Lecture 14

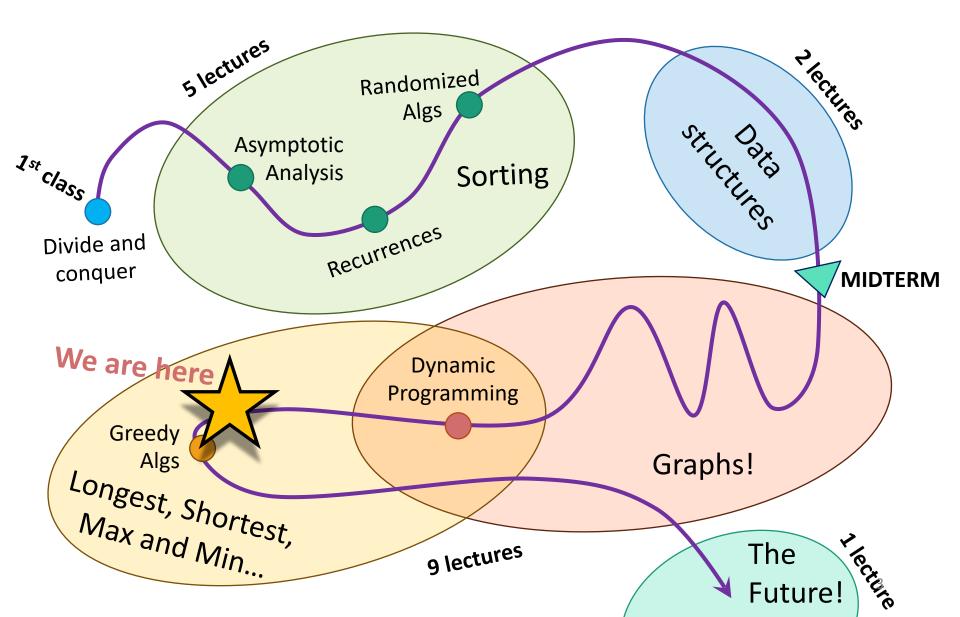
Greedy algorithms!

Announcements

- Homework 6 due today
- Homework 7 out later today
- New EthiCS videos out (Part I 2 and Part I 3)

More detailed schedule on the website!

Roadmap



This week

• Greedy algorithms!

- Make choices one-at-a-time.
- Never look back.
- Hope for the best.

Today

- One example of a greedy algorithm that does not work:
 - Knapsack again 🔨
- Three examples of greedy algorithms that **do work**:
 - Activity Selection -
 - Job Scheduling
 - Huffman Coding (if time)

You saw these on your pre-lecture exercise!

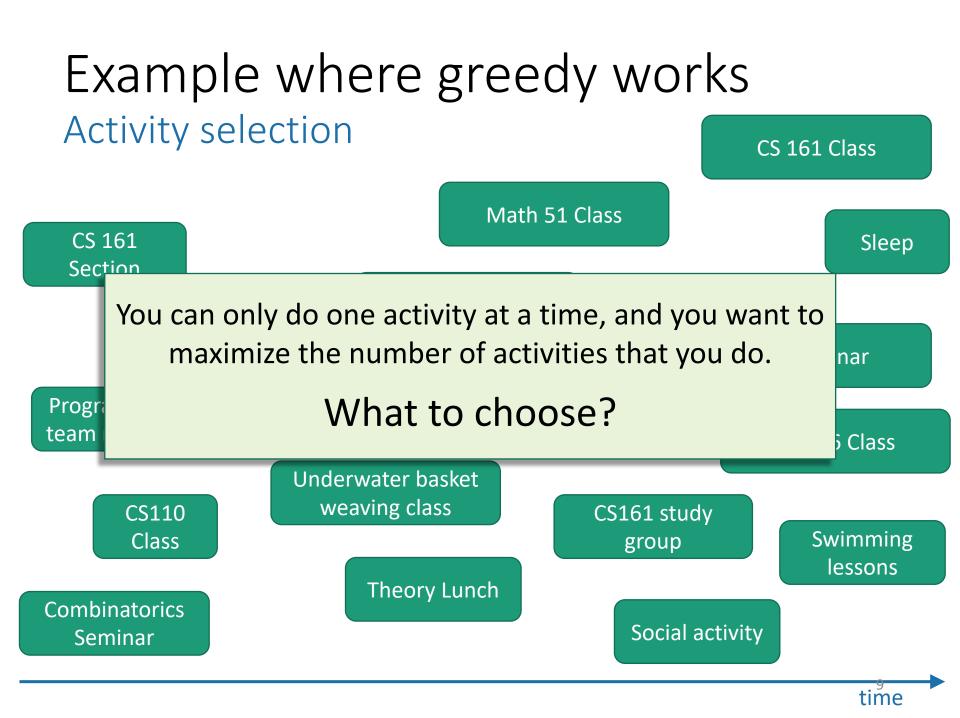
Non-example

• Unbounded Knapsack.

- Unbounded Knapsack:
 - Suppose I have infinite copies of all items.
 - What's the most valuable way to fill the knapsack?

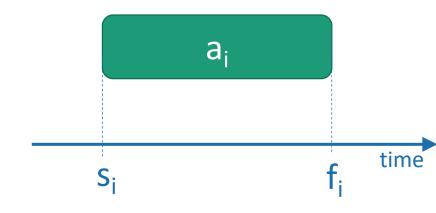
Total weight: 10 Total value: 42

- "Greedy" algorithm for unbounded knapsack:
 - Tacos have the best Value/Weight ratio!
 - Keep grabbing tacos!



