Lecture 13

More dynamic programming!
Longest Common Subsequences, Knapsack, and
(if time) independent sets in trees.

Dy,

Last time Py, “Mije
“9re I i
g/

* Not coding in an action movie.

se programs dynamically
in Mission Impossible -

e —

Last time Pro,,.

* Dynamic programming is an algorithm design
paradigm.

e Basic idea:

* |dentify optimal sub-structure

e Optimum to the big problem is built out of optima of small
sub-problems

» Take advantage of overlapping sub-problems
* Only solve each sub-problem once, then use it again and again

* Keep track of the solutions to sub-problems in a table
as you build to the final solution.

Today

* Examples of dynamic programming:
1. Longest common subsequence

2. Knapsack problem
e Two versions!

3. Independent sets in trees

* If we have time...
* (If not the slides will be there as a reference)

* Yet more examples of DP in CLRS!
e Optimal order of matrix multiplications
e Optimal binary search trees
* Longest paths in DAGs, ...

The goal of this lecture

* For you to get really bored of dynamic programming

Longest Common Subsequence

* How similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

Longest Common Subsequence

* How similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCTIAGCTT GACAGCCTACAAGCGTTAGCTTG

* Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

Longest Common Subsequence

e Subsequence:
is a subsequence of ABCDEFG

* If Xand Y are sequences, a common subsequence
is a sequence which is a subsequence of both.

is a common subsequence of ABCOEFGH and of
ABDFGHI
* A longest common subsequence...
e ...iIsa common subsequence that is longest.

* The longest common subsequence of ABCDE and
lis

We sometimes want to find these

@ B anari — anari@nimbook —...

+ =~ cat filel

» ~ cat file2

e The unixcommand diff

» ~ diff filel file2

* Merging in version control
* svn, git, etc...

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

10

Step 1: Optimal substructure

Prefixes:
X Alc|lGcgl|laGc | T
Y AlclGglc|TI|T]|A

Notation: denote this prefix ACGC by Y,

* Qur sub-problems will be finding LCS’s of prefixes to X and Y.
* Let C[i,j] = length_of_LCS(X, Y;)
C[2,3] =2

Examples:
DI a4 =3 H

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. J

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

12

Goal

* Write C[i,j] in terms of the solutions to smaller sub-
problems

C[i,j] = length_of_LCS(X, Y;)

13

* QOur sub-problems will be finding

TWO cases LCS’s of prefixes to X and Y.
: : * Let C[i,j] = length_of_LCS(X, Y;)
Case 1: X[i] = Y[j]

These are
A the same
| |
A C| G G A
Xi
j
|
| |
Yj AlclGgl|lc|T|T]|A

Then CJi,j] =1 + C[i-1,j-1].
* because LCS(X,)Y;) = LCS(X, 1,Y; ;) followed by | A

14

* QOur sub-problems will be finding

TWO cases LCS’s of prefixes to X and Y.
: : * Let C[i,j] = length_of_LCS(X, Y;)
Case 2: X[i] = Y[j]

These are
{ A \/ not the
same
A C| G G T
Xi
j
|
| |
Yj AlclGgl|lc|T|T]|A

 Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
* either LCS(X,Y;) = LCS(X,.1,Y;) and | T| is not involved,
* or LCS(X,Y;) = LCS(X,Y; 1) and |A| is not involved,

* (maybe both are not involved, that’s covered by the “or”),

Recursive formulation
of the optimal solution X, |

Yj A|lC|IG|C|T|T
‘jCaseO
(0 if i=00rj=0
°C[i,j]=<C[i—1,j—1]+1 ifX[i]=Y[j] andi,j>0
\max{ Cli,j —1],Cli —1,j]} ifX[i] #Y][j] andi,j >0 §
Case 1 Case 2
X A|lC|IG|G]|A X A|lC|G|G|T
| [
Y A|lC|IG|C|T|T]|A Y A|lC|IG|C|T]I|T

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

&

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

17

LCS DP

* LCS(X, Y):

e C[i,0]=C[0,j] =0foralli=0,...,m, j=0,...n.
e Fori=1,.,mandj=1,..,n:
o If X[i] = Y[j]:

* C[i,j] =Cli-1,j-1] +1

e Else:

e Return C[m,n]

/

Rup,..
Ming .
* C[i,jl = max{ C[i,j-1], Cli-L,] } Oty ™e:
0 ifi=00rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j > 0

Clijl = 3

Kmax{ Cli,j —1],C[i — 1,j]} ifX[i] # Y[j] and&j > 0

SEHEBE

Cli,j]

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

So the LCM of X

and Y has length 3.

