
Lecture 11
Weighted Graphs: Dijkstra and Bellman-Ford
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NOTE: We may not get to Bellman-Ford!  
We will spend more time on it next time.



Announcements

• The midterm is tomorrow.  Good luck!

• Don’t talk about it after you are done – we will tell 
you when it is ok to discuss the midterm.

• See Ed post for detailed midterm instructions and 
logistics.

• HW5 is out today!
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Previous two lectures

• Graphs!
• DFS
• Topological Sorting
• Strongly Connected Components

• BFS
• Shortest Paths in unweighted graphs
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Today

• What if the graphs are weighted?

• Part 1: Dijkstra!
• This will take most of today’s class

• Part 2: Bellman-Ford!
• Real quick at the end if we have time! 
• We’ll come back to Bellman-Ford in more detail, so 

today is just a taste. 
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Just the graph
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Shortest path from Gates to the Union?
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Run BFS …
I should go to the dish 
and then back to the 
union!
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That doesn’t make sense if I label 
the edges by walking time.
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22 If I pay attention to 
the weights, I should 

go to Packard, then 
CS161, then the 

union.

weighted 
graph

w(u,v) = weight 
of edge between 

u and v.

For now, edge 
weights are non-

negative.

Shortest path from Gates to the Union?
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Shortest path problem
• What is the shortest path between u and v in a 

weighted graph?
• the cost of a path is the sum of the weights along that path
• The shortest path is the one with the minimum cost.

• The distance d(u,v) between two vertices u and v is the cost of 
the the shortest path between u and v.
• For this lecture all graphs are directed, but to save on notation 

I’m just going to draw undirected edges.

t
s

3

1

20
2

This path from s to t 
has cost 25.

1
12 This path is shorter, 

it has cost 5.

=
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Shortest paths
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Q: What’s the shortest 
path from Packard to 
the Union?

This is the shortest 
path from Gates to 
the Union.

It has cost 6.
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Warm-up
• A sub-path of a shortest path is also a shortest path.

• Say this is a shortest path from s to t.
• Claim: this is a shortest path from s to x.
• Suppose not, this one is a shorter path from s to x.
• But then that gives an even shorter path from s to t!

s
x t
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Single-source shortest-path problem

• I want to know the shortest path from one vertex 
(Gates) to all other vertices.

Destination Cost To get there

Packard 1 Packard

CS161 2 Packard-CS161

Hospital 10 Hospital

Caltrain 17 Caltrain

Union 6 Packard-CS161-Union

Stadium 10 Stadium

Dish 23 Packard-Dish

(Not necessarily stored as a table – how this information 
is represented will depend on the application)12



Example
• “what is the 

shortest path from 
Palo Alto to 
[anywhere else]” 
using BART, Caltrain, 
lightrail, MUNI, bus, 
Amtrak, bike, 
walking, uber/lyft.
• Edge weights have 

something to do 
with time, money, 
hassle.
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Example
• Network routing
• I send information 

over the internet, 
from my computer 
to to all over the 
world.
• Each path has a cost 

which depends on 
link length, traffic, 
other costs, etc.. 
• How should we 

send packets?
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Back to this example
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Dijkstra’s algorithm

• Finds shortest paths from 
Gates to everywhere else.

Gates
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Packard
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CS161
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Gates

UnionDishPackard
CS161

YOINK!

Dijkstra 
intuition
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Gates

UnionDishPackard
CS161

YOINK!

A vertex is done when it’s not 
on the ground anymore.

Dijkstra 
intuition
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Dijkstra 
intuition Gates
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Dijkstra 
intuition Gates

Union

Packard

CS161

YOINK!

1

1

Dish

4 22

This creates a tree!

The shortest paths 
are the lengths 
along this tree.
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How do we actually implement this?

•Without string and gravity?
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Dijkstra by example Gates

Union

Dish

Packard
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I’m not sure yet

I’m sure

How far is a node from Gates?

x x = d[v] is my best over-estimate
for dist(Gates,v).