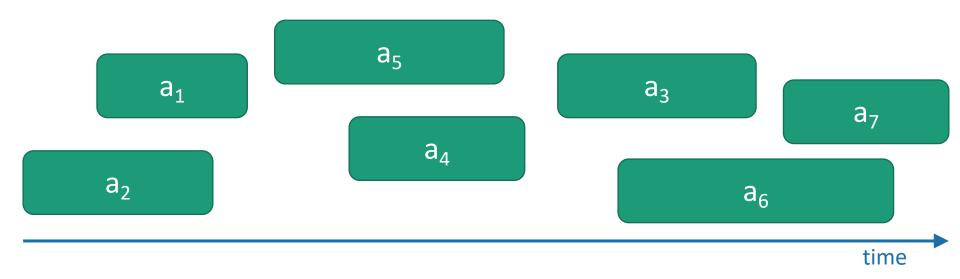
Activity selection

- Input:
 - Activities a₁, a₂, ..., a_n
 - Start times s₁, s₂, ..., s_n
 - Finish times f₁, f₂, ..., f_n

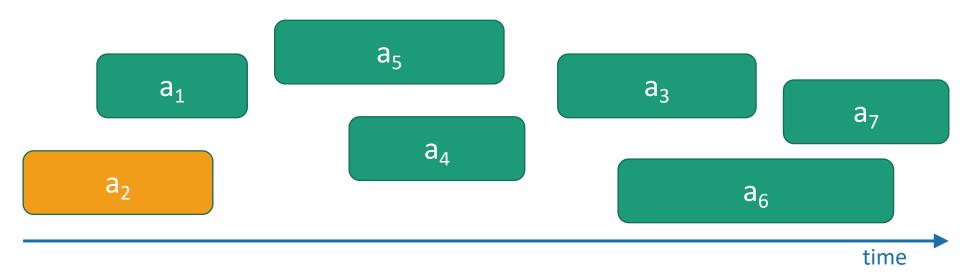


- Output:
 - A way to maximize the number of activities you can do today.

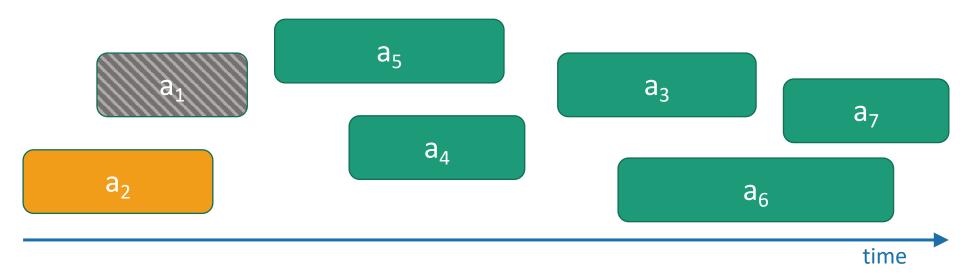
In what order should you greedily add activities?



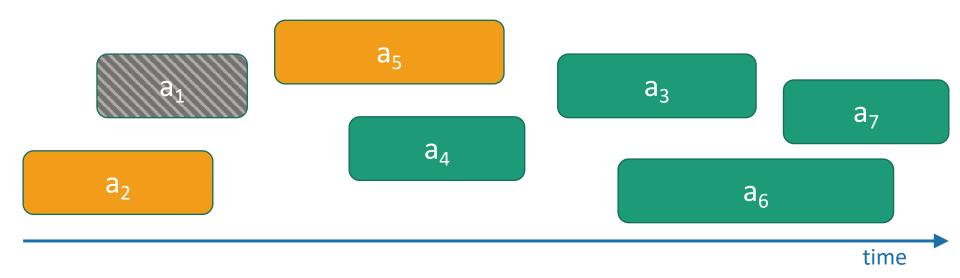
- Pick activity you can add with the smallest finish time.
- Repeat.



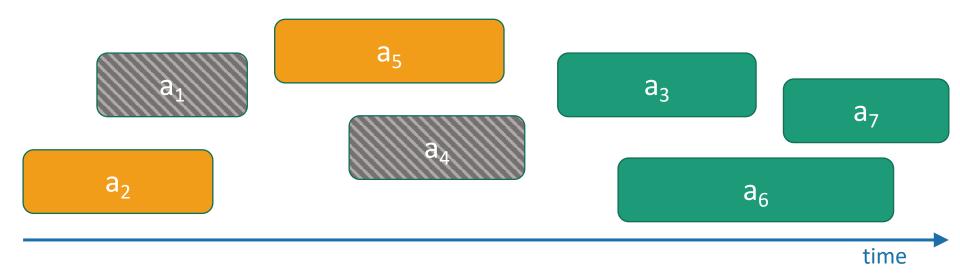
- Pick activity you can add with the smallest finish time.
- Repeat.



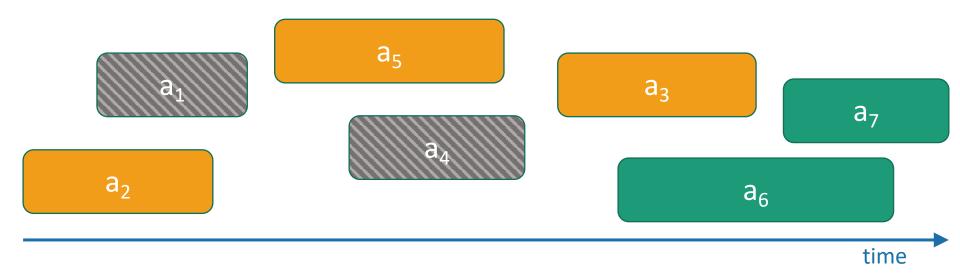
- Pick activity you can add with the smallest finish time.
- Repeat.



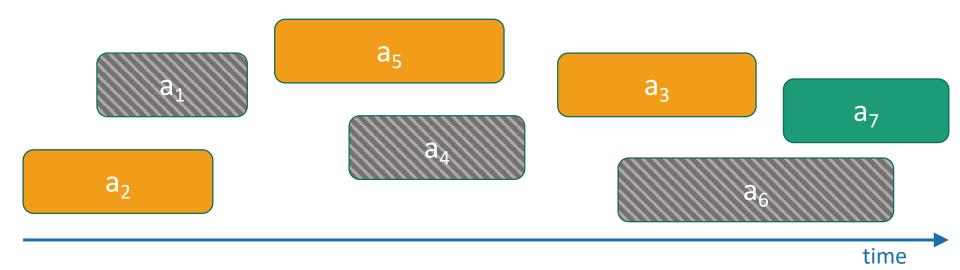
- Pick activity you can add with the smallest finish time.
- Repeat.



