Lecture 11

Weighted Graphs: Dijkstra and Bellman-Ford

NOTE: We may not get to Bellman-Ford!
We will spend more time on it next time.




Announcements

* The midterm is tomorrow. Good luck!

* Don’t talk about it after you are done — we will tell
you when it is ok to discuss the midterm.

* See Ed post for detailed midterm instructions and
logistics.

* HWS5 is out today!



Previous two lectures

* Graphs!

* DFS

* Topological Sorting
e Strongly Connected Components

* BFS
e Shortest Paths in unweighted graphs



Today

 What if the graphs are weighted?

e Part 1: Dijkstra!
* This will take most of today’s class

e Part 2: Bellman-Ford!
* Real quick at the end if we have time!

 We’ll come back to Bellman-Ford in more detail, so
today is just a taste.
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Just the graph




Shortest path from Gates to the Union?

That doesn’t make sense if | label

the edges by walking time. :



Shortest path from Gates to the Union?

weighted
graph

w(u,v) = weight
of edge between
uand v.

If | pay attention to
the weights, | should
go to Packard, then
CS161, then the

union.
8

For now, edge
weights are non-
negative.



Shortest path problem

* What is the shortest path between uandvina
weighted graph?
* the cost of a path is the sum of the weights along that path
* The shortest path is the one with the minimum cost.

This path fromstot
has cost 25.

3 20 S

This path is shorter,
it has cost 5.

* The distance d(u,v) between two vertices u and v is the cost of
the the shortest path between u and v.

* For this lecture all graphs are directed, but to save on notation
I’'m just going to draw undirected edges. O



Shortest paths
Chosptal >~ 10 ~

This is the shortest Gates
path from Gates to

the Union. 1 @
Packard @
It has cost 6. 1

4
G
Q: What’s the shortest

20 path from Packard to

@ the Union?
10

15

25



Warm-up

* A sub-path of a shortest path is also a shortest path.

* Say this is a shortest path from s to t.

* Claim: this is a shortest path from s to x.

* Suppose not, one is a shorter path from s to x.
* But then that gives an even shorter path from s to t!

s.
N
S

11




Single-source shortest-path problem

* | want to know the shortest path from one vertex
(Gates) to all other vertices.

Packard
CS161
Hospital
Caltrain
Union
Stadium

Dish

1
2
10
17
6
10
23

Packard
Packard-CS161
Hospital

Caltrain
Packard-CS161-Union
Stadium

Packard-Dish

(Not necessarily stored as a table — how this information
. . . 12.
is represented will depend on the appllca’?tlon)



Stations and Transfers
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Example
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Example

* Network routing

* | send information
over the internet,
from my computer
to to all over the
world.

* Each path has a cost
which depends on
link length, traffic,
other costs, etc..

* How should we
send packets?

UUNET’s North America Intemnet network |
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(o) @® moses — traceroute -a www.ethz.ch —103x19

Last login: Mon Feb 7 09:27:47 on ttyse@@3
moses@PMosess-MacBook-Pro ~ % traceroute —-a www.ethz.ch