∞

∞

∞

∞Initialize d[v] = ∞
for all non-starting vertices v, 

and d[Gates] = 0 

0

• Pick the not-sure node u with the 
smallest estimate d[u].
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Dijkstra by example Gates
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Packard
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I’m not sure yet

I’m sure

How far is a node from Gates?

x

0

∞

∞

∞

∞

• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

Current node u

x = d[v] is my best over-estimate
for dist(Gates,v).
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Dijkstra by example Gates

Union

Dish

Packard
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I’m not sure yet
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How far is a node from Gates?
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Current node u

x = d[v] is my best over-estimate
for dist(Gates,v).
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Dijkstra by example Gates
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Packard
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How far is a node from Gates?
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

x = d[v] is my best over-estimate
for dist(Gates,v).
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Dijkstra by example Gates

Union

Dish

Packard
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I’m not sure yet

I’m sure

How far is a node from Gates?

x
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

x = d[v] is my best over-estimate
for dist(Gates,v).

Packard has three 
neighbors. What happens 
when we update them?

1 min. think; 1 min. share
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Dijkstra by example Gates

Union

Dish

Packard
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How far is a node from Gates?
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

x = d[v] is my best over-estimate
for dist(Gates,v).

Packard has three 
neighbors. What 

happens when we 
update them?
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Dijkstra by example Gates
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

x = d[v] is my best over-estimate
for dist(Gates,v).
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Dijkstra by example Gates
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x

0

2

∞

23

1

• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

x = d[v] is my best over-estimate
for dist(Gates,v).

33



Dijkstra by example Gates
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Packard
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

x = d[v] is my best over-estimate
for dist(Gates,v).
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Dijkstra by example Gates
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

x = d[v] is my best over-estimate
for dist(Gates,v).
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Dijkstra by example Gates
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

x = d[v] is my best over-estimate
for dist(Gates,v).
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Dijkstra by example Gates
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Current node u

• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

x = d[v] is my best over-estimate
for dist(Gates,v).
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Dijkstra by example Gates

Union

Dish

Packard
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

How far is a node from Gates?

x = d[v] is my best over-estimate
for dist(Gates,v).
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Dijkstra by example Gates

Union
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Packard
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

How far is a node from Gates?

x = d[v] is my best over-estimate
for dist(Gates,v).
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Dijkstra by example Gates

Union

Dish

Packard
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• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] = min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Repeat

Current node u

How far is a node from Gates?

x = d[v] is my best over-estimate
for dist(Gates,v).

• After all nodes are sure, say that d(Gates, v) = d[v] for all v
40



Dijkstra’s algorithm

• Set all vertices to not-sure
• d[v] = ∞ for all v in V
• d[s] = 0
• While there are not-sure nodes:
• Pick the not-sure node u with the smallest estimate d[u].
• For v in u.neighbors:
• d[v] ←min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.
• Now d(s, v) = d[v]

See IPython Notebook for code!

Lots of implementation details left un-explained.  
We’ll get to that!

Dijkstra(G,s):
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As usual

• Does it work?
• Yes.

• Is it fast?
• Depends on how you implement it.
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Why does this work?
• Theorem:  
• Suppose we run Dijkstra on G =(V,E), starting from s. 
• At the end of the algorithm, the estimate d[v] is the actual 

distance d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).
• Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.
• When v is marked sure, d[v] = d(s,v). 
• d[v] ≥ d(s,v) and never increases, so after v is sure, d[v] stops changing.
• This implies that at any time after v is marked  sure, d[v] = d(s,v). 
• All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Let’s rename “Gates” to 
“s”, our starting vertex.

Next let’s prove the claims!

Claim 2

Claim 1 + def of algorithm
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Claim 1
d[v] ≥ d(s,v) for all v.

• Every time we update d[v], we have a path in mind:

• d[v] = length of the path we have in mind  
≥ length of shortest path 
= d(s,v)

Gates

Union

Dish

Packard
1

1

425

20

22

CS161

0
2

∞

23

1
6

Informally:

Formally:
• We should prove this by induction.
• (See skipped slide or do it yourself)

Intuition!

d[v] ←min( d[v] , d[u] + edgeWeight(u,v) )

Whatever path we 
had in mind before The shortest path to u, and 

then the edge from u to v.
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Intuition for Claim 2
When a vertex u is marked sure, d[u] = d(s,u)

• The first path that lifts u off the 
ground is the shortest one.