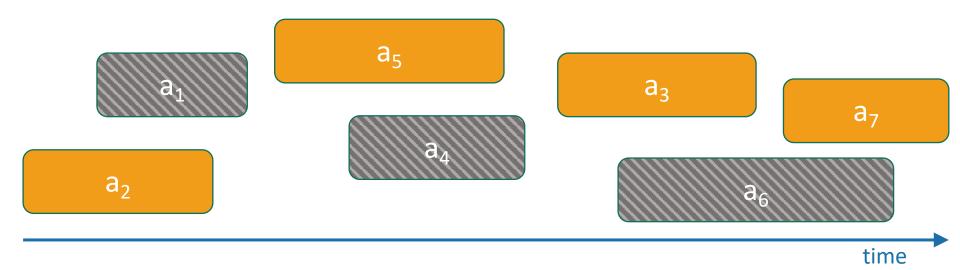
- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.

At least it's fast

- Running time:
 - O(n) if the activities are already sorted by finish time.
 - Otherwise, O(n log(n)) if you have to sort them first.

What makes it greedy?

- At each step in the algorithm, make a choice.
 - Hey, I can increase my activity set by one,
 - And leave lots of room for future choices,
 - Let's do that and hope for the best!!!
- Hope that at the end of the day, this results in a globally optimal solution.

Three Questions

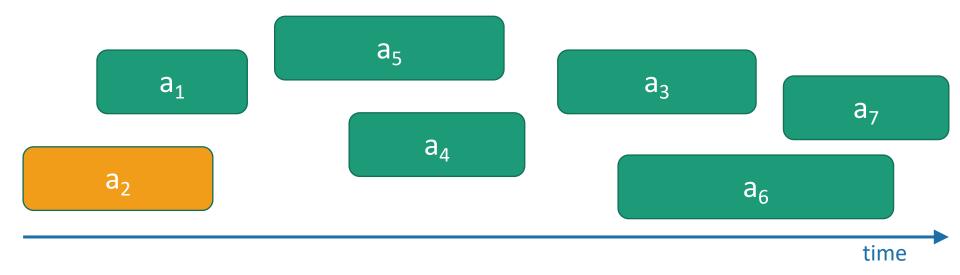
1. Does this greedy algorithm for activity selection work?

• Yes. (We will see why in a moment...)

2. In general, when are greedy algorithms a good idea?

- When the problem exhibits especially nice optimal substructure.
- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 8?
 - Proving that greedy algorithms work is often not so easy...

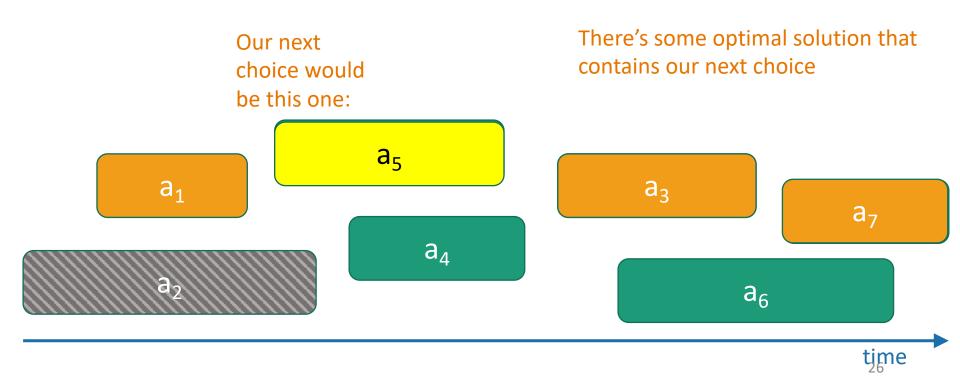
Back to Activity Selection



- Pick activity you can add with the smallest finish time.
- Repeat.

Why does it work?

• Whenever we make a choice, we don't rule out an optimal solution.

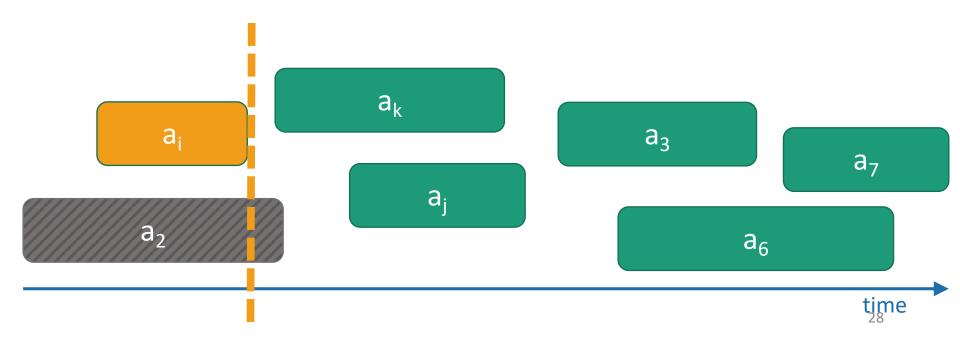


Assuming that statement...

