value. Incom-
mensurability makes it difficult to establish ranking relationships, such as “more than”
or “less than, “better than” or “worse than.”

[We are expecting: Two to four sentences explaining how two applicants can have values
that are incommensurable.]

Problems. The following questions are problems. You may talk with your fellow CS
161-ers about the problems. However:

• Try the problems on your own before collaborating.
• Write up your answers yourself, in your own words. You should never share your

typed-up solutions with your collaborators.
• If you collaborated, list the names of the students you collaborated with at the

beginning of each problem.

3 More Dynamic Programming!
Devon the Duck is making her nest in a Red-
wood tree. She sometimes drops her eggs, so
she will place her nest in the highest branch at
which she can drop an egg without it break-
ing. If an egg will break when dropped from
branch i , it will also break when dropped from
any branch j as long as j ≥ i .
Chester the Chicken has kindly agreed to loan
Devon some of his excess eggs so that De-
von can run an experiment to determine which
branch to place her nest on. Chicken eggs
break when dropped from a branch if and only
if Duck eggs do. Once it breaks, an egg can
no longer be used to run experiments. Devon
must be entirely certain of which branch she
will place her nest on by the time she runs out
of chicken eggs.

Branch n

Branch 1

Branch 2

4

Count the minimum number of drops that Devon needs to make in the worst case, given that
Chester has given her k chicken eggs.

[A Plucky the Penguin moment: if any of the branches on the tree would break Devon’s eggs,
then she nests on branch 0, which indicates that she nests on the ground. If there is one
branch and it won’t break her eggs, then Devon nests on branch 1. You won’t need to worry
about this too much in the following problems, just know that one branch on the tree implies
two possible places to nest.]

For n ≥ 0 and k ≥ 1, let D[n, k] be the optimal worst-case number of drops that Devon
needs to determine the correct branch out of n branches using k eggs. That is, D[n, k] is
the number of drops that the best algorithm would use in the worst-case.

3.1 (1 pt.)

For any 1 ≤ j ≤ k , what is D[0, j]? What is D[1, j]?

[We are expecting: Your answer. No justification required.]

3.2 (1 pt.)

For any 1 ≤ m ≤ n, what is D[m, 1]?

[We are expecting: Your answer, with a brief (1 sentence) justification.]

3.3 (2 pt.)

Suppose the best algorithm drops the first egg from branch x ∈ {1, . . . , n}. Write a formula
for the optimal worst-case number of drops remaining in terms of D[x − 1, k − 1] and D[n−
x, k].

[We are expecting: Your formula and an informal explanation of why this formula is correct.]

3.4 (2 pt.)

Write a formula for D[n, k] in terms of values D[m, j] for j ≤ k and m < n.

Hint: Use part 3.3.

[We are expecting: Your formula and an informal explanation of why this formula is correct.]

3.5 Dynamic Programming Algorithm (5 pt.)

Design a dynamic programming algorithm which will compute D[n, k] in time O(n2k).

[We are expecting: Pseudocode AND a brief English description of how it works, as well as
an informal justification of the running time. You do not need to justify that it is correct.]

5

4 Min Element Sum

Consider the following problem, MinElementSum.

MinElementSum(n, S): Let S be a set of positive integers, and let n be a non-
negative integer. Find the minimal number of elements of S needed to write n as
a sum of elements of S (possibly with repetitions). If there is no way to write n
as a sum of elements of S, return None.

For example, if S = {1, 4, 7} and n = 10, then we can write n = 1 + 1 + 1 + 7 and that
uses four elements of S. The solution to the problem would be “4." On the other hand if
S = {4, 7} and n = 10, then the solution to the problem would be “None,” because there is
no way to make 10 out of 4 and 7.

Your friend has devised a divide-and-conquer algorithm to solve MinElementSum. Their
pseudocode is below.

def minElementSum (n , S) :
i f n == 0 :

r e tu rn 0
i f n < min (S) :

r e tu rn None
c a n d i d a t e s = []
f o r s i n S :

cand = minElementSum (n−s , S)
i f cand i s not None :

c a n d i d a t e s . append (cand + 1)
i f l en (c a n d i d a t e s) == 0 :

r e tu rn None
r e tu rn min (c a n d i d a t e s)

Your friend’s algorithm correctly solves MinElementSum. Before you start doing the problems
on the next page, it would be a good idea to walk through the algorithm and to understand
what this algorithm is doing and why it works.