• Let’s prove it!
• Or at least see a proof outline.

Gates

Union

Packard

CS161

YOINK!

1

1

Dish

4

u

s
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Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis: 

• When we mark the t’th vertex v as sure, d[v] = dist(s,v).
• Base case (t=1):

• The first vertex marked sure is s, and d[s] = d(s,s) = 0.
• Inductive step:

• Assume by induction that every v already marked sure has 
d[v] = d(s,v).

• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:  

• Want to show that d[u] = d(s,u).

• Pick the not-sure node u with the smallest estimate d[u].
• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))
• Mark u as sure.
• Repeat

47

(Assuming edge weights 
are non-negative!)

Informal 
outline!



Claim 2
Inductive step

• Want to show that u is good.
• Consider a true shortest path from s to u:

u
s

True shortest path.

Temporary definition:
v is “good” means that d[v] = d(s,v)

The vertices in between 
are beige because they 
may or may not be sure. 48



Claim 2
Inductive step

• Want to show that u is good.
• Say z is the last good vertex before u (on shortest path to u).

• z’ is the vertex after z.

u
s

True shortest path.

Temporary definition:
v is “good” means that d[v] = d(s,v)

means good means not good

The vertices in between 
are beige because they 
may or may not be sure.

z != u, since u is not good.
It may be that z’ = u.

It may be that z = s. z
z’

“by way of contradiction”

u

BWOC, suppose u isn’t good.
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Claim 2
Inductive step

• Want to show that u is good.

u

z’
z

s
r

Temporary definition:
v is “good” means that d[v] = d(s,v)

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of 

shortest paths are 
shortest paths.

(We’re also using that 
the edge weights are 
non-negative here).

BWOC, suppose u isn’t good.

d(s,z)

d(s,u)
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Claim 2
Inductive step

• Want to show that u is good.

u

z’
z

s
r

Temporary definition:
v is “good” means that d[v] = d(s,v)

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of 

shortest paths are 
shortest paths.

Claim 1

• Since u is not good, 𝑑 𝑧 ≠ 𝑑 𝑢 .
• So 𝑑 𝑧 < 𝑑 𝑢 , so z is sure. We chose u so that d[u] was 

smallest of the unsure vertices.

BWOC, suppose u isn’t good.
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Claim 2
Inductive step

• Want to show that u is good.

u

z’
z

s
r

Temporary definition:
v is “good” means that d[v] = d(s,v)

means good means not good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z is good Subpaths of 

shortest paths are 
shortest paths.

Claim 1

• If 𝑑 𝑧 = 𝑑 𝑢 , then u is good.
• So 𝑑 𝑧 < 𝑑 𝑢 , so z is sure. We chose u so that d[u] was 

smallest of the unsure vertices.

BWOC, suppose u isn’t good.

But u is not good!
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Claim 2
Inductive step

• Want to show that u is good.
• If z is sure then we’ve already updated z’:
• 𝑑 𝑧′ ≤ 𝑑 𝑧 + 𝑤 𝑧, 𝑧!

= 𝑑 𝑠, 𝑧 + 𝑤(𝑧, 𝑧!)
= 𝑑 𝑠, 𝑧!

≤ 𝑑[𝑧!]

Temporary definition:
v is “good” means that d[v] = d(s,v)

means good means not good

w(z,z’)

def of update

u

z’
z

s
r

sub-paths of shortest paths are shortest paths

Claim 1 So d(s,z’) = d[z’]  and so z’ is good.

CONTRADICTION!!

z

BWOC, suppose u isn’t good.

𝑑 𝑧′ ← 𝑚𝑖𝑛{ 𝑑 𝑧! , 𝑑 𝑧 + 𝑤 𝑧, 𝑧! }

By induction when z was added to 
the sure list it had d(s,z) = d[z]

So u is good!

That is, the value of 
d[z] when z was 
marked sure…
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Claim 2
When a vertex u is marked sure, d[u] = d(s,u)
• Inductive Hypothesis: 

• When we mark the t’th vertex v as sure, d[v] = dist(s,v).
• Base case:

• The first vertex marked sure is s, and d[s] = d(s,s) = 0.
• Inductive step:

• Suppose that we are about to add u to the sure list.
• That is, we picked u in the first line here:  

• Assume by induction that every v already marked sure has 
d[v] = d(s,v).

