Lecture 12

Bellman-Ford, Floyd-Warshall,

and Dynamic Programming!

Announcements

* The midterm is over!
* Congrats to everyone!
* We are working on grading the midterm.

* HW 6 out today

Today

* Bellman-Ford Algorithm
* Bellman-Ford is a special case of

* What is dynamic programming?
* Warm-up example: Fibonacci numbers

* Another example:
* Floyd-Warshall Algorithm

* Weights on edges

Re Ca ‘ ‘ represent costs.

i , * The cost of a path is the
* A weighted directed graph: sum of the weights
along that path.

* Ashortest path froms
to tis a directed path
from s to t with the
smallest cost.

This is a * The single-source
path from shortest path problem is
stot of to find the shortest path

cost 22.

fromstovforallvin
the graph.

This is a path from s to t of
cost 10. It is the shortest
path from s to t. p

Last time

* Dijkstra’s algorithm!
* Solves the single-source shortest path problem in weighted
graphs.

Dijkstra Drawbacks

* Needs non-negative edge weights.

* If the weights change, we need to re-run the
whole thing.

Bellman-Ford algorithm

* (-) Slower than Dijkstra’s algorithm

* (+) Can handle negative edge weights.

e Can be useful if you want to say that some edges are
actively good to take, rather than costly.

* Can be useful as a building block in other algorithms.

* (+) Allows for some flexibility if the weights change.
 We'll see what this means later

Aside: Negative Cycles

* A negative cycle is a cycle whose edge weights sum to
a negative number.

* Shortest paths aren’t defined when there are negative
cycles!

The shortest path from Ato B
has cost...negative infinity?

Bellman-Ford algorithm

* (-) Slower than Dijkstra’s algorithm

* (+) Can handle negative edge weights.
e Can detect negative cycles!

e Can be useful if you want to say that some edges are
actively good to take, rather than costly.

* Can be useful as a building block in other algorithms.

* (+) Allows for some flexibility if the weights change.
 We'll see what this means later

Bellman-Ford vs. Dijkstra

* Dijkstra:
* Find the u with the smallest d[u]
e Update u’s neighbors: d[v] = min(d[v], d[u] + w(u,V))

e Bellman-Ford:
* Don’t bother finding the u with the smallest d[u]
e Everyone updates!

10

Bellman-Ford ©—° &=

How far is a node from Gates?
Gates Packard CS161 Union Dish

g [o L= [o [=]
oo T T T]
oo T T T 1]
o T T T 1]

* Fori=0,...,n-2:
* ForvinV:
o di*[v] « min(dW[v], d@[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors

)

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

o oo T T x|
dv [0 [1 Jo []2 |
(2)
d [T T T T 1 |
0

20 i —

* Fori=0,...,n-2:
* ForvinV:
o di*[v] « min(dW[v], d@[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

o [oTaeTe]a
w T T=T=]
w2 l=]=]
O s

o CT T T

* Fori=0,...,n-2:
* ForvinV:
o di*[v] « min(dW[v], d@[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

d? [0 Jo Jo [[=]
o o=
d2 | o | 1 | 2 | a5 | 23 |
o T2 [=]

20 - —

* Fori=0,...,n-2:
* ForvinV:
o di*[v] « min(dW[v], d@[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

d? [0 Jo Jo [[=]
o o=
d2 | o | 1 | 2 | a5 | 23 |
o T2 [=]

o I e]

These are the final distances!

* Fori=0,...,n-2:
* ForvinV:
o di*[v] « min(dW[v], d@[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors

Interpretation of d{

d@[v] is equal to the cost of the
shortest path between s and v
with at most i edges.

Gates Packard CS161 Union Dish

40 [0 [[[[=]
a [0]3] [=]s]
4 [0 12w =]
o [0 [1]z e =]
g0 [0 [126 5]

Why does Bellman-Ford work?

* Inductive hypothesis:

 d[v] is equal to the cost of the shortest path between s
and v with at most i edges.

* Conclusion:

« d("1[v] is equal to the cost of the shortest path between
s and v with at most n-1 edges.

Do the base case and
inductive step!