SEHEBE

0 ifi=0o0rj=0
Cli,jl=<Cli—1,j—-1]+1 if X[i] =Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

21

SEHEBE

Cli,j]

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

SEHEBE

Cli,j]

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

>[o]o]o]>

* Once we've filled this in,
we can work backwards.

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] and i, j > 0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

>[a]o]o]>

* Once we've filled this in,
we can work backwards.

That 3 must have come

from the 3 above it.

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] and i, j > 0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

>[o]a]o]>

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

This 3 came from that 2 — G

we found a match!

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

SEHEBE

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

That 2 may as well

have come from
this other 2. G
0 ifi=0o0rj=0
Cli,jl=<{Cli—1,j—1]+1 if X[i] = Y[j] and i,j >0

max{ C[i,j — 1], C[i — 1,j1} ifX[i] # Y[j] andi,j > 0

SEHEBE

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

>[o]o]o|>

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

A C G

>[o]o]o]>

This is the LCS!

0 ifi=0o0rj=0
Cli,jl=<Cli—1,j—-1]+1 if X[i] =Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

Finding an LCS

* Good exercise to write out pseudocode for what we
just saw!

* Oryou can find it in lecture notes.
* Takes time O(mn) to fill the table

* Takes time O(n + m) on top of that to recover the LCS
 We walk up and left in an n-by-m array
* We can only do that for n + m steps.

» Altogether, we can find LCS(X,Y) in time O(mn).

31

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable ,
person.

32

Our approach actually isn’t so bad

* If we are only interested in the length of the LCS we
can do a bit better on space:
* Since we go across the table one-row-at-a-time, we can only
keep two rows if we want.

* If we want to recover the LCS, we need to keep the
whole table.

than O(mn) time?
* A bit better.
* By alog factor or so.

e But doing much better (polynomially better) is an open
problem!

33

What have we |learned?

* We can find LCS(X,Y) in time O(nm)
e if |Y|[=n, |X]=m

* We went through the steps of coming up with a
dynamic programming algorithm.
* We kept a 2-dimensional table, breaking down the
problem by decrementing the length of X and Y.

34

Example 2: Knapsack Problem

* We have n items with weights and values:

i o

ltem:

©
Weight: 6 2 4 3 11
Value: 20 8 14

* And we have a knapsack:
* it can only carry so much weight:

PRl Capacity: 10

Weight: 6 2
Value: 20 8 14

ltem: h L~ b/ i/ g

* Unbounded Knapsack:
e Suppose | have infinite copies of all items.
 What’s the most valuable way to fill the knapsack?

i i Total weight: 10
/ / = & Total value: 42

* 0/1 Knapsack:

* Suppose | have only one copy of each item.
 What’s the most valuable way to fill the knapsack?

U Total weight: 9
-~ b/ i/ Total value: 35

36

Some notation

tem: oy . (!!!9

Welght W1 W2 W3 XK Wn

Value: V4 V5 V3 VvV

Capacity: W

37

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

38

Optimal substructure

e Sub-problemes:
* Unbounded Knapsack with a smaller knapsack.
e K[x] = value you can fit in a knapsack of capaci

First solve the

problem for Then larger Then larger

small knapsacks knapsacks knapsacks .

Optimal substructure h tem

e Suppose this is an optimal solution for capacity x:

©
one €O Weight w;
Value v;

Caacityx
* Then this is optimal for capacity x - w;: Valuev

iy
T i

1 minute think g e
' Capacity x — w;
| Value V - v, 20

(wait) 1 minute share

item i

Optimal substructure

e Suppose this is an optimal solution for capacity x:

©
one €O Weight w;
Value v;

Capacity x
* Then this is optimal for capacity x - w;: Valuev

RN
R

o
£ ¥
If | could do better than the second solution,

then adding a turtle to that improvement
would improve the first solution.

Capacity x — w;,

Value V - v, "

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

42

Recursive relationship

* Let K[x] be the optimal value for capacity x.