traceroute to www.ethz.ch (129.132.19.216), 64 hops max, 52 byte packets

1 [ASQ] 192.168.7.1 (192.168.7.1) 3.898 ms 2.066 ms 2.881 ms

2 [AS@] 192.168.0.1 (192.168.0.1) 2.897 ms 4.720 ms 3.108 ms

3 [ASQ] 10.127.252.2 (10.127.252.2) 57.256 ms 5.571 ms 4.268 ms

4 [AS32] he-rtr.stanford.edu (128.12.0.209) 4.039 ms 11.471 ms 4.628 ms

5 [AS6939] 100gigabitethernet5-1.corel.paol.he.net (184.105.177.237) 4.648 ms 3.
6 [AS6939] 100ge9-2.corel.sjc2.he.net (72.52.92.157) 5.949 ms 5.291 ms 4.980 ms
7 [AS6939] 100gel@-2.corel.nyc4.he.net (184.105.81.217) 69.007 ms 66.575 ms 67.
8 [AS6939] 100ge7-1.corel.lon2.he.net (72.52.92.165) 268.329 ms 191.401 ms 203.
9 [AS6939] port-channel2.core3.lon2.he.net (184.105.64.2) 205.515 ms 350.183 ms
10 [AS6939] port-channell2.core2.amsl.he.net (72.52.92.214) 144.263 ms 143.638 ms
11 [AS1200] swicel-100ge-0-3-0-1.switch.ch (80.249.208.33) 161.119 ms 208.169 ms
12 [AS559] swice4-b4.switch.ch (130.59.36.70) 219.228 ms 203.833 ms 204.402 ms
13 [AS559] swibfl-b2.switch.ch (130.59.36.113) 184.671 ms 204.955 ms 204.671 ms
14 [AS559] swiez3-b5.switch.ch (130.59.37.6) 205.079 ms 164.116 ms 245.086 ms

15 [AS559] rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) 204.296 ms 164.770 m
16 [AS559] rou-fw-rz-rz-gw.ethz.ch (192.33.92.169) 165.148 ms 322.839 ms 204.627
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Dijkstra’s algorithm

* Finds shortest paths from
Gates to everywhere else.




Dijkstra
INtuition

YOINK!

18



Dijkstra
Intuition

YOINK!

A vertex is done when it’s not
on the ground anymore.

19



Dijkstra
Intuition

Dish

CSi161
nion

20



Dijkstra
Intuition

21



Dijkstra
Intuition

YOINK!

4

Gates

1

Packard

22



Dijkstra
Intuition

W’ < YOINK

23



. ." \-& |
Dijkstra y ~ YOINK

INtuition

This creates a tree!

f
I
I
]
The shortest paths I
I
are the lengths !
. I
along this tree. !
]
I
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How do we actually implement this?

* Without string and gravity?




Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Initialize d[v] = oo
for all non-starting vertices v,
and d[Gates] =0

* Pick the node u with the
smallest estimate d[u].




Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

* Pick the node u with the

smallest estimate d[u].

 Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,v))




Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

* Pick the node u with the

smallest estimate d[u].

 Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,v))

e Markuas sure.

1



Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

Pick the node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat




Dijkstra by example

Packard has three
How far is a node from Gates? neighbors. What happens

when we update them?

O 'm not sure yet 1 min. think; 1 min. share
‘ I’'m sure ’

x = d[v] is my best over-estimate
for dist(Gates,v).
Q Current node u

Pick the node u with the

smallest estimate d[u].

Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat




Dijkstra by example

Packard has three
How far is a node from Gates? neighbors. What

happens when we
O I’'m not sure yet update them?
‘ I’'m sure ’
x = d[v] is my best over-estimate
for dist(Gates,v).
Q Current node u

Pick the node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat



Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat
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Dijkstra by example
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Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

‘ Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
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Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet
‘ I’'m sure

:‘(o=r gi[:c]((issat;\g ,E),)e_St over-estimate S
‘ Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat




Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

‘ Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat




Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

‘ Current node u

* Pick the NOT-SuUre node u with the

smallest estimate d[u].
e Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,v))

* Marku as Sure.
* Repeat

» After all nodes are sure, say that d(Gates, v) = d[v] for all v



Dijkstra’s algorithm

Dijkstra(G,s):
* Set all vertices to
d[v] = oo forall vinV

e d[s]=0
 While there are nodes:
* Pick the node u with the smallest estimate d[u].

* Forvin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))
e Mark u as sure.
Now d(s, v) = d[v]

Lots of implementation details left un-explained.
We’'ll get to that!

See IPython Notebook for code! "



As usual

o

 Does it work?
* Yes.

* |s it fast?
* Depends on how you implement it.

42



Why does this work?