Aside: simple paths

Assume there is no negative cycle.

* Then there is a shortest path from s to t, and
moreover there is a simple shortest path.

2 10
7 - \\\
,/' \\ This cycle isn’t helping.
R4 \ Just get rid of it.
V4 S ~

* Asimple path in a graph with n vertices has at most

n-1 edges in it. G
S “Simple” means
Can’t add another edge that the path has
without making a cycle! no cycles in it. ﬁ

* So there is a shortest path with at most n-1 edges

Why does it work?

* Inductive hypothesis:

 d[v] is equal to the cost of the shortest path between s
and v with at most i edges.

* Conclusion:

« d("1[v] is equal to the cost of the shortest path between
s and v with at most n-1 edges.

* If there are no negative cycles, d"1[v] is equal to the
cost of the shortest path.

Notice that negative edge weights are fine.
Just not negative cycles. 9

G =(V,E) is a graph with n
vertices and m edges.

Bellman-Ford™* algorithm

Bellman-Ford*(G,s):

* |nitialize arrays d9,...,d("1) of length n

dO[v]=co forall vinV

I [S] =0 Here, Dijkstra picked a special vertex u and
updated u’s neighbors — Bellman-Ford will
* Fori=0,...,n-2: / update all the vertices.
* ForvinV:

o d™H[v] « min(dPv], mingiqyinners{dPu] + w(u,v)})

Now, dist(s,v) = d(™1)[v] for all v in V.
* (Assuming no negative cycles)

*Slightly different than some versions of Bellman—F(z')rd...but
this way is pedagogically convenient for today’s fectu re.

We don’t even need
two, just one array is
fine. Why?

Note on implementation

* Don’t actually keep all n arrays around.
e Just keep two at a time: “last round” and “this round”

Gates Packard CS161 Union Dish

Only need these
two in order to
compute d®

21

Bellman-Ford take-aways

* Running time is O(mn)
* For each of n rounds, update m edges.

* Works fine with negative edges.

* Does not work with negative cycles.

* No algorithm can — shortest paths aren’t defined if there
are negative cycles.

* B-F can detect negative cycles!

* See skipped slides to see how, or think about it on your
own!

22

SLIDE
SKIPPED

Bellman-Ford algorithm N CLASS

Bellman-Ford*(G,s):

« dO[v] =U for all v, where U is a very large number
dO[s]=0
* Fori=0,...,n-1:

* ForvinV:

 di*D[v] < min(dOv], ming i, yinneighbors 1AV [u] + w(u,v)})

If d-1) I= d(n)

* Return NEGATIVE CYCLE ®
Otherwise, dist(s,v) = d(m1)]v]

Running time: O(mn)

26

Important thing about B-F
for the rest of this lecture

d@[v] is equal to the cost of the
shortest path between s and v
with at most i edges.

Gates Packard CS161 Union Dish

40 [0 [[[[=]
a [0]3] [=]s]
4 [0 12w =]
o [0 [1]z e =]
g0 [0 [126 5]

Bellman-Ford is an example of...
Dynamic Programming!

Today:

* Example of Dynamic programming: '
* Fibonacci numbers.
* (And Bellman-Ford)
* What is dynamic programming, exactly?
* And why is it called “dynamic programming”?
* Another example: Floyd-Warshall algorithm
* An “all-pairs” shortest path algorithm

28

Pre-Lecture exercise:
How not to compute Fibonacci Numbers

e Definition:
* F(n) = F(n-1) + F(n-2), with F(1) = F(2) = 1.
 The first several are:
e 1

e o o o
U W N B

3
* 13, 21, 34, 55, 89, 144,...

* Question:
e Given n, whatis F(n)?

29

Candidate algorithm

e def Fibonacci(n):
e if n == 0, return O
e if n == 1, return 1
e return Fibonacci(n-1) + Fibonacci(n-2)

Running time?

Computing Fibonacci Numbers

* T(n)=T(n-1) + T(n-2) + O(1) 300 -
e T(n) =T(n-1) + T(n-2) forn = 2 250 1
 SoT(n)grows at least as fast as
the Fibonacci numbers
themselves...
 This is EXPONENTIALLY QUICKLY!
T(n) = 2T(n — 2) implies
T(n) = Q(2™3).

