
CS 161 (Stanford, Winter 2023) Lecture 13
Adapted from Virginia Williams’ lecture notes. Additional credits go to Wilbur Yang and
Mary Wootters.
Please direct all typos and mistakes to Moses Charikar and Nima Anari.

More Dynamic Programming

1 Overview

Last lecture, we talked about dynamic programming (DP), a useful paradigm and one technique
that you should immediately consider when you are designing an algorithm. We covered the
Bellman-Ford algorithm for solving the single source shortest path problem, and we talked
about the Floyd-Warshall algorithm for solving the all pairs shortest path problem.

This lecture, we will cover some more examples of dynamic programming, and start to see
a recipe for how to come up with DP solutions. We will talk about three problems today:
longest common subsequence, knapsack, and maximum weight independent set in trees.

In general, here are the steps to coming up with a dynamic programming algorithm:

1. Identify optimal substructure: how are we going to break up an optimal solution into
optimal sub-solutions of sub-problems? We’re looking for a way to do this so that there
are overlapping sub-problems, so that a dynamic programming approach will be effective.

2. Recursively define the value of an optimal solution: Write down a recursive formula-
tion of the optimum, in terms of sub-solutions.

3. Find the optimal value: Turn this recursive formulation into a dynamic programming
algorithm to compute the value of the optimal solution.

4. Find the optimal solution: Once we’ve figured out how to find the cost of the optimal
solution, we can go back and figure out how to keep enough information in our algorithm
so that we can find the solution itself.

5. Tweak the implementation:1 Often it’s the case that the solutions that we come up
with in the previous steps aren’t implemented in the best way. Maybe they are storing
more than they need to, like we saw with our first pass at the Floyd-Warshall algorithm.
In this final step (which we won’t go into in too much detail in CS161), we go back
through the DP solution we’ve designed, and optimize it for space, running time, and
so on.

In this class, we’ll focus mostly on 1, 2, and 3. We’ll see a few examples of 4, and occasionally
wave our hands about 5.

1We won’t talk too much about this step in CS161, even though it is often important in practice.

1

2 Longest Common Subsequence

We now consider the longest common subsequence problem which has applications in spell-
checking, biology (whether different DNA sequences correspond to the same protein), and
more.

We say that a sequence Z is a subsequence of a sequence X if Z can be obtained from X by
deleting symbols. For example, abracadabra has baab as a subsequence, because we can
obtain baab by deleting a, r, cad, and ra. We say that a sequence Z is a longest common
subsequence (LCS) of X and Y if Z is a subsequence of both X and Y , and any sequence
longer than Z is not a subsequence of at least one of X or Y . For instance, the LCS of
abracadabra and bxqrabry is brabr.

Using the definition of LCS, we define the LCS problem as follows: Given sequences X and
Y , find the length of their LCS, Z (and if we are proceeding to Step 4 of the outline above,
output Z).

In what follows, suppose that the sequence X is X = x1x2x3 · · · xm, so that X has length m,
and suppose that Y = y1y2 · · · yn as length n. We’ll use the notation X[1 : k] as usual to
denote the prefix X[1 : k] = x1x2 · · · xk .

2.1 Steps 1 and 2: Identify optimal substructure, and write a recursive
formulation

Our sub-problems will be to solve LCS on prefixes of X and Y . To see how we can do this,
we consider the following two cases.

• Case 1: xm = yn. If xm = yn = ℓ, then any LCS Z has ℓ as its last symbol. Indeed,
suppose that Z ′ is any common subsequence that does not end in ℓ: then we can always
extend it by appending ℓ to Z ′ to obtain another (longer) legal common subsequence.

Thus, if |Z| = k and xm = yn = ℓ, we can write

Z[1 : k − 1] = LCS(X[1 : m − 1], Y [1 : n − 1])

and
Z = Z[1 : k − 1] ◦ ℓ,

where ◦ denotes the concatenation operation on strings.