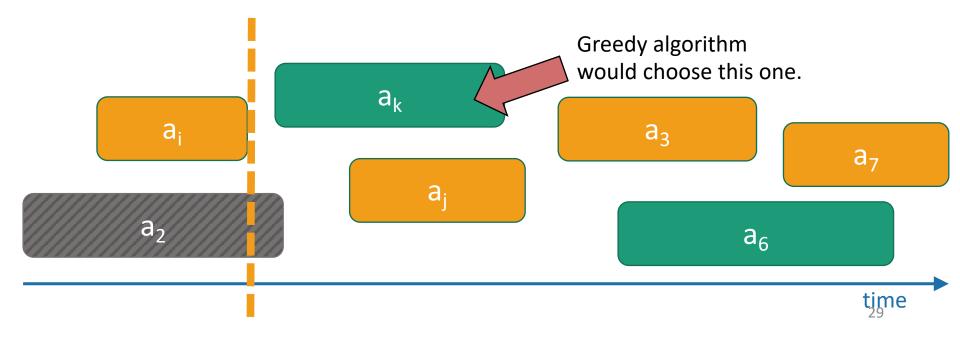
- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

Lucky the Lackadaisical Lemur

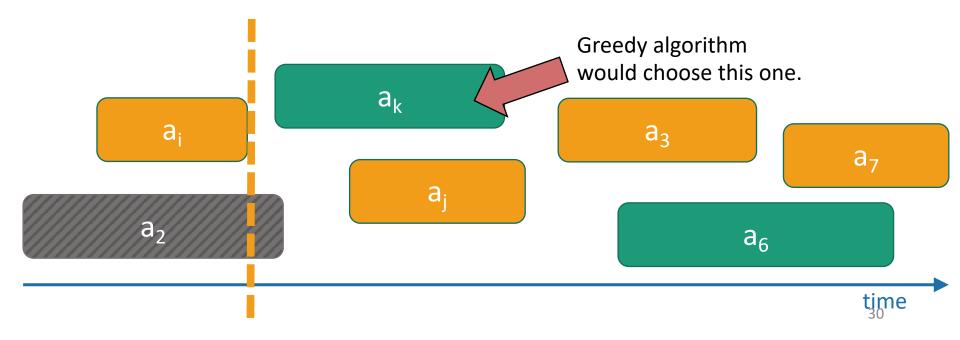
 Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.



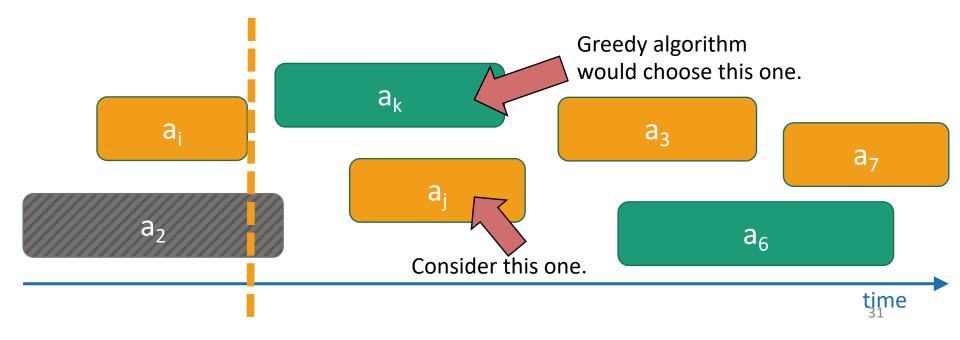
- Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.
- Now consider the next choice we make, say it's a_k .
- If a_k is in T*, we're still on track.



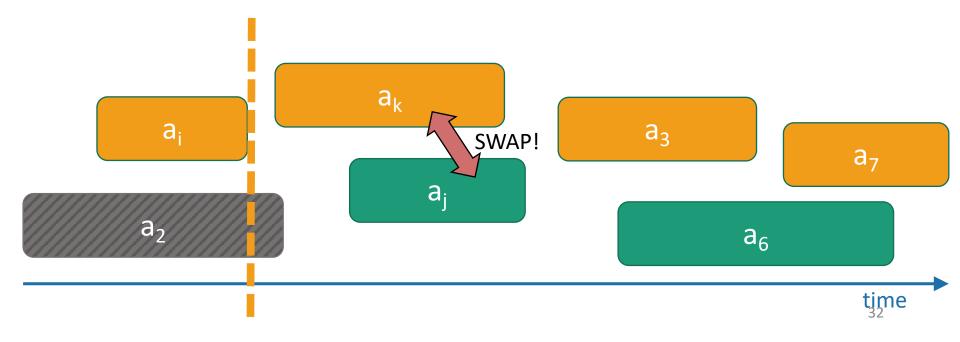
- Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.
- Now consider the next choice we make, say it's a_k .
- If a_k is **not** in T*...



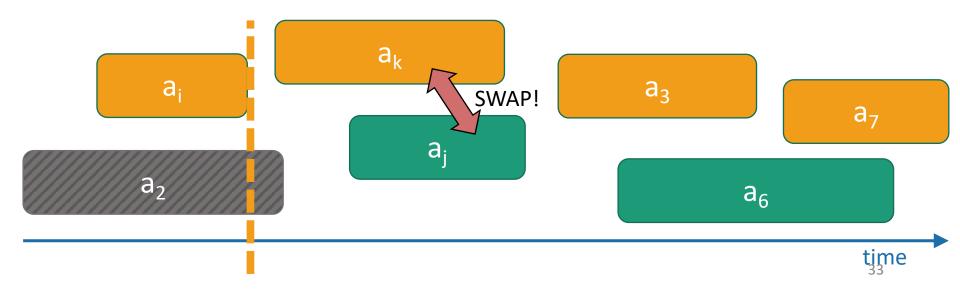
- If a_k is **not** in T*...
- Let a_j be the activity in T* with the smallest end time.
- Now consider schedule T you get by swapping a_i for a_k



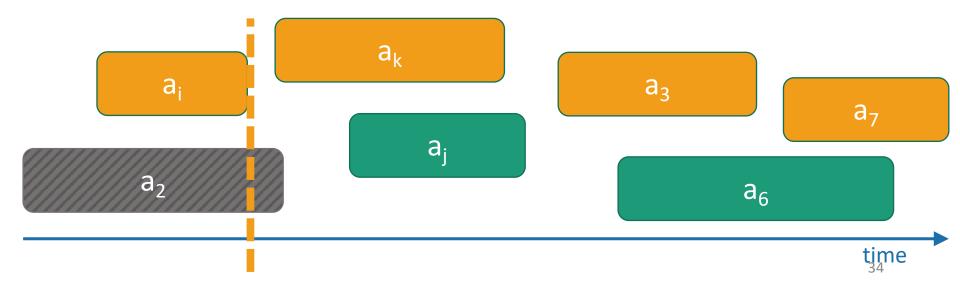
- If a_k is **not** in T*...
- Let a_j be the activity in T* (after a_i ends) with the smallest end time.
- Now consider schedule T you get by swapping a_i for a_k



- This schedule T is still allowed.
 - Since a_k has the smallest ending time, it ends before a_i.
 - Thus, a_k doesn't conflict with anything chosen after a_j.
- And T is still optimal.
 - It has the same number of activities as T*.