* Theorem:
e Suppose we run Dijkstra on G =(V,E), starting from s.
e At the end of the algorithm, the estimate d[v] is the actual
distance d(s,v).
Let’s rename “Gates” to

o_’”

, s”, our starting vertex.
* Proof outline:

* Claim 1: For all v, d[v] = d(s,v).
* Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

. . Claim 2
* Claims 1 and 2 imply the theoreV | |
 When v is marked sure, d[v] = d(s,v). Claim 1 + def of algorithm
e d[v] = d(s,v) and never increases, so after v is sure, d[v] stops changing.
e This implies that at any time after v is marked sure, d[v] = d(s,v).
* All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Next let’s prove the cfdims!



Claim 1
d[v] = d(s,v) for all v.

Informally:
* Every time we update d[v], we have a path in mind:

d[v] < min(d[v],

Whatever path we /

had in mind before

e d[v] = length of the path we have in mind
> |length of shortest path
=d(s,v)

Formally:

* We should prove this by induction.
* (See skipped slide or do it yourself)

44



Intuition for Claim 2
When a vertex u is marked sure, d[u] = d(s,u) S5 \

* The first path that lifts u off the
ground is the shortest one.

j ! * Let’s prove it!
s * Or at least see a proof outline.

Packard




-2 ¢ Informal
. outline!
Claim 2 ﬁ

When a vertex u is marked sure, d[u] = d(s,u)

* Inductive Hypothesis:
 When we mark the t’th vertex v as sure, d[v] = dist(s,v).

* Base case (t=1): | |
* The first vertex marked sure is s, and d[s] = d(s,s) = O. (Asjfemrjc”,ﬁ_i‘iggztiwvee'ﬁhts

* Inductive step:

* Assume by induction that every v already marked sure has
d[v] = d(s,v).

e Suppose that we are about to add u to the sure list.

* That is, we picked u in the first line here:

* Pick the node u with the smallest estimate d[u].
 Update all u’s neighbors v:
* d[v] « min(d[v], d[u] + edgeWeight(u,Vv))
 Mark u as sure.
* Repeat

e Want to show that d[u] = d(s,u). 47



Temporary definition:
Claim 2 v is “good” means that d[v] = d(s,Vv)

Inductive step

* Want to show that u is good.

* Consider a true shortest path from s to u:

The vertices in between
are beige because they True shortest path.
48

may or may not be sure.



Temporary definition:
Claim 2 v is “good” means that d[v] = d(s,v)

Inductive step ‘ means good ‘ means not good

“by way of contradiction”

* Want to show that u is good. BWOC, suppose u isn’t good.
e Say z is the last good vertex before u (on shortest path to u).

e 7’ is the vertex after z.

It may be that z =s.
It may be that 2’ = u.

The vertices in between z I=u, since u is not good.

are beige because they True Shortest path.
49

may or may not be sure.



Temporary definition:
Claim 2 v is “good” means that d[v] = d(s,v)

Inductive step ‘ means good ‘ means not good

* Want to show that u is good. BWOC, suppose u isn’t good.
dlz] =d(s,z) < d(s,u) < d[u]

z is good Subpaths of
shortest paths are
shortest paths.
(We're also using that

the edge weights are
non-negative here).




Temporary definition:
Claim 2 v is “good” means that d[v] = d(s,v)

Inductive step ‘ means good ‘ means not good

* Want to show that u is good. BWOC, suppose u isn’t good.
dlz] =d(s,z) < d(s,u) < d[u]

z is good Subpaths of Claim 1
shortest paths are

shortest paths.

* Since uis not good, d|z| # d|u].
e SO d[Z] < d[ ] so zis sure. e chose u so that d[u] was

smallest of the unsure vertices.

51



Temporary definition:
Claim 2 v is “good” means that d[v] = d(s,v)

Inductive step ‘ means good ‘ means not good

* Want to show that u is good. BWOC, suppose u isn’t good.
dlz] =d(s,z) < d(s,u) < d[u]

z is good Subpaths of Claim 1
shortest paths are

shortest paths.