• Case 2: xm ̸= yn. As above, let Z be the LCS of X and Y . In this case, the last letter
of Z (call it zk) is either not equal to xm or it is not equal to yn. (Notice that this or is
not an exclusive or; maybe zk isn’t equal to either xm or yn). In this case, at least one
of xm or yn cannot appear in the LCS of X and Y ; this means that either

LCS(X, Y) = LCS(X[1 : m − 1], Y)

or
LCS(X, Y) = LCS(X, Y [1 : n − 1]),

2

whichever is longer. That is, we can shave one letter off the end of either X or Y . In
particular, the length of LCS(X, Y) is given by

lenLCS(X, Y) = max{lenLCS(X[1 : m − 1], Y), lenLCS(X, Y [1 : n − 1])} .

This immediately gives us our recursive formulation. Let’s keep a table C, so that

C[i , j] = length of LCS(X[1 : i], Y [1 : j]).

Then we have the relationship:

C[i , j] =

0 if i = 0 or j = 0,

C[i − 1, j − 1] + 1 if X[i] = Y [j] and i , j > 0,

max{C[i − 1, j], C[i , j − 1]} if X[i] ̸= Y [j] and i , j > 0.

Suppose we keep a table C, where C[i , j] maintains the length of LCS(X[1 : i], Y [1 : j]), the
longest common subsequence of X[1 : i] and Y [1 : j]. Then, we can fill in the values of C
using the following recurrence:

C[i , j] =

{
1 + C[i − 1, j − 1], if X[i] = Y [j],

max(C[i − 1, j], C[i , j − 1]) otherwise.

Technically, we should do a proof here to show that this recurrence is correct. See CLRS for
the details, but it is true that if we define C[i , j] recursively as above, then indeed, C[i , j] is
equal to the length of LCS(X[1 : i], Y [1 : j]). (Good exercise: prove this for yourself using
induction).

2.2 Step 3: Define an algorithm using our recursive relationship.

The recursive relationship above naturally gives rise to a DP algorithm for filling out the table
C:

Note that there are only n × m entries in our table C. This is where the overlapping
subproblems come in: we only need to compute each entry once, even though we may access
it many times when filling out subsequent entries.

We can also see that C[i , j] only depends on three possible prior values: C[i − 1, j], C[i , j − 1],
and C[i − 1, j − 1]. This means that each time we compute a new value C[i , j] from previous
entries, it takes time O(1).

Thus, we can start to see how to obtain an algorithm for filling in the table and obtaining the
LCS. First, we know that any string of length 0 will have an LCS of length 0. Thus, we can
start by filling out C[0, j] = 0 for all j and similarly, C[i , 0] = 0 for all i . Then, we can fill out
the rest of the table, filling the rows from bottom up (i from 1 to m) and filling each row
from left to right (j from 1 to n). The pseudocode is given in Algorithm 1.

As mentioned above, in order to fill each entry, we only need to perform a constant number
of lookups and additions. Thus, we need to do a constant amount of work for each of the
m × n entries, giving a running time of O(mn).

3

Algorithm 1: lenLCS(X, Y)
Initialize an n + 1×m + 1 zero-indexed array C.
Set C[0, j] = C[i , 0] = 0 for all i , j ∈ {1, . . . , m} × {1, . . . , n}.
for i = 1, . . . , m do

for j = 1, . . . , n do
if X[i] = Y [j] then
C[i , j]← C[i − 1, j − 1] + 1

else
C[i , j]← max{C[i − 1, j], C[i , j − 1]}

return C

2.3 Step 4: Recovering the actual LCS

Algorithm 1 only computes the length of the LCS of X and Y . What if we want to recover
the actual longest common subsequence? In Algorithm 2, we show how we can construct the
actual LCS, given the dynamic programming table C that we’ve filled out in Algorithm 1.

Algorithm 2: LCS(X, Y, C)
// C is filled out already in Algorithm 1
L← ∅
i ← m
j ← n
while i > 0 and j > 0 do

if X[i] = Y [j] then
Append X[i] to the beginning of L
i ← i − 1
j ← j − 1

else if C[i , j] = C[i , j − 1] then
j ← j − 1

else
i ← i − 1

In this algorithm, we start from the end of X and Y and work backward, using our table C
as a guide. We start with i = m and j = m. If at some point (i , j), we see that X[i] = Y [j],
then decrement both i and j . On the other hand, if X[i] ̸= Y [j], then we know that we need
to drop a symbol from either X or Y . The table C will tell us which: if C[i , j] = C[i , j − 1],
then we can drop a symbol from Y and decrement j . If C[i , j] = C[i − 1, j], then we can
drop a symbol from X and decrement i . Of course, it might be the case that both of these
hold; in this case it doesn’t matter which we decrement, and our pseudocode will be default
decrement j .