- We've just shown:
 - If there was an optimal solution that extends the choices we made so far...
 - ...then there is an optimal schedule that also contains our next greedy choice a_k.



So the algorithm is correct

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

Lucky the Lackadaisical Lemur

So the algorithm is correct

Plucky the Pedantic Penguin

- Inductive Hypothesis:
 - After adding the t-th thing, there is an optimal solution that extends the current solution.
- Base case:
 - After adding zero activities, there is an optimal solution extending that.
- Inductive step:
 - We just did that!
- Conclusion:
 - After adding the last activity, there is an optimal solution that extends the current solution.
 - The current solution is the only solution that extends the current solution.
 - So the current solution is optimal.

Three Questions

- Does this greedy algorithm for activity selection work?
 Yes.
- 2. In general, when are greedy algorithms a good idea?
 - When the problem exhibits especially nice optimal substructure.
- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 8?
 - Proving that greedy algorithms work is often not so easy...

One Common strategy for greedy algorithms

- Make a series of choices.
- Show that, at each step, our choice won't rule out an optimal solution at the end of the day.
- After we've made all our choices, we haven't ruled out an optimal solution, so we must have found one.

One Common strategy (formally) for greedy algorithms

• Inductive Hypothesis:

"Success" here means "finding an optimal solution."

- After greedy choice t, you haven't ruled out success.
- Base case:
 - Success is possible before you make any choices.
- Inductive step:
 - If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
 - If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.

One Common strategy

for showing we don't rule out success

- Suppose that you're on track to make an optimal solution T*.
 - E.g., after you've picked activity i, you're still on track.
- Suppose that T* *disagrees* with your next greedy choice.
 - E.g., it *doesn't* involve activity k.
- Manipulate T* in order to make a solution T that's not worse but that *agrees* with your greedy choice.
 - E.g., swap whatever activity T* did pick next with activity k.

Note on "Common Strategy"

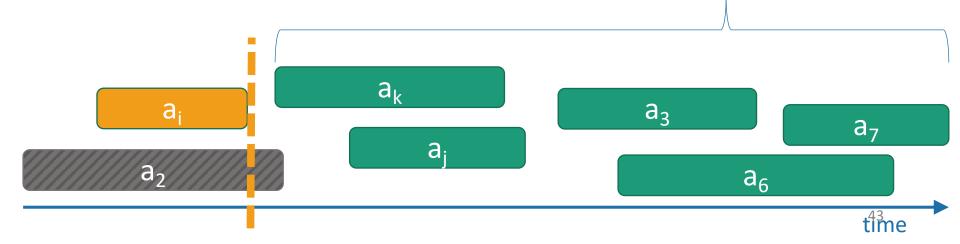
- This common strategy is not the only way to prove that greedy algorithms are correct!
- I'm emphasizing it in lecture because it often works, and it gives you a framework to get started.

Three Questions

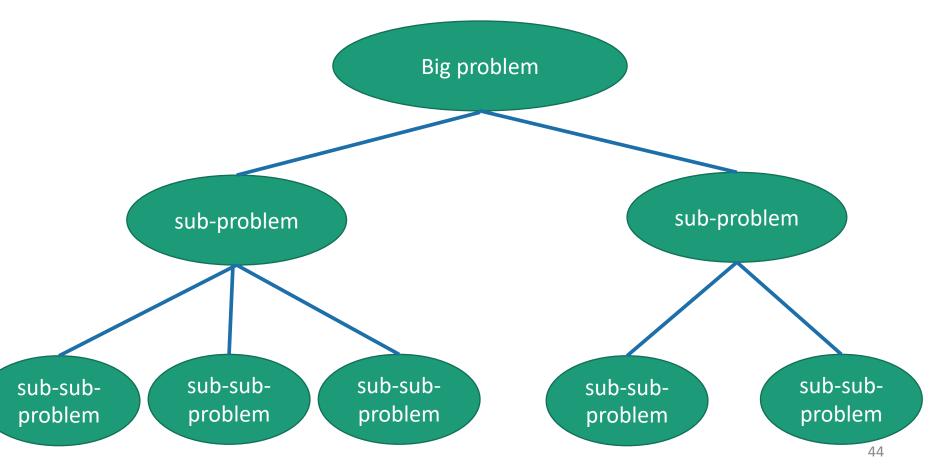
- Does this greedy algorithm for activity selection work?
 Yes.
- 2. In general, when are greedy algorithms a good idea?
 - When the problem exhibits especially nice optimal substructure.
- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 8?
 - Proving that greedy algorithms work is often not so easy...

Optimal sub-structure in greedy algorithms

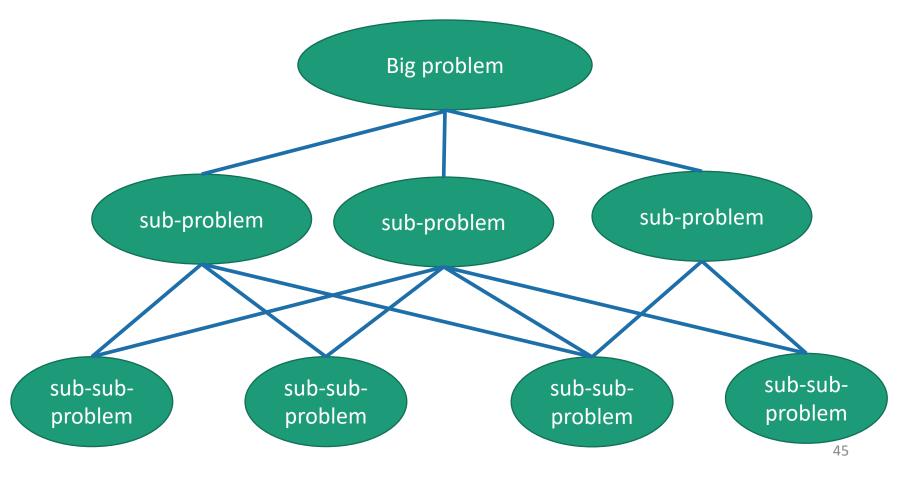
- Our greedy activity selection algorithm exploited a natural sub-problem structure:
 A[i] = number of activities you can do after the end of activity i
- How does this substructure relate to that of divide-andconquer or DP?
 A[i] = solution to this sub-problem