K[x] = max; {

The maximum is over

, Optimal way to The value of
all i so that w; < x.

fill the smaller item i.
knapsack

K[x] = max. { K[x —w] + v }

* (And K[x] = 0 if the maximum is empty).

* Thatis, if therearenoisothatw; < x
43

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution. {

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

44

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0
e forx=1, .. W:
e K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] = max{ K|x]|,K[x —w;]| + v; }
e return K[W]

Running time: O(nW)

(B
K[x] = maxi{ 158

= max; { K[x —w;] +v;} 45

Can we do better?

* Writing down W takes log(W) bits.
e Writing down all n weights takes at most nlog(W) bits.

* Input size: nlog(W).
 Maybe we could have an algorithm that runs in time
O(nlog(W)) instead of O(nW)?

* Open problem!
e (But probably the answer is no...otherwise P = NP)

46

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. [

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

47

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0
e forx=1, .. W:
e K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] = max{ K|x]|,K[x —w;]| + v; }
e return K[W]

Kix) = max { [

= max; { K[x —w;] + v;}

48

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0 ’
o ITEMS[O0] = @
e forx=1, .. W:
e K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] = max{ K|x],K[x —w;]| + v; }

* If K[x] was updated: ’
* ITEMS|[x] = ITEMS[x —w;] U {item i}

e return ITEMS[W]

B
KIx] = max; { J&=

= max; { K[x —w;] +v;} 49

~

ITEMS

UnboundedKnapsack(W, n, weights, values):
« K[0]=0
« ITEMS[0] = @
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
* If K[x] was updated:
e ITEMS[x] = ITEMS[x — wi] U { item i }
* return ITEMS[W]

ltem:

Weight:
Value:

~

ITEMS

TEMS[1] = ITEMS[O] + il

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ©
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
* If K[x] was updated:
« ITEMS[X] = ITEMS[x — w;] U {item i }
* return ITEMS[W]

ltem:

Weight:
Value:

‘l; 2 Yo
Capacity: 4

~

ITEMS

TEMS[2] = ITEMS[1] + ¥l

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ©
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
* If K[x] was updated:
« ITEMS[X] = ITEMS[x — w;] U {item i }
* return ITEMS[W]

ltem:

Weight:
Value:

‘l; 2 Yo
Capacity: 4

~

ITEMS

ITEMS[2] = ITEMS[0] +

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ©
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
* If K[x] was updated:
« ITEMS[X] = ITEMS[x — w;] U {item i }
* return ITEMS[W]

ltem:

Weight:
Value:

‘;’ ‘
Capacity: 4

~

ITEMS

TEMS[3] = ITEMS[2] + ¥l

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ©
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
* If K[x] was updated:
« ITEMS[X] = ITEMS[x — w;] U {item i }
* return ITEMS[W]

ltem:

Weight:
Value:

‘l; 2 Yo
Capacity: 4

~

ITEMS

e UnboundedKnapsack(W, n, weights, values):

« K[0]=0

« ITEMS[0] = ©

e forx=1,.. W:
« K[x]=0

e fori=1,..n:
° Ile < x:
K[x] = max{ K[x],K[x —w;] + v; }

4 .

* return ITEMS[W]

ltem:

Value:

ITEMS[3] = ITEMS[0] + €l

Weight:

If K[x] was updated:

 ITEMS[x] = ITEMS[x — w;] U { item i }

7: DAL A7
Capacity: 4

~

ITEMS

ITEMS[4] = ITEMS|[3] .

UnboundedKnapsack(W, n, weights, values):
« K[0]=0
« ITEMS[0] = @
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
¢ If K[x] was updated:
e ITEMS[x] = ITEMS[x — wi] U { item i }
* return ITEMS[W]

ltem:

Weight:
Value:

7: DAL A7
Capacity: 4

~

ITEMS

ITEMS[4] = ITEMS[2] + ¢

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ©
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:

* K[x] =max{K[x],K[x —w;] +v;}
* If K[x] was updated:
e ITEMS[x] = ITEMS[x — wi] U { item i }
* return ITEMS[W]

ltem:

Weight:

Value:

‘l; 2 Yo
Capacity: 4

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the

actual solution. {
 Step 5: If needed, code this up like a reasonable
person.
(Pass)

58

What have we |learned?