» Ifd[z] = d[u], then uis good. =~ °tuinoreecd
e SO d[Z] < d[U], so 7z is sure. We chose u so that d[u] was

smallest of the unsure vertices.

52



Temporary definition:
Claim 2 v is “good” means that d[v] = d(s,v)

Inductive step ‘ means good ‘ means not good

* Want to show that u is good. BWOC, suppose u isn’t good.

 If zis sure then we’ve already updated z’:
d[z'] « min{d[z'],d][z] + w(z, z")}
o d[Z,] < d[Z] + W(Z,Z’) def of update

By induction when z was added to

— /
— d(S) Z) T W(Z'Z ) the sure list it had d(s,z) = d[z]
That is, the value of
d[z] when zwas — d (S, Z,) sub-paths of shortest paths are shortest paths

marked sure...

< d[z'] cim1 So d(s,z’) = d[z’] and so z’ is good.

CONTRADICTION!!

53

So u is good!



Back to this slide

Claim 2

When a vertex u is marked sure, d[u] = d(s,u)

* Inductive Hypothesis:
 When we mark the t’th vertex v as sure, d[v] = dist(s,v).

* Base case:
* The first vertex marked sure is s, and d[s] = d(s,s) = O.

* Inductive step:
e Suppose that we are about to add u to the sure list.
* That is, we picked u in the first line here:

* Pick the node u with the smallest estimate d[u].
Update all u’s neighbors v:
e d[v] « min(d[v], d[u] + edgeWeight(u,Vv))
Mark u as sure.
* Repeat

* Assume by induction that every v already marked sure has
d[v] = d(s,v).
* Want to show that d[u] = d(s,u).

Conclusion: Claim 2 holds!

54



Why does this work?

* Theorem:
e Run Dijkstra on G =(V,E) starting from s.

* At the end of the algorithm, the estimate d[v] is the
actual distance d(s,v).

* Proof outline:
* Claim 1: For all v, d[v] = d(s,v).
* Claim 2: When a vertex is marked sure, d[v] = d(s,v).

* Claims 1 and 2 imply the theorem.

55



What have we |learned?

* Dijkstra’s algorithm finds shortest
paths in weighted graphs with
non-negative edge weights.

* Along the way, it constructs a
nice tree.
* We could post this tree in Gates!

* Then people would know how to
get places quickly.




As usual

 Does it work?
* Yes.

e |s it fast? I

* Depends on how you implement it.

57



Running time?

Dijkstra(G,s):

 Set all vertices to
dlv]=o forallvinV

e d[s]=0
 While there are nodes:
* Pick the node u with the smallest estimate d[u].

* Forvin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v) )
* Mark u as sure.
Now dist(s, v) = d[v]

* niterations (one per vertex)
* How long does one iteration take?
Depends on how we implement it... s



We need a data structure that:

Just the inner loop:

e Stores unsure vertices v * Pick the node u with the
smallest estimate d[u].

* Update all u’s neighbors v:

Can find u with minimum d[u] e d[v] « min(d[v], d[u] +
e findMin () edgeWeight(u,v))

* Mark u as sure.

* Keeps track of d[v]

e Can remove that u

* removeMin (u)

e Can update (decrease) d[v]

* updateKey (v, d)
Total running time is big-oh of:

z (T (findMin) + ( Z T (updateKey) ) + T(removeMin)>
uev

veu.neighbors

=n(T(findMin) + T(removeMin) )+ m T(updateKey)



If we use an array

* T(findMin) = O(n)
* T(removeMin) = O(n)
e T(updateKey) = O(1)

* Running time of Dijkstra
=0(n( T(findMin) + T(removeMin) ) + m T(updateKey))
=0(n?) + O(m)
=0(n?)
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If we use a red-black tree

* T(findMin) = O(log(n))
* T(removeMin) = O(log(n))
e T(updateKey) = O(log(n))

* Running time of Dijkstra
=0(n( T(findMin) + T(removeMin) ) + m T(updateKey))
=0(nlog(n)) + O(mlog(n))
=0O((n + m)log(n))

Better than an array if the graph is sparse!
aka if m is much smaller than n?