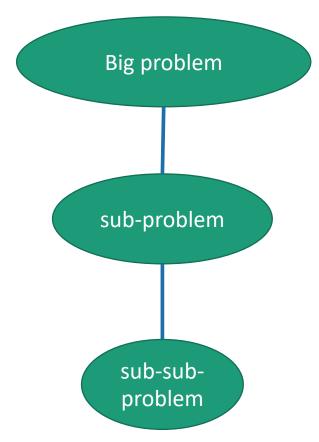
• Divide-and-conquer:



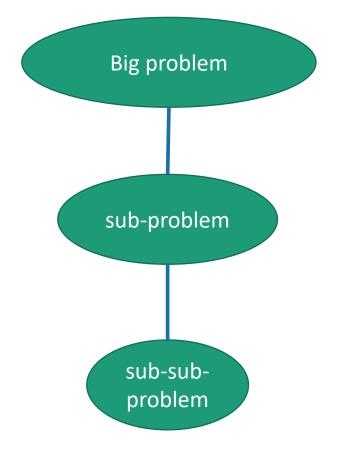
• Dynamic Programming:



• Greedy algorithms:



• Greedy algorithms:



- Not only is there **optimal sub-structure**:
 - optimal solutions to a problem are made up from optimal solutions of sub-problems
- but each problem depends on only one sub-problem.

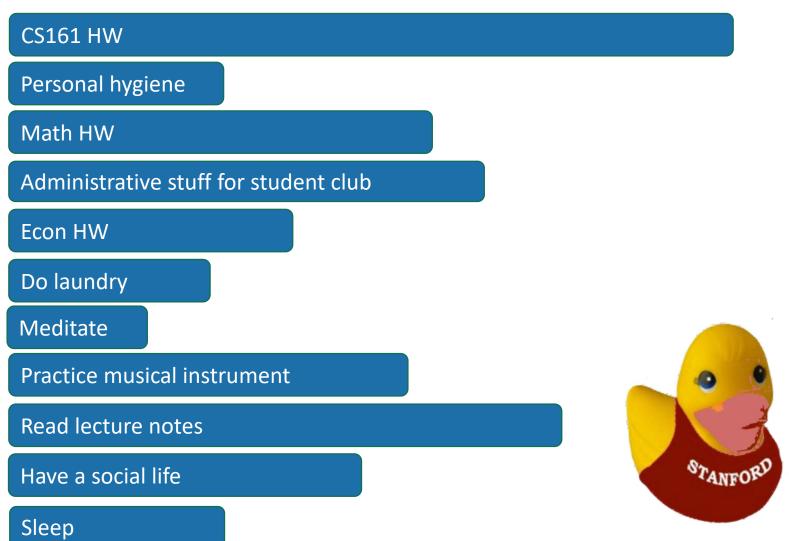
Write a DP version of activity selection (where you fill in a table)! [See hidden slides in the .pptx file for one way]

Three Questions

- Does this greedy algorithm for activity selection work?
 Yes.
- 2. In general, when are greedy algorithms a good idea?
 - When they exhibit especially nice optimal substructure.
- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 8?
 - Proving that greedy algorithms work is often not so easy.

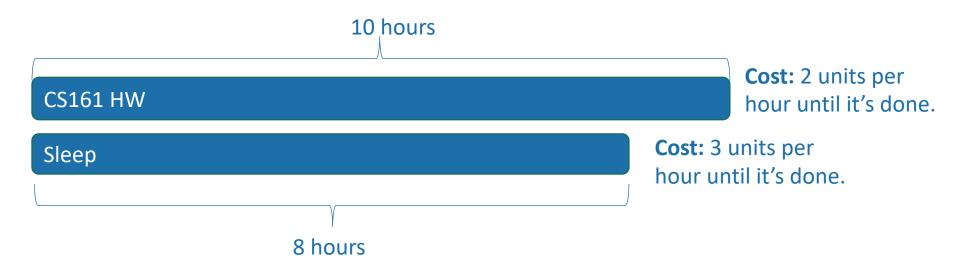
Let's see a few more examples

Another example: Scheduling



Scheduling

- n tasks
- Task i takes t_i hours
- For every hour that passes until task i is done, pay c_i

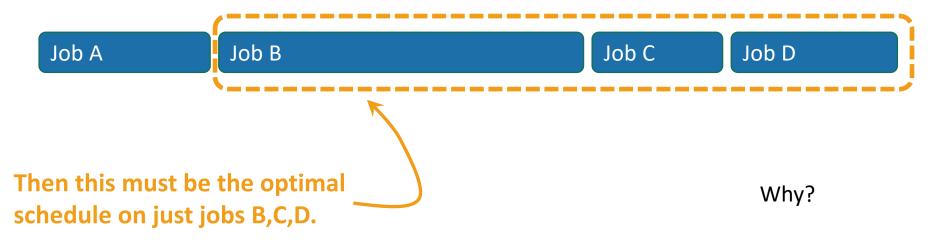


- CS161 HW, then Sleep: costs 10 · 2 + (10 + 8) · 3 = 74 units
- Sleep, then CS161 HW: costs 8 · 3 + (10 + 8) · 2 = 60 units

Optimal substructure

• This problem breaks up nicely into sub-problems:

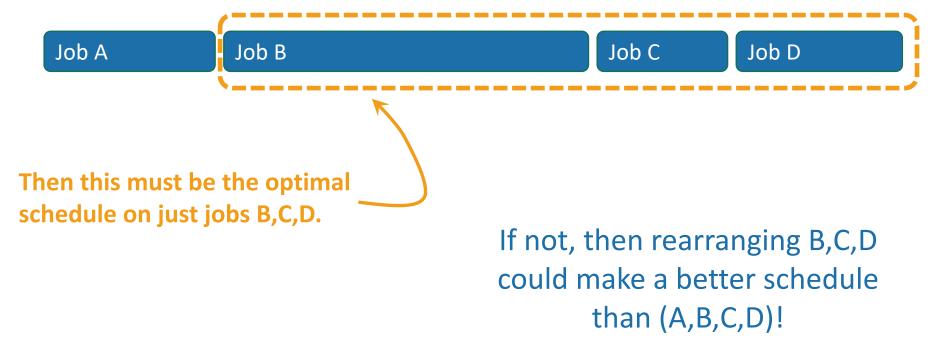
Suppose this is the optimal schedule:



Optimal substructure

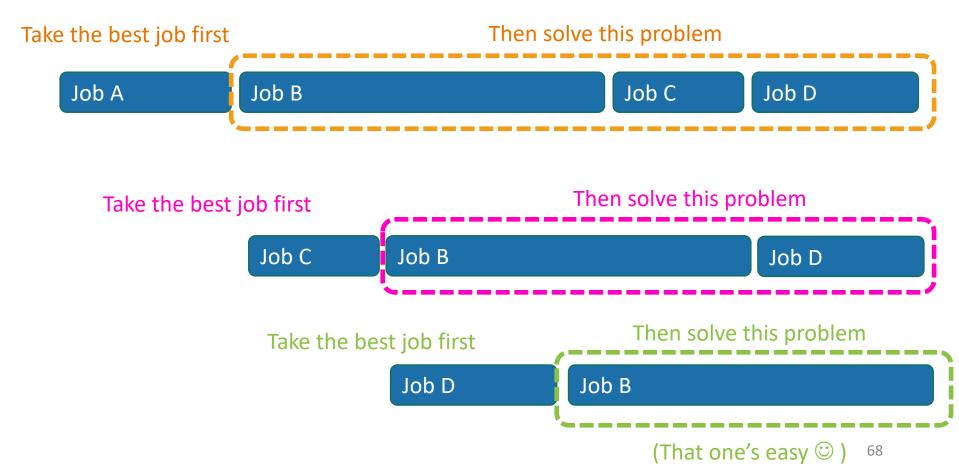
• This problem breaks up nicely into sub-problems:

Suppose this is the optimal schedule:



Optimal substructure

• Seems amenable to a greedy algorithm:

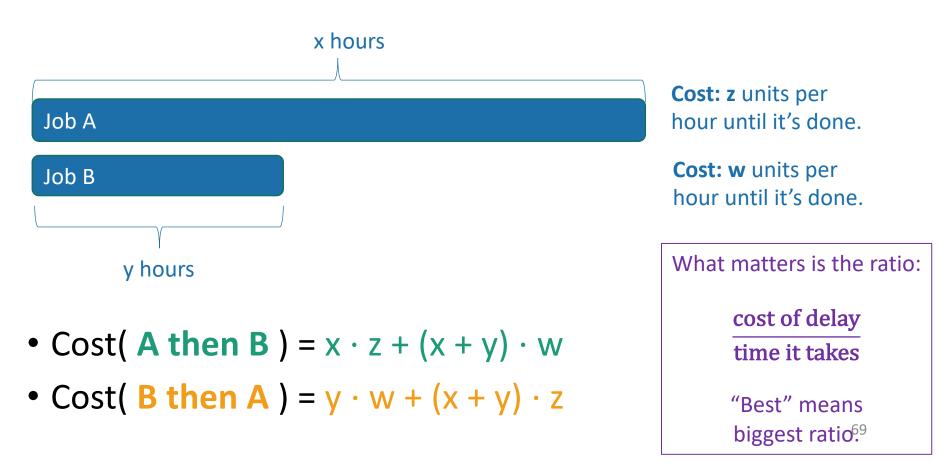


What does "best" mean?

Note: here we are defining x, y, z, and w. (We use c_i and t_i for these in the general problem, but we are changing notation for just this thought experiment to save on subscripts.)

AB is better than BA when: $xz + (x + y)w \le yw + (x + y)z$ $xz + xw + yw \le yw + xz + yz$ $wx \le yz$ $\frac{w}{v} \le \frac{z}{x}$

• Of these two jobs, which should we do first?



Idea for greedy algorithm

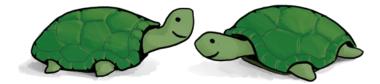
• Choose the job with the biggest $\frac{\text{cost of delay}}{\text{time it takes}}$ ratio.

Lemma This greedy choice doesn't rule out success

- Suppose you have already chosen some jobs, and haven't yet ruled out success:
 There's some way to order A, B,C, D that's optimal...
- Already chosen E

- Then if you choose the next job to be the one left that maximizes the ratio cost/time, you still won't rule out success.
- Proof sketch:
 - Say Job B maximizes this ratio, but it's not the next job in the opt. soln.

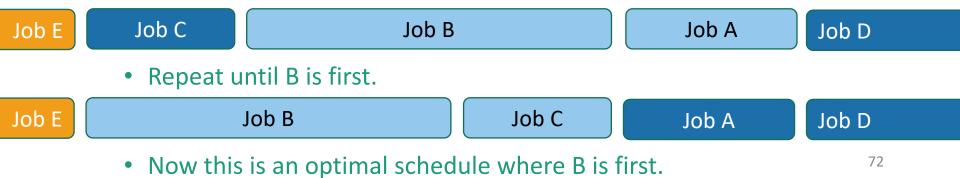
How can we manipulate the optimal solution above to make an optimal solution where B is the next job we choose after E? 1 minute think; (wait) 1 minute share



Lemma This greedy choice doesn't rule out success

 Suppose you have already chosen some jobs, and haven't yet ruled out success: There's some way to order

- Then if you choose the next job to be the one left that maximizes the ratio **cost/time**, you still won't rule out success.
- Proof sketch:
 - Say Job B maximizes this ratio, but it's not the next job in the opt. soln.
 - Switch A and B! Nothing else will change, and we just showed that the cost of the solution won't increase.