- Naive Fibonacci

Time(ms)
& S
o <)

—
o
o

()

(=]

0 5 10 15 20 2
n
See IPython notebook for lecture 12

30

30

What's going on? That’s a lot of
. . repeated
Consider Fib(8) Computation

Maybe this would be better:

def fasterFibonacci(n):

return F[n]

None]

e F =10, 1, None, None, ..,
* \\ F has length n + 1

e for i = 2, .., n:
e F[i] = F[i-1] + F[1i-2]

Much better running time!

Computing Fibonacci Numbers

0.008 -

__ 0.006 1
wi
5
g
= 0.004 -
0.002 -
= Naive Fibonacci
=== faster Fibonacci
0000 Ll Ll))) L]

20 25 30 32

This was an example of...

What is dynamic programming?

* It is an algorithm design paradigm
* like divide-and-conquer is an algorithm design paradigm.
e Usually, it is for solving optimization problems

e E.g., shortest path

* (Fibonacci numbers aren’t an optimization problem, but
they are a good example of DP anyway...)

34

Elements of dynamic programming

1. Optimal sub-structure:

* Big problems break up into sub-problems.
e Fibonacci: F(i) fori <n
e Bellman-Ford: Shortest paths with at most i edges fori <n

* The solution to a problem can be expressed in terms of
solutions to smaller sub-problems.

* Fibonacci:
F(i+1) = F(i) + F(i-1)
* Bellman-Ford:
d*[y] < min{ , min_ {d"[u] + weight(u,v)}}

N

Shortest path with at most
i edges from s to u. a5

Elements of dynamic programming
2. Overlapping sub-problems:

* The sub-problems overlap.
* Fibonacci:
* Both F[i+1] and F[i+2] directly use F[i].
* And lots of different F[i+x] indirectly use FJi].
e Bellman-Ford:

* Many different entries of d*") will directly use d')[v].
* And lots of different entries of d'"* will indirectly use d/[v].

* This means that we can save time by solving a sub-problem
just once and storing the answer.

36

Elements of dynamic programming

e Optimal substructure.
e Optimal solutions to sub-problems can be used to find the
optimal solution of the original problem.
* Overlapping subproblems.
* The subproblems show up again and again

* Using these properties, we can design a dynamic
programming algorithm:
* Keep a table of solutions to the smaller problems.
e Use the solutions in the table to solve bigger problems.

* At the end we can use information we collected along the
way to find the solution to the whole thing.

37

Two ways to think about and/or
implement DP algorithms

* Top down

* Bottom up

Bottom up approach

what we just saw.

 For Fibonacci:

* Solve the small problems first
e fill in F[O],F[1]

* Then bigger problems

* Then bigger problems
 fill in F[n-1]

* Then finally solve the real problem.
 fill in F[n]

39

Bottom up approach

what we just saw.

 For Bellman-Ford:

* Solve the small problems first
e fill in d(©)

* Then bigger problems

* Then bigger problems
* fill in d(n2

* Then finally solve the real problem.
* fill in d(n-D

40

Top down approach

* Think of it like a recursive algorithm.

* To solve the big problem:

* Recurse to solve smaller problems

* Those recurse to solve smaller problems
* etc..

* The difference from divide and

conquer: %
* Keep track of what small problems you’ve
already solved to prevent re-solving the /ME/'/’O
same problem twice.
* Aka, “memo-ization”
o

41

Example of top-down Fibonacci

* define a global list F = [0,1,None, None, .., None]

def Fibonacci(n):
* if F[n] != None:
* return F[n]
* else:
e F[n] = Fibonacci(n-1) + Fibonacci(n-2)

* return F[n]
Computing Fibonacci Numbers

£ "/J,;/
/':"
- 0008 T '.--./_..r
&
‘.7"‘"..
)) _ 0.006 7
Memo-ization: g
Keeps frack (in F) .
Y — e
of the stuff youve =L
already done.
0.002 A = Naive Fibonacci
—=== faster Fibonacci, bottom-up
""" faster Fibonacci, top-down

0, 00 0)) L L L L 44 L
0 5 10 15 20 25

&

Collapse
Memo-ization visualization i
the same work

twice!