* We can solve unbounded knapsack in time O(nW).
* If there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a one-dimensional table, creating smaller
problems by making the knapsack smaller.

59

Weight: 6 2

v e, Capacity: 10 Value: 20 3 14

ltem: h < b i/ g

* Unbounded Knapsack:
» Suppose | have infinite copies of all of the items.
 What’s the most valuable way to fill the knapsack?

i i Total weight: 10
/ / = = Total value: 42

» * 0/1 Knapsack:

* Suppose | have only one copy of each item.
 What’s the most valuable way to fill the knapsack?

' Total weight: 9
-~ b/ i/ Total value: 35

60

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

61

Optimal substructure: try 1

e Sub-problemes:
* Unbounded Knapsack with a smaller knapsack.

First solve the
problem for

Then larger Then larger
small knapsacks knapsacks knapsacks

62

This won’t quite work...

* We are only allowed one copy of each item.

* The sub-problem needs to “know” what items
we’ve used and what we haven’t.

| can’t use
any turtles...

63

Optimal substructure: try 2

e Sub-problems:
* 0/1 Knapsack with fewer items.

AR
1A

First solve the
problem with
few items

We’'ll still increase the size of the knapsacks.
Then more
items

Then yet
more
items

(Wel
// ke
ep a two\d.
"”en :
Slo

/78/ tab/e}

Our sub-problems:

* Indexed by x and |

K[x,j] = optimal solution for a knapsack of
size x using only the first j items.

65

Relationship between sub-problems

* Want to write K[x,j] in terms of smaller sub-problem:s.

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 66

Two cases k item |

* Case 1: Optimal solution for j items does not use item j.
* Case 2: Optimal solution for j items does use item j.

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 67

Two cases h item |

* Case 1: Optimal solution for j items does not use item j.

Capacity x
Value V
Use only the first j items

First j items

What lower-indexed problem
should we solve to solve this
problem?

1 min think; (wait) 1 min share

@&

68

Two cases h item |

* Case 1: Optimal solution for j items does not use item j.

Capacity x
Value V
Use only the first j items

First j items

* Then this is an optimal solution for j-1 items:

Caauty X
Value V -
First j-1 items Use only the first j-1 items.

Two cases item |

* Case 2: Optimal solution for j items uses item j.

“n »

Weight w; i~ e
Value v, Capacity x
Value V
First j items Use only the first j items

What lower-indexed problem
should we solve to solve this
problem?

1 min think; (wait) 1 min share

@&

70

Two cases h item |

* Case 2: Optimal solution for j items uses item j.

Weight w; CAAALE
Value v, Capacity x
Value V
First j items Use only the first j items

* Then this is an optimal solution for j-1 items and a
smaller knapsack:

Capacity x — w;
Value V —v;

First -1 items Use only the first j-1iitems.

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

72

Recursive relationship

* Let K[x,j] be the optimal value for:

* capacity x,
e with j items.

K[x,j] = max{ K[x,]-1],

Case 1

* (And K[x,0] = 0 and K[O,j] = 0).

73

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.
* Step 2: Find a for the value of

the optimal solution. ,

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

74

Bottom-up DP algorithm

e Zero-One-Knapsack(W, n, w, v):
* K[x,0] =0 forall x=0,.... W
e K[O,i]=0foralli=0,...,n
e forx=1,...,W:
e forj=1,..,n:
* K[x,j] = K[x, j-1]
«ifw, < x:
* K[x,j] = max{ K[x,j], }
e return K|\W,n]

Case 1

Running time O(nW)

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n

Example O et

¢ K[XIJ] = K[XI J'l]

e jfw <x:
x=0 x=1 x=2 x=3 ¢ KDl = max{ Kxjl,
Kx —wj, j-1] +v; }
-0 0 0 0 0 * return K[\W,n]
J:
0
!
0
. =2
0
o = =

ltem:
current relevant Weight: 1 2 3 .:
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n

Example O et

¢ K[XIJ] = K[XI J'l]

e jfw <x:
x=0 x=1 x=2 x=3 ¢ KDl = max{ Kxjl,
Kx —wj, j-1] +v; }
-0 0 0 0 0 * return K[\W,n]
J:
0 0
!
0
. =2
0
o = =

ltem:
current relevant Weight: 1 2 3 .:
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n