• Want to show that d[u] = d(s,u).

• Pick the not-sure node u with the smallest estimate d[u].
• Update all u’s neighbors v:

• d[v] ← min( d[v] , d[u] + edgeWeight(u,v))
• Mark u as sure.
• Repeat

Back to this slide 

Conclusion: Claim 2 holds!
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Why does this work?

• Theorem:  
• Run Dijkstra on G =(V,E) starting from s.
• At the end of the algorithm, the estimate d[v] is the 

actual distance d(s,v).

• Proof outline:
• Claim 1: For all v, d[v] ≥ d(s,v).
• Claim 2: When a vertex is marked sure, d[v] = d(s,v).

• Claims 1 and 2 imply the theorem.

Now back to this slide
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What have we learned?

• Dijkstra’s algorithm finds shortest 
paths in weighted graphs with 
non-negative edge weights.

• Along the way, it constructs a 
nice tree.
• We could post this tree in Gates!
• Then people would know how to 

get places quickly.

Gates

Union

Packard

CS161

1

1

Dish

4 22

YOINK!
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As usual

• Does it work?
• Yes.

• Is it fast?
• Depends on how you implement it.
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Running time?

• n iterations (one per vertex)
• How long does one iteration take?

Depends on how we implement it…

• Set all vertices to not-sure
• d[v] = ∞ for all v in V
• d[s] = 0
• While there are not-sure nodes:
• Pick the not-sure node u with the smallest estimate d[u].
• For v in u.neighbors:
• d[v] ←min( d[v] , d[u] + edgeWeight(u,v) )

• Mark u as sure.
• Now dist(s, v) = d[v]

Dijkstra(G,s):
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We need a data structure that:
• Stores unsure vertices v
• Keeps track of d[v]
• Can find u with minimum d[u]  

• findMin()

• Can remove that u 
• removeMin(u)

• Can update (decrease) d[v] 
• updateKey(v,d)

• Pick the not-sure node u with the 
smallest estimate d[u].

• Update all u’s neighbors v:
• d[v] ← min( d[v] , d[u] + 

edgeWeight(u,v))
• Mark u as sure.

#
!∈#

𝑇 %indMin + #
$∈!.&'()*+,-.

𝑇 updateKey + 𝑇(removeMin)

= n( T(findMin) + T(removeMin) ) + m T(updateKey)

Total running time is big-oh of:

Just the inner loop:
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If we use an array

• T(findMin) = O(n)
• T(removeMin) = O(n)
• T(updateKey) = O(1)

• Running time of Dijkstra  
=O(n( T(findMin) + T(removeMin) ) + m T(updateKey))
=O(n2) + O(m)
=O(n2)
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If we use a red-black tree

• T(findMin) = O(log(n))
• T(removeMin) = O(log(n))
• T(updateKey) = O(log(n))

• Running time of Dijkstra  
=O(n( T(findMin) + T(removeMin) ) + m T(updateKey))
=O(nlog(n)) + O(mlog(n))
=O((n + m)log(n))

Better than an array if the graph is sparse!
aka if m is much smaller than n261



Heaps support these operations

• findMin
• removeMin
• updateKey

• A heap is a tree-based data structure that has the 
property that every node has a smaller key than its 
children.
• Not covered in this class – see CS166
• But! We will use them.
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Many heap implementations
Nice chart on Wikipedia:
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Say we use a Fibonacci Heap

• T(findMin) = O(1)                                        (amortized time*)
• T(removeMin) = O(log(n))                         (amortized time*)
• T(updateKey) = O(1)                                   (amortized time*)
• See CS166 for more!  
• Running time of Dijkstra  

=O(n( T(findMin) + T(removeMin) ) + m T(updateKey))
=O(nlog(n) + m)  (amortized time)

*This means that any sequence of d removeMin calls takes time at most O(dlog(n)).  
But a few of the d may take longer than O(log(n)) and some may take less time..65



In practice
See IPython Notebook for Lecture 11

The heap is implemented using  heapdict

Dijkstra using a Python 
list to keep track of 
vertices has quadratic 
runtime.