Heaps support these operations

e findMin
* removeMin

e updateKey

* A heap is a tree-based data structure that has the
property that every node has a smaller key than its
children.

 Not covered in this class — see CS166
e But! We will use them.
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Many heap implementations

Nice chart on Wikipedia:

Operation | Binaryl”! Leftist  Binomiall”) Fibonacci”® | Pairing!® | Brodall'lP! K Rank-pairing('? | Strict Fibonaccil'®!

find-min e(1) ©(1) ©(log n) ©(1) ©(1) ©(1) e(1)
delete-min ©(log n) | B(log n) | &(log n) O(log n)!! O(log n)l°! | O(log n) O(log n)!
insert O(log n) | (log n) | ©(1)" (1) (1) 1) (1)
decrease-key | ©(log n) | ©(n) ©(log n) e(1)l o(log n)€ldl | g(1) e(1)!c
merge &) | O(logn) Oflog n)® | (1) (1) (1) 1)

e(1)
O(log n)
e(1)
e(1)
o(1)
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Say we use a Fibonacci Heap

e T(findMin) = O(1) (amortized time*)
* T(removeMin) = O(log(n)) (amortized time*)
e T(updateKey) = O(1) (amortized time™)

e See CS166 for more!

* Running time of Dijkstra
=O(n( T(findMin) + T(removeMin) ) + m T(updateKey))
= O(nlog(n) + m) (amortized time)

*This means that any sequence of d removeMin calls takes time at most O(dlog(n)).
But a few of the d may take longer than O(log(n)) and some may take 1€%% time..



Time(ms)

See IPython Notebook for Lecture 11
The heap is implemented using heapdict

In practice

Shortest paths on a graph with n vertices and about 5n edges

Dijkstra using a Python

list to keep track of
— BFS ./4——— . .
140 i — - Dijkstra wlth an array /‘/ VertICGS haS quadratIC
120 - Dijkstra with a heap .(-/ - runtime.
e
100 - s \
e
80 - R
Rrd Dijkstra using a heap
60 - - ,/ looks a bit more linear
Prd (actually nlog(n))
40 - - e
e
-
20 1 Rt _
T BFS is really fast by
01 '—'—‘—' ' ' ' ' ' ' '$\ comparison! But it
0 200 400 600 800 1000 1200 1400 1600 doesn’t work on
n weighted graples.



Dijkstra is used in practice

e eg, OSPF (Open Shortest Path First), a routing
protocol for IP networks, uses Dijkstra.

But there are
some things it’s
not so good at.
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Dijkstra Drawbacks

* Needs non-negative edge weights.

* If the weights change, we need to re-run the
whole thing.

* in OSPF, a vertex broadcasts any changes to the
network, and then every vertex re-runs Dijkstra’s
algorithm from scratch.
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Bellman-Ford algorithm

* (-) Slower than Dijkstra’s algorithm

* (+) Can handle negative edge weights.

e Can be useful if you want to say that some edges are
actively good to take, rather than costly.

* Can be useful as a building block in other algorithms.

* (+) Allows for some flexibility if the weights change.
 We'll see what this means later

69



Today: intro to Bellman-Ford

* We'll see a definition by example.

 We'll come back to it next lecture with more rigor.
 Don’t worry if it goes by quickly today.