Memo-ization Visualization
ctd

. y,

Collapse But otherwise
repeated nodes treat it like the
and dont do the o Gl

same work recursive
twice! algori’fhm-
* define a global list F = [0,1,None, None, .., None]

* def Fibonacci(n):

* if F[n] != None:
* return F[n]
* else:
* F[n] = Fibonacci(n-1) + Fibonacci(n-2)

* return F[n]

=

44

What have we |learned?

* Dynamic programiming:

Paradigm in algorithm design.

Uses optimal substructure

Uses overlapping subproblems

Can be implemented bottom-up or top-down.

It’s a fancy name for a pretty common-sense idea:

Dont
duplicate
work if you
dont have to!

45

Why “dynamic programming” ?

* Programming refers to finding the optimal “program.”
e asin, a shortest route is a plan aka a program.

* Dynamic refers to the fact that it’s multi-stage.
e But also it’s just a fancy-sounding name.

Manipulating computer code in an action mévie?

Why “dynamic programming” ?

e Richard Bellman invented the name in the 1950’s.

* At the time, he was working for the RAND
Corporation, which was basically working for the
Air Force, and government projects needed flashy
names to get funded.

* From Bellman’s autobiography:

* “It’s impossible to use the word, dynamic, in the
pejorative sense...l thought dynamic programming was
a good name. It was something not even a
Congressman could object to.”

47

Floyd-Warshall Algorithm

Another example of DP

 This is an algorithm for All-Pairs Shortest Paths (APSP)

* Thatis, | want to know the shortest path from u to v for ALL
pairs u,v of vertices in the graph.

* Not just from a special single source s.

Destination

Floyd-Warshall Algorithm

Another example of DP

* This is an algorithm for All-Pairs Shortest Paths (APSP)

* Thatis, | want to know the shortest path from u to v for ALL
pairs u,v of vertices in the graph.

* Not just from a special single source s.

* Naive solution (if we want to handle negative edge weights):
* ForallsinG:
* Run Bellman-Ford on G starting at s.

* Time O(n-nm) = O(n?m),
* may be as bad as n* if m=n?

Label the vertices 1,2,...,n

Optimal substructure

Label the vertices 1,2,...,n
" (We omit some edges in the
Optlma‘ SUbStrUCture picture below — meant to be a
cartoon, not an example).
Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest

' DP algorithm
path from u to v, so that all the internal s 9

will fill in the

vertices on that path are in {1,...,k-1}. n-by-n arrays
p© pW, ..., DM
Let D(1[u,v] be the solution H-eraﬁvely and
to Sub-problem(k-1). then we'll be done. @

This is the shortest
@ path fromutov

Vertlce through the blue set.
SL,.., - k-1 It has cost D[y, v]

51

Label the vertices 1,2,...,n
Optlmal Su bStru Ctu re (We omit some edges in the
picture below —meant to be a
cartoon, not an example).
Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest :
path from u to v, so that all the internal OurgBiAd' SRR

will fill in the
vertices on that path are in {1,...,k-1}.

n-by-n arrays
D), P D
Let D(1[u,v] be the solution iteratively and

to Sub-problem(k-1). then we'll be done. k+1

Question: How can we find D®[u,v] using D{k1)?

Y
This is the shortest
@ k-1 path fromutov

Vertices 1 through the blue set.
7wy k-1 It has cost D1[u,Vv]

52

How can we find D®[u,v] using DIk1)?

D[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {1, ..., k}.

How can we find D®[u,v] using D)7

D[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {1, ..., k}.

<.
o

Q @ slhis Path was the

Vertices L., kg est now.

_— D[y, v] = D(k—l)[ulv]
___— o

Case 1: we don't @ y
need vertex k. Piog, @

How can we find D®[u,v] using DIk1)?

D[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {1, ..., k}.

Case 2: we need
b,
vertex k. s, @
.,

D O &

Vertices 1.k .

55

Case 2 continued

Case 2: we need
vertex k.