4.1 (1 pt.)

Argue that for S = {1, 2}, your friend’s algorithm has exponential running time. (That is,
running time of the form 2Ω(n)). You may use any statement that we have seen in class.

Hint: Consider the example of the Fibonacci numbers that we saw in class.

[We are expecting:

• A recurrence relation that the running time of your friend’s algorithm satisfies when
S = {1, 2}.

6

• A convincing argument that the closed form for this expression is 2Ω(n). You do not
need to write a formal proof.

]

4.2 (3 pt.)

Turn your friend’s algorithm into a top-down dynamic programming algorithm. Your algorithm
should take time O(n|S|).

Hint: Add an array to the pseudocode above to prevent it from solving the same sub-problem
repeatedly.

[We are expecting:

• Pseudocode AND a short English description of the idea of your algorithm.

• An informal justification of the running time.

]

4.3 (3 pt.)

Turn your friend’s algorithm into a bottom-up dynamic programming algorithm. Your algo-
rithm should take time O(n|S|).

Hint: Fill in the array you used in part (b) iteratively, from the bottom up.

[We are expecting:

• Pseudocode AND a short English description of the idea of your algorithm.

• An informal justification of the running time.

]

5 Making Change

Lucky the lackadaisical lemur works at McDonald’s, and often he has to make change. If a
customer paid $5 for an order that costs $4.48, he would have to provide 52¢ in change.
Assuming Lucky has unlimited access to pennies, nickels, dimes, and quarters, he could pay
that 52¢ with two quarters and two pennies (4 total coins), or five dimes and two pennies
(7 total coins), or 52 pennies (52 total coins), or a number of other combinations. Lucky’s
manager hates having extra change lying around, so Lucky’s goal is to use as many total
coins as possible.

Consider the more general problem: Lucky has k coins which are worth distinct values
v1, v2, ...vk , such that 0 < v1 < v2 < ... < vk . He has to make change amounting ex-
actly to x . More precisely, he has to provide [c1, c2, c3, . . . cm] with each cj ∈ {vi , v2, . . . vk}

7

so that
∑m
1 ci = x . His goal is to maximize m, or in other words, to use as many total coins

as possible.

5.1 Greedy Approach

Consider the following greedy algorithm for making change that Lucky came up with.

def makeChange (Co ins , x) :
i f x == 0 :

r e tu rn [] # empty l i s t
i f x < 0 :

r e tu rn −1
#Co in s [0] i s the c o i n w i t h the s m a l l e s t v a l u e
r e c u r s i v e S o l = makeChange (Coins , x−Co in s [0])
i f r e c u r s i v e S o l == −1:

r e tu rn −1
e l s e :

r e tu rn [Co i n s [0]] + r e c u r s i v e S o l

5.1.1 (2 pt.)

If it returns a valid way to make change, does this algorithm return one that is optimal (i.e.
that uses the maximum total number of coins)?

[We are expecting: Either a short English explanation for why this algorithm always succeeds,
or a counterexample to show that it doesn’t.]

5.1.2 (1 pt.)

Does this algorithm always return a valid way of making change if one exists?

[We are expecting: Either a short English explanation for why this algorithm always succeeds,
or a counterexample to show that it doesn’t.]

5.2 Dynamic Programming Approach (5 pt.)

Design a DP algorithm which which computes the maximum number of coins Lucky can use
to make change. Your algorithm should run in time O(kx), where x is the amount you must
make change for and k is the number of types of coins available to use.

[We are expecting: Pseudocode and a short English description of your algorithm. No
runtime justification is necessary.]

8

	Greedy Activity Selection 3
	Knapsacks with Nondiscrete Items
	3
	3
	Ethics 2

	More Dynamic Programming!
	 1
	 1
	 2
	 2
	Dynamic Programming Algorithm 5

	Min Element Sum
	1
	3
	3

	Making Change
	Greedy Approach
	2
	1

	Dynamic Programming Approach 5