* There are some skipped slides with pseudocode, but
we’ll see them again next lecture.

e Basic idea:

* Instead of picking the u with the smallest d[u] to update,
just update all of the u’s simultaneously.
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Bellman-Ford algorithm

Bellman-Ford(G,s):

e dlv]=o0 forallvinV

e d[s]=0
Instead of picking u cleverly,

* Fori=0,...,n-1: / just update for all of the u’s.
* ForuinV:

* For vin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))

Compare to Dijkstra:

 While there are nodes:
* Pick the node u with the smallest estimate d[u].
* For vin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))
 Mark u as sure.
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For pedagogical reasons
which we will see next lecture

* We are actually going to change this to be less smart.
 Keep n arrays: d©, d1), ..., d(n-1)

Bellman-Ford*(G,s):

e dil[v]=o0 for all vinV, for all i=0,...,n-1

e 0 =
d [S] 0 Slightly different than the original
* Fori=0,...,n-2: Bellman-Ford algorithm, but the

. analysis is basically the same.
 ForuinV: Y Y

* Forvin u.neighbors:
o d#l[v] « min(d"[v], d™[v], dV[u] + edgeWeight(u,v))
* Then dist(s,v) = d(™1)]v]
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Start with the same graph, no
negative weights.

Bellman-Fora s

How far is a node from Gates? ) C@

Gates Packard CS161 Union Dish

g [o L= [ o [ =]
o0
oo T T T 1]
o T T T 1]

* Fori=0,...,n-2:
* ForuinV:
* Forvin u.neighbors:



Start with the same graph, no
negative weights.

Bellman-Fora s

How far is a node from Gates? ) C@

Gates Packard CS161 Union Dish

g [o L= [ o [ =]
[0 a]e]w]=]
oo T T T 1]
o T T T 1]

20 i —

* Fori=0,...,n-2:
* ForuinV:

* For v in u.neighbors:

o di*[v] « min(d[v], di*1)[v], d'[u] + edgeWeight(u,v))

K




Start with the same graph, no
negative weights.

Bellman-Fora s

How far is a node from Gates? ) C@

Gates Packard CS161 Union Dish

60 [o Lo oo o]
[0 a]e]w]=]
4 [0 12 ][]
T T
oo [T T T

* Fori=0,...,n-2:
* ForuinV:

* Forvin u.neighbors:
o di*[v] « min(d[v], di*1)[v], d'[u] + edgeWeight(u,v))




Start with the same graph, no
negative weights.

Bellman-Fora s

How far is a node from Gates? ) C@

Gates Packard CS161 Union Dish

40 [0 [ [ [« [=]
a [0 ]3] ]=]=]
[0 2 ==
o [o]i]z]en]

20 - —

* For i=o;--'rn_2:
* ForuinV:
* Forvin u.neighbors:
* d"Y[v] & min(d¥[v], d™Y[v], d¥[u] + edgeWeight(u,v))




Start with the same graph, no
negative weights.

Bellman-Fora s

How far is a node from Gates? ) C@

Gates Packard CS161 Union Dish

40 [0 [ [ [« [=]
a [0 ]3] ]=]=]
[0 2 ==
o [o]i]z]en]

o I e ]

These are the final distances!

K

* Fori=0,...,n-2:
* ForuinV:

* For vin u.neighbors:

o di*[v] « min(d[v], di*1)[v], d'[u] + edgeWeight(u,v))



Gates Packard CS161 Union Dish

o [« =]
==
* Does it work? d? | o | 1 | 2 | a5 | 23 |
- Yes a0 [o [ 1]z =]
* |dea to the right.
* (See hidden slides for d(4)| 0 | 1 | 2 -
details) Idea: proof by induction.

Inductive Hypothesis:
d®[v] is equal to the cost of the

As usual

A simple shortest path between s and v
path is a with at most i edges.