Dijkstra using a heap 
looks a bit more linear 
(actually nlog(n))

BFS is really fast by 
comparison!  But it 
doesn’t work on 
weighted graphs.66



Dijkstra is used in practice

• eg, OSPF (Open Shortest Path First), a routing 
protocol for IP networks, uses Dijkstra.

But there are 
some things it’s 
not so good at.
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Dijkstra Drawbacks

• Needs non-negative edge weights.
• If the weights change, we need to re-run the 

whole thing.
• in OSPF, a vertex broadcasts any changes to the 

network, and then every vertex re-runs Dijkstra’s 
algorithm from scratch.
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Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.
• Can be useful if you want to say that some edges are 

actively good to take, rather than costly.
• Can be useful as a building block in other algorithms.

• (+) Allows for some flexibility if the weights change.
• We’ll see what this means later
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Today: intro to Bellman-Ford

• We’ll see a definition by example.
• We’ll come back to it next lecture with more rigor.
• Don’t worry if it goes by quickly today.
• There are some skipped slides with pseudocode, but 

we’ll see them again next lecture.

• Basic idea:
• Instead of picking the u with the smallest d[u] to update, 

just update all of the u’s simultaneously.
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Bellman-Ford algorithm

• d[v] = ∞ for all v in V
• d[s] = 0
• For i=0,…,n-1:
• For u in V:
• For v in u.neighbors:
• d[v] ←min( d[v] , d[u] + edgeWeight(u,v))

• While there are not-sure nodes:
• Pick the not-sure node u with the smallest estimate d[u].
• For v in u.neighbors:
• d[v] ←min( d[v] , d[u] + edgeWeight(u,v))

• Mark u as sure.

Compare to Dijkstra:

Bellman-Ford(G,s):

Instead of picking u cleverly, 
just update for all of the u’s.
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For pedagogical reasons
which we will see next lecture

• We are actually going to change this to be less smart.
• Keep n arrays: d(0), d(1), …, d(n-1)

• d(i)[v] = ∞ for all v in V, for all i=0,…,n-1
• d(0)[s] = 0
• For i=0,…,n-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ←min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

• Then dist(s,v) = d(n-1)[v]

Bellman-Ford*(G,s):

Slightly different than the original 
Bellman-Ford algorithm, but the 

analysis is basically the same.
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Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25
20

22

CS161

How far is a node from Gates?

0

∞

∞

∞

∞

Start with the same graph, no 
negative weights.

=

• For i=0,…,n-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ←min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞0 ∞ ∞ ∞
Gates  Packard CS161 Union  Dish      

d(0)

d(1)

d(2)

d(3)

d(4)
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Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25
20

22

CS161

How far is a node from Gates?

0

∞

∞

25

1

Start with the same graph, no 
negative weights.

=

• For i=0,…,n-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ←min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞
Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

d(2)

d(3)

d(4)
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Bellman-Ford Gates
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Packard
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How far is a node from Gates?

0

2

45

23
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Start with the same graph, no 
negative weights.

=

• For i=0,…,n-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ←min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))
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0 ∞ ∞ ∞
Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

d(3)

d(4)
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Bellman-Ford Gates
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Packard
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How far is a node from Gates?

0

2

6

23

1

Start with the same graph, no 
negative weights.

=

• For i=0,…,n-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ←min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞
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0 ∞ ∞ ∞
Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23
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76



Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25
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22

CS161

How far is a node from Gates?

0

2

6

23

1

Start with the same graph, no 
negative weights.

=

• For i=0,…,n-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ←min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞
Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

These are the final distances!
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As usual

• Does it work?
• Yes
• Idea to the right.
• (See hidden slides for 

details)

• Is it fast?
• Not really…

∞

25

0 ∞ ∞ ∞
Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

Idea: proof by induction.
Inductive Hypothesis:
d(i)[v] is equal to the cost of the 
shortest path between s and v 
with at most i edges.
Conclusion:
d(n-1)[v] is equal to the cost of the 
shortest simple path between s 
and v.  (Since all simple paths 
have at most n-1 edges).