4

How long does this take? Notice that in each step, the sum i + j is decremented by at least
one (maybe two) and stops as soon as one of i , j is equal to zero; this is at least before
i + j = 0. Thus, the number of times we decrement i + j is at most m + n, which was their
total value to start.

Because at each step of Algorithm 2, the work is O(1), the total running time is thus O(n+m),
which is subsumed by the runtime of O(mn) necessary to fill in the table.

The conclusion is that we can find LCS(X, Y) of a sequence X of length m and a sequence Y
of length n in time O(mn).

Interestingly, this simple dynamic programming algorithm is basically the best known algorithm
for solving the LCS problem. It is conjectured that this algorithm may be essentially optimal.
It turns out that giving an algorithm that (polynomially) improves the dependence on m and
n over the O(mn) strategy outlined above would imply a major breakthrough in algorithms for
the boolean satisfiability problem – a problem widely believed to be computationally hard to
solve.

3 The Knapsack Problem

This is a classic problem, defined as the following:

We have n items, each with a value and a positive weight. The i-th item has weight wi and
value vi . We have a knapsack that holds a maximum weight of W . Which items do we put in
our knapsack to maximize the value of the items in our knapsack? For example, let’s say that
W = 10; that is, the knapsack holds a weight of at most 10. Also suppose that we have four
items, with weight and value:

Item Weight Value
A 6 25
B 3 13
C 4 15
D 2 8

We will talk about two variations of this problem, one where you have infinite copies of each
item (commonly known as Unbounded Knapsack), and one where you have only one of each
item (commonly known as 0-1 Knapsack).

What are some useful subproblems? Perhaps it’s having knapsacks of smaller capacities, or
maybe it’s having fewer items to choose from. In fact, both of these ideas for subproblems
are useful. As we will see, the first idea is useful for the Unbounded Knapsack problem, and a
combination of the two ideas is useful for the 0-1 Knapsack problem.

5

3.1 The Unbounded Knapsack Problem

In the example above, we can pick two of item B and two of item D. Then, the total weight
is 10, and the total value 42.

We define K(x) to be the optimal solution for a knapsack of capacity x . Suppose K(x)
happens to contain the i-th item. Then, the remaining items in the knapsack must have a
total weight of at most x − wi . The remaining items in the knapsack must be an optimum
solution. (If not, then we could have replaced those items with a more highly valued set of
items.) This gives us a nice subproblem structure, yielding the recurrence

K(x) = max
i :wi≤x

(K(x − wi) + vi) .

Developing a dynamic programming algorithm around this recurrence is straightforward. We
first initialize K(0) = 0, and then we compute K(x) values from x = 1, . . . ,W . The overall
runtime is O(nW).

Algorithm 3: UnboundedKnapsack(W, n,w, v)

K[0]← 0
for x = 1, . . . ,W do
K[x]← 0
for i = 1, . . . , n do

if wi ≤ x then
K[x]← max{K[x], K[x − wi] + vi}

return K[W]

Remark 1. This solution is not actually polynomial in the input size because it takes log(W)
bits to represent W . We call these algorithms “pseudo-polynomial.” If we had a polynomial
time algorithm for Knapsack, then a lot of other famous problems would have polynomial
time algorithms. This problem is NP-hard.

3.2 The 0-1 Knapsack Problem

Now we consider what happens when we can take at most one of each item. Going back to
the initial example, we would pick item A and item C, having a total weight of 10 and a total
value of 40.

The subproblems that we need must keep track of the knapsack size as well as which items
are allowed to be used in the knapsack. Because we need to keep track of more information
in our state, we add another parameter to the recurrence (and therefore, another dimension
to the DP table). Let K(x, j) be the maximum value that we can get with a knapsack of
capacity x considering only items at indices from 1, . . . , j . Consider the optimal solution for
K(x, j). There are two cases:

6

1. Item j is used in K(x, j). Then, the remaining items that we choose to put in the
knapsack must be the optimum solution for K(x − wj , j − 1). In this case, K(x, j) =
K(x − wj , j − 1) + vj .