Example O et

¢ K[XIJ] = K[XI J'l]

o ifw,<x
=0 x=1 x=2 x=3 © Kixj] = max{ K[x,],
Kx —wj, j-1] +v; }
. 0 0 0 0 return K[\W,n]
=0
. 0 1
- st
0
. =2
0
&, = -
ltem: b
current relevant Weight: 1 2 3 .:
entry ~ previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):

Example

x=0 x=1 x=2 x=3
0 0 0 0 .
j=0
0 1
) g i
0 1
¥ h J=2 h
0
® . h I=3
ltem:
current relevant Weight: 1
entry previous entry Value: 1

K[x,0] =0 forall x=0,...,.W
K[O,i] =0 foralli=0,...,n
forx=1,..W:
e forj=1,..,n:
* K[x,jl =KIx, j-1]
o ifw,<x
© K[x,jl = max{ K[x,j],
Kx —wj, j-1] +v; }

return K[\W,n]

2 3 oA

L ‘ ‘

6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):

x=0 x=1 x=2 x=3
0 0 0 0 .
j=0
0 1
W = i
0 1
¥ h J=2 h
0 1
o = e
ltem:
current relevant Weight: 1
entry previous entry Value: 1

K[x,0] =0 forall x=0,...,.W
K[O,i] =0 foralli=0,...,n
forx=1,..W:
e forj=1,..,n:
* K[x,jl =KIx, j-1]
o ifw,<x
© K[x,jl = max{ K[x,j],
Kx —wj, j-1] +v; }

return K[\W,n]

2 3 oA

L ‘ ‘

6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):

=0 0 0 0 0 .
0 1 0
W = "™
0 1
. s
0 1
w0 = S e
ltem:
current relevant Weight: 1
entry previous entry Value: 1

K[x,0] =0 forall x=0,...,.W
K[O,i] =0 foralli=0,...,n
forx=1,..W:
e forj=1,..,n:
* K[x,jl =KIx, j-1]
o ifw,<x
© K[x,jl = max{ K[x,j],
Kx —wj, j-1] +v; }

return K[\W,n]

2 3 oA

L ‘ ‘

6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):

=0 0 0 0 0 .
0 1 1
) 1"YR™
0 1
. s
0 1
w0 = S e
ltem:
current relevant Weight: 1
entry previous entry Value: 1

K[x,0] =0 forall x=0,...,.W
K[O,i] =0 foralli=0,...,n
forx=1,..W:
e forj=1,..,n:
* K[x,jl =KIx, j-1]
o ifw,<x
© K[x,jl = max{ K[x,j],
Kx —wj, j-1] +v; }

return K[\W,n]

2 3 oA

L ‘ ‘

6 Capacity: 3

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Exa m p | e e forj=1,..,n:

¢ K[XIJ] = K[XI J'l]

o ifw,<x
=0 x=1 x=2 x=3 © Kixj] = max{ K[x,],
Kx —wj, j-1] +v; }
. 0 0 0 0 return K[\W,n]
j=0
. 0 1 1 1
W o (e
0 1 4 5
(= h J=2 h & hg
0 1 4
b = h =3 h ¢

ltem:
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:
current relevant Weight: 3
entry previous entry Value: 6

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

current relevant
entry previous entry

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

put one watermelon in your
knapsack!

=
5

h v So the optimal solution is to
6

@

¥
¥-[v-]s-

current relevant Weight:
entry previous entry Value:

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. ,
* Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable

PEerson. You do this one!
(We did it on the slide in the previous
example, just not in the pseudocode!)®3

What have we |learned?

e We can solve 0/1 knapsack in time O(nW).
* If there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a two-dimensional table, creating smaller
problems by restricting the set of allowable items.

94

Question

e How did we know which substructure to use in
which variant of knapsack?

Answer in retrospect:

This one made sense for
unbounded knapsack
because it doesn’t have
any memory of what
items have been used.

VS.

In 0/1 knapsack, we
can only use each item
once, so it makes sense

to leave out one item
at a time.

Operational Answer: try some stuff, see what works! 95

Example 3: Independent Set

if we still have time

An independent set
is a set of vertices
so that no pair has
an edge between
them.

* Given a graph with
weights on the
vertices...

e Whatis the

independent set with
the largest wei§6ht?

Actually, this problem is NP-complete.