0 1 2 6 23d(4)
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A simple 
path is a 
path with 
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Pros and cons of Bellman-Ford

• Running time: O(mn) running time
• For each of n steps we update m edges
• Slower than Dijkstra

• However, it’s also more flexible in a few ways.
• Can handle negative edges
• If we constantly do these iterations, any changes in the 

network will eventually propagate through.  
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Wait a second…

• What is the shortest path 
from Gates to the Union?

Gates

Union

Dish

Packard

1

1

4

-3
10

-2

CS161

Cost: 6

83



Wait a second…

• What is the shortest path 
from Gates to the Union?

Gates

Union

Dish

Packard

1

1

4

-3
10

-2

CS161

Cost: 2
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Negative edge weights?

• What is the shortest path 
from Gates to the Union?
• Shortest paths aren’t defined 

if there are negative cycles!

Gates

Union

Dish

Packard

1

1

4

-3
10

-2

CS161

Cost: −∞
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Bellman-Ford and 
negative edge weights
• B-F works with negative edge weights…as long as 

there are no negative cycles.
• A negative cycle is a path with the same start and end 

vertex whose cost is negative.

• However, B-F can detect negative cycles.
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Back to the 
correctness
• Does it work?
• Yes
• Idea to the right.

∞

25

0 ∞ ∞ ∞
Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

Idea: proof by induction.
Inductive Hypothesis:
d(i)[v] is equal to the cost of the 
shortest path between s and v 
with at most i edges.
Conclusion:
d(n-1)[v] is equal to the cost of the 
shortest simple path between s 
and v.  (Since all simple paths 
have at most n-1 edges).

If there are negative cycles, 
then non-simple paths matter!

So the proof breaks for 
negative cycles.
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B-F with negative cycles Gates

Union

Dish

Packard

1

1

-3
10

-2

CS161

• For i=0,…,n-2:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ←min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

-3

0 ∞ ∞ ∞
Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 -5 2 7d(2) -3

-4 -5 -4 6d(3) -3
4

This is not looking good!
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B-F with negative cycles Gates

Union

Dish

Packard

1

1
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CS161

• For i=0,…,n-1:
• For u in V:

• For v in u.neighbors:
• d(i+1)[v] ←min(d(i)[v] , d(i+1)[v], d(i)[u] + edgeWeight(u,v))

∞

-3

0 ∞ ∞ ∞
Gates  Packard CS161 Union  Dish      

d(0)

0 1 ∞ ∞d(1)

0 -5 2 7d(2) -3

-4 -5 -4 6d(3) -3

-4 -5 -4 6d(4) -7

4

But we can tell that it’s not looking good:

Some stuff changed!

-4 -9 -4 3d(5) -7
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How Bellman-Ford deals with 
negative cycles

• If there are no negative cycles: 
• Everything works as it should.
• The algorithm stabilizes after n-1 rounds.
• Note: Negative edges are okay!!

• If there are negative cycles: 
• Not everything works as it should…

• it couldn’t possibly work, since shortest paths aren’t well-defined if 
there are negative cycles.

• The d[v] values will keep changing.
• Solution:

• Go one round more and see if things change.
• If so, return NEGATIVE CYCLE L

• (Pseudocode on skipped slide)
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• The Bellman-Ford algorithm: 
• Finds shortest paths in weighted graphs with negative 

edge weights
• runs in time O(nm) on a graph G with n vertices and m 

edges. 

• If there are no negative cycles in G:
• the BF algorithm terminates with d(n-1)[v] = d(s,v).

• If there are negative cycles in G: 
• the BF algorithm returns negative cycle.

Summary
It’s okay if that went by fast, we’ll come back to Bellman-Ford
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Recap: shortest paths
• BFS:

• (+) O(n+m)
• (-) only unweighted graphs

• Dijkstra’s algorithm:
• (+) weighted graphs
• (+) O(nlog(n) + m) if you implement it right.
• (-) no negative edge weights
• (-) very “centralized” (need to keep track of all the vertices to know 

which to update).

• The Bellman-Ford algorithm:
• (+) weighted graphs, even with negative weights
• (+) can be done in a distributed fashion, every vertex using only 

information from its neighbors.
• (-) O(nm)
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Next Time
• Dynamic Programming!!!

• Pre-lecture exercise for Lecture 12
• Remember the Fibonacci numbers from HW1?

Before next time
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