2. Item j is not used in K(x, j). Then, K(x, j) is the optimum solution for K(x, j − 1). In
this case, K(x, j) = K(x, j − 1).

So, our recurrence relation is: K(x, j) = max{K(x −wj , j − 1) + vj , K(x, j − 1)}. Now, we’re
done: we simply calculate each entry up to K(W, n), which gives us our final answer. Note
that this also runs in O(nW) time despite the additional dimension in the DP table. This is
because at each entry of the DP table, we do O(1) work.

Algorithm 4: ZeroOneKnapsack(W, n,w, v)

for x = 1, . . . ,W do
K[x, 0]← 0

for j = 1, . . . , n do
K[0, j]← 0

for j = 1, . . . , n do
for x = 1, . . . ,W do
K[x, j]← K[x, j − 1]
if wj ≤ x then
K[x, j]← max{K[x, j], K[x − wj , j − 1] + vj}

return K[W, n]

4 The Independent Set Problem

This problem is as follows:

Say that we have an undirected graph G = (V, E). We call a subset S ⊆ V of vertices
“independent” if there are no edges between vertices in S. Let vertex i have weight wi , and
denote w(S) as the sum of weights of vertices in S. Given G, find an independent set of
maximum weight argmaxS⊆V w(S).

Actually, this problem is NP-hard for a general graph G. However, if our graph is a tree,
then we can solve this problem in linear time. In the following figure, the maximum weight
independent set is highlighted in blue.

Remark 2. Dynamic programming is especially useful to keep in mind when you are solving a
problem that involves trees. The tree structure often lends itself to dynamic programming
solutions.

7

4

1 6 2 8

7 5

3 9

As usual, the key question to ask is, “What should our subproblem(s) be?” Intuitively, if the
problem has to do with trees, then subtrees often play an important role in identifying our
subproblems. Let’s pick any vertex r and designate it as the root. Denoting the subtree
rooted at u as Tu, we define A(u) to be the weight of the maximum weight independent set
in Tu. How can we express A(u) recursively? Letting Su be the maximum weight independent
set of Tu, there are two cases:

1. If u /∈ Su, then A(u) =
∑
v A(v) for all children v of u.

2. If u ∈ Su, then A(u) = wu +
∑
v A(v) for all grandchildren v of u.

To avoid solving the subproblem for trees rooted at grandchildren, we introduce B(u) as the
weight of the maximum weight independent set in Tu \ {u}. That is, B(u) =

∑
v A(v) for all

children v of u. Equivalently, we have the following cases:

1. If u /∈ Su, then A(u) =
∑
v A(v) for all children v of u.

2. If u ∈ Su, then A(u) = wu +
∑
v B(v) for all children v of u.

So, we can calculate the weight of the maximum weight independent set:

A(u) = max

 ∑
v∈Children(u)

A(v), wu +
∑

v∈Children(u)

B(v)

To create an algorithm out of this recurrence, we can compute the A(u) and B(u) values in a
bottom-up manner (a post-order traversal on the tree), arriving at the answer, A(r). This
takes O(|V |) time.

8

Algorithm 5: MaxWeightIndependentSet(G)

// G is a tree
r ← ArbitraryVertex(G)
T ← RootTreeAt(G, r)
Procedure SolveSubtreeAt(u)

if Children(T, u) = ∅ then
A(u)← wu
B(u)← 0

else
for v ∈ Children(T, u) do

SolveSubtreeAt(v)

A(u)← max
{∑

v∈Children(T,u) A(v), wu +
∑
v∈Children(T,u)B(v)

}
B(u)←

∑
v∈Children(T,u) A(v)

SolveSubtreeAt(r)
return A(r)

9

	Overview
	Longest Common Subsequence
	Steps 1 and 2: Identify optimal substructure, and write a recursive formulation
	Step 3: Define an algorithm using our recursive relationship.
	Step 4: Recovering the actual LCS

	The Knapsack Problem
	The Unbounded Knapsack Problem
	The 0-1 Knapsack Problem

	The Independent Set Problem