So, we are unlikely to find an efficient algorithm.

e But if we also assume that the graph is a tree...

0

Atreeisa
connected
graph with no
cycles.

Problem:

find a maximal independent set in a tree (with vertex weights})?

G

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution

* Step 3: Use dynamic programming to find the value
of the optimal solution

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

98

Optimal substructure

e Subtrees are a natural candidate.
e There are two cases: ‘

1. The root of this tree is notin a

maximal independent set.

(U
A

99

Case 1;

the root is not in a maximal independent set

e Use the optimal solution ‘
from these smaller problems. -
" S - \
\ el ‘ N / \
’ \ I \
7 \ I ‘ \
’ \
% \ : ‘\
//’ \‘ 1 \
/ \ i \
/7 v ‘\
/ \ 1
/ \ 1 \
/ 1\ \
] [1
i) \
I ‘ 11 \
| I 1
1 1 | \
\ I g 1
\\ ,l \ 'I
\\\ _______________ Y \\~ 00 g

Case 2;

the root is in an maximal independent set

 Then its children can’t be.

* Below that, use the optimal
solution from these smaller

subproblems.

\ N ’
4)| 4 \ \] \
/ I 1 \ / \
I I I
1 \] \
I i I
[\ ! \
1 1 ! v ! 1
k v 1Y i I |
<) \ / \ T01 J

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

102

Recursive formulation: try 1

* Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

o Alu] =

ZvEu.ChildI’en Alv]

max

Weight(u) T Zveu,grandchildren

When we implement this, how do
we keep track of this term?

C

Recursive formulation: try 2

Keep two arrays!

* Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

* Let B[u] =), Alv]

veu.children

ZvEu.Childl‘en Alv]
* Alu] = max

weight(u) + ZvEu.Children

- — -

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.
* Step 2: Find a for the value of

the optimal solution. ,

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

105

A top-down DP algorithm

* MIS_subtree(u): Mitjay;,
e - ¢ €8l
e ifuis aleaf: h:’t We Wlf/)/ba/ raye
* Alu] = weight(u) e reCUrs,-L.:Se 'n gy j}B
* Blu]=0 € Calfs,
e else:
e for vin u.children:
* MIS subtree(v)
» Alu] =max{} _ hildrenAlv] weight(u) + }
Running time?
e V| |S(T) * We visit each vertex once, and for
every vertex we do O(1) work:
* MIS_subtree(T.root) « Make a recursive call
* return A[T.root] * Participate in summations of
parent node
* Running time is O(|V]) e

Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

* MIS_subtree(u):

his is ey
o . d
* ifuis a leaf: except Wec,”é’;f}e M bseudoon
: , it 0
* return weight(u) _are jyst callin CMEI’S the tapja and
. : 'Nsteaq > V>_Subtre
else: °flooking up ar,g oro,
* returnmax{), _ hildren MIS_subtree(v), Lv].
weight(u) + Zvea.grandchildren MIS_subtree(v) }

« MIS(T):

e return MIS_subtree(T.root)

107

Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

How often would we ask ‘
about the subtree rooted
here?

Once for this node
and once for

But we then ask ‘ . a . ‘

about this node

twice, and here. \ ‘ .

This will blow up exponentially
without using dynamic

programming to take advantage ’ ‘ ‘ ‘ ’ ’ ’ ’

of overlapping subproblems.

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. ,
* Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable

person.
You do this one!
109

What have we |learned?

* We can find maximal independent sets in trees in
time O(|V|) using dynamic programming!

* For this example, it was natural to implement our
DP algorithm in a top-down way.

Recap

* Today we saw examples of how to come up with
dynamic programming algorithmes.
* Longest Common Subsequence
e Knapsack two ways
maximal independent set in trees.

* There is a recipe for dynamic programming
algorithms.

111

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

112

- "
D G

Reca P>
SO BORINGIM
* Today we saw examples of how to come up with
dynamic programming algorithmes.
* Longest Common Subsequence
* Knapsack two ways

maximal independent set in trees.

* There is a recipe for dynamic programming
algorithms.

* Sometimes coming up with the right substructure
takes some creativity
* Practice on homework! ©

* For even more practice check out additional
examples/practice problems in CLRS or section!

113

Next time

* Greedy algorithms!

Before next time

* Pre-lecture exercise: Greed is good!

114