* |s it fast? path with Conclusion:
no cycles. d(™[v] is equal to the cost of the

* Not really...
y shortest simple path between s

and v. (Since all simple paths
have at most n-1 edges). 5




Pros and cons of Bellman-Ford

* Running time: O(mn) running time
* For each of n steps we update m edges
* Slower than Dijkstra

 However, it’s also more flexible in a few ways.
e Can handle negative edges

* If we constantly do these iterations, any changes in the
network will eventually propagate through.
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Wait a second...

 What is the shortest path
from Gates to the Union?

Packard




Wait a second...

 What is the shortest path
from Gates to the Union?




Negative edge weights?

 What is the shortest path
from Gates to the Union?

* Shortest paths aren’t defined
if there are negative cycles!




Bellman-Ford and
negative edge weights

* B-F works with negative edge weights...as long as
there are no negative cycles.

* A negative cycle is a path with the same start and end
vertex whose cost is negative.

 However, B-F can detect negative cycles.
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Gates Packard CS161 Union Dish

Back to the 00 [0 [w o [« | =]
correctness da w [ w | 25 |
* Does it work? d? | o | 1 | 2 |45 | 23 |
- ves oGl =]

* |dea to the right.
w2 le =]

Idea: proof by induction.
Inductive Hypothesis:
d®[v] is equal to the cost of the

If there are negative cycles, shortest path between s and v
with at most i edges.

then non-simple paths matter! )
Conclusion:
So the proof breaks for d™1[v] is equal to the cost of the
negative cycles. shortest simple path between s
“ and v. (Since all simple paths

have at most n-1 edges). sz




* Fori=0,...,n-2:

B-F with negative cycles

Gates Packard CS161 Union Dish

00 [o L= v v o]
U N S BN N N
o o272
o A == Te ]

This is not looking good!

* ForuinV:
* Forvin u.neighbors:
« d™[v] & min(d¥[v], d™[v], d¥[u] + edgeWeight(u,v)) N




B-F with negative cycles

Gates Packard CS161 Union Dish

00 [o [ o[ ]e]
o o[ = =]
o [ ]2 7 =]
o a5 ]a]e]=]
oo [ s a]e]7]

But we can tell that it’s not looking good:

o [T a3 [7]

Some stuff changed!

* Fori=0,...,n-1:
* ForuinV:

* Forvin u.neighbors:
« d™[v] & min(d¥[v], d™[v], d¥[u] + edgeWeight(u,v)) v




How Bellman-Ford deals with
negative cycles

* |f there are no negative cycles:
* Everything works as it should.
e The algorithm stabilizes after n-1 rounds.
* Note: Negative edges are okay!!

* |f there are negative cycles:

* Not everything works as it should...

* it couldn’t possibly work, since shortest paths aren’t well-defined if
there are negative cycles.

e The d[v] values will keep changing.

e Solution:

* Go one round more and see if things change.
* If so, return NEGATIVE CYCLE ®

e (Pseudocode on skipped slide)
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summary

It’s okay if that went by fast, we’ll come back to Bellman-Ford

* The Bellman-Ford algorithm:

* Finds shortest paths in weighted graphs with negative
edge weights

* runsin time O(nm) on a graph G with n vertices and m
edges.

* If there are no negative cycles in G:
* the BF algorithm terminates with d(™1)[v] = d(s,v).

* If there are negative cycles in G:
* the BF algorithm returns negative cycle.
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Recap: shortest paths

* BFS:

* (+) O(n+m)
* (-) only unweighted graphs

* Dijkstra’s algorithm:
* (+) weighted graphs
* (+) O(nlog(n) + m) if you implement it right.
* (-) no negative edge weights

* (-) very “centralized” (need to keep track of all the vertices to know
which to update).

* The Bellman-Ford algorithm:
* (+) weighted graphs, even with negative weights

* (+) can be done in a distributed fashion, every vertex using only
information from its neighbors.

* (-) O(nm)
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Next Time

* Dynamic Programming!!!

next time

* Pre-lecture exercise for Lecture 12
e Remember the Fibonacci numbers from HW1?