Suppose there are no negative

cycles.
* Then WLOG the shortest path from
u to v through {1,...,k} is simple.

If that path passes through k, it
must look like this: .

This path is the shortest path
from u to k through {1,...,k-1}. @

e sub-paths of shortest paths are
shortest paths

Similarly for this path.

D®[u,v] = DID[u,k] + DDk, v],,

How can we find D[u,v] using Dlk1)?

Case 1: we don’t need vertex k. Case 2: we need vertex k.

How can we find D[u,v] using Dlk1)?

e DI[u,v] = min{ D[y, v], DNy k] + D[k, v] }

Case 1: Cost of Case 2: Cost of shortest path
shortest path from u to k and then fromk to v
through {1,...,k-1} through {1,...,k-1}

* Optimal substructure:

* We can solve the big problem using solutions to smaller
problems.

* Overlapping sub-problems:

e D(k1[k,v] can be used to help compute D)[u,v] for lots
of different u’s.

58

How can we find D[u,v] using Dlk1)?

e DKI[u,v] = min{ D"1[u,v], DIU[u, k] + DLk, v] }

Case 1: Cost of Case 2: Cost of shortest path
shortest path from u to k and then from k to v
through {1,...,k-1} through {1,...,k-1}

* Using our Dynamic programming paradigm, this
immediately gives us an algorithm!

Floyd-Warshall algorithm

* Initialize n-by-n arrays D) for k = 0,...,n
e D[u,u] =0 for all u, for all k C;kagisftciﬁg

° D(k):u,v: = oo for all u # v, for all k only path through

» DO[u,v] = weight(u,v) for all (u,v) in E.«— zero other vertices
are edges directly

* Fork = 1, ..., n: from u to v.
* For pairs u,v in V2
e DI[u,v] = min{ D<Y[u,v], D%1[u, k] + D[k, v] }

e Return D"

This is a bottom-up Dynamiec programming algorithm.

We've basically just shown

e Theorem:

If there are no negative cycles in a weighted directed graph G,
then the Floyd-Warshall algorithm, running on G, returns a
matrix D" so that:

D(N[u,v] = distance between u and v in G.

Work out the 2>
° Runnlng tlmE. O(n3) details of a proof! @
* Better than running Bellman-Ford n times!

We don’t even need
two, just one array is
fine. Why?

* Storage:
* Need to store two n-by-n arrays, and the original graph.

As with Bellman-Ford, we don’t really need to store all n of the D), 61

What if there are negative cycles?

* Just like Bellman-Ford, Floyd-Warshall can detect
negative cycles:

* “Negative cycle” means that there’s some v so that there
is a path from v to v that has cost < 0.

e Aka, DIM[vv] < 0.

* Algorithm:
* Run Floyd-Warshall as before.
e If there is some v so that DI"[v,v] < O:
* return negative cycle.

62

What have we |learned?

* The Floyd-Warshall algorithm is another example of

* It computes All Pairs Shortest Paths in a directed
weighted graph in time O(n3).

Can we do better than O(n3)?

Nothing on this slide is required knowledge for this class

* There is an algorithm that runs in time O(n3/log'%(n)).
* [Williams, “Faster APSP via Circuit Complexity”, STOC 2014]

* If you can come up with an algorithm for All-Pairs-
Shortest-Path that runs in time O(n2-2?), that would be
a really big deal.

* Let me know if you can!

* See [Abboud, Vassilevska-Williams, “Popular conjectures
imply strong lower bounds for dynamic problems”, FOCS
2014] for some evidence that this is a very difficult problem!

64

Recap

* Two shortest-path algorithms:
* Bellman-Ford for single-source shortest path
* Floyd-Warshall for all-pairs shortest path

* Dynamic programming!
e This is a fancy name for:

* Break up an optimization problem into smaller problems

e The optimal solutions to the sub-problems should be sub-
solutions to the original problem.

* Build the optimal solution iteratively by filling in a table of
sub-solutions.

* Take advantage of overlapping sub-problems!

65

Next time

* More examples of dynamic programming!

We will stop bullets with our

action-packed coding skills,

and also maybe find longest
common subsequences.

* No pre-lecture exercise for next time

66