Back to our framework for proving correctness of greedy algorithms

- Inductive Hypothesis:
 - After greedy choice t, you haven't ruled out success.
- Base case:
 - Success is possible before you make any choices.
- Inductive step:
 - If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
 - If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.

inductive step!

lust did the

Fill in the details!

Greedy Scheduling Solution

- scheduleJobs(JOBS):
 - Sort JOBS in decreasing order by the ratio:
 - $r_i = \frac{c_i}{t_i} = \frac{\text{cost of delaying job i}}{\text{time job i takes to complete}}$
 - Return JOBS

Running time: O(n log(n))

Now you can go about your schedule peacefully, in the optimal way.

What have we learned?

- A greedy algorithm works for scheduling
- This followed the same outline as the previous example:
 - Identify optimal substructure:

- Find a way to make choices that **won't rule out an optimal solution.**
 - largest cost/time ratios first.

One more example Huffman coding

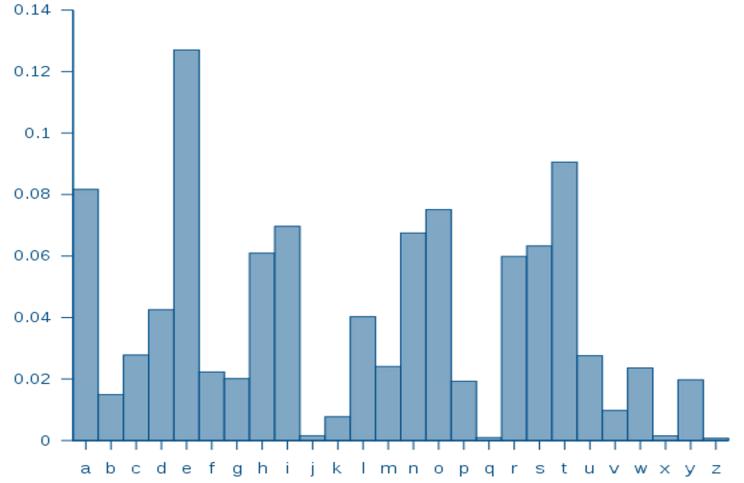
- everyday english sentence
- qwertyui_opasdfg+hjklzxcv

One more example Huffman coding

ASCII is pretty wasteful for English sentences. If **e** shows up so often, we should have a shorter way of representing it!

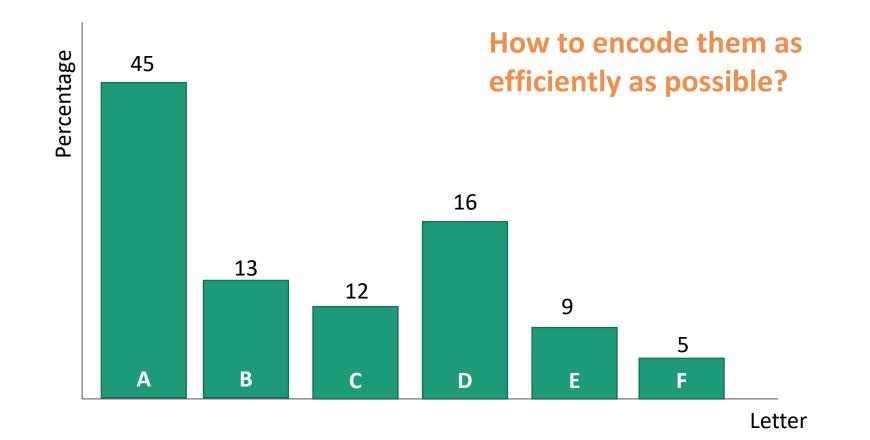
- everyday english sentence
- qwertyui_opasdfg+hjklzxcv

Suppose we have some distribution on characters



Suppose we have some distribution on characters

For simplicity, let's go with this made-up example

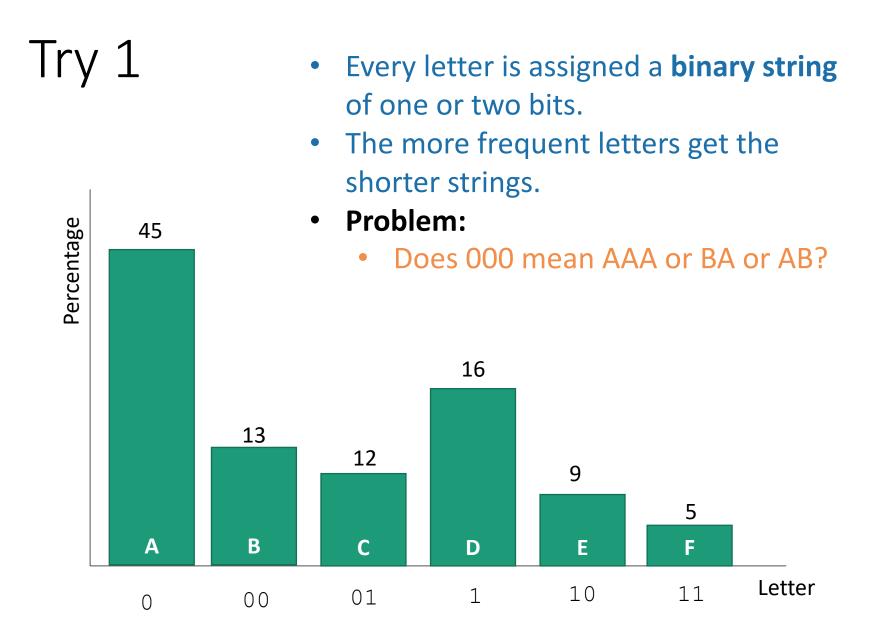


Try 0 (like ASCII)

- 110 and 111 are never used. Percentage 45 • representing A. 16 13 12 9 5 Α В F Ε C D Letter 100 101 010 000 011 001
- Every letter is assigned a **binary string** of three bits.

Wasteful!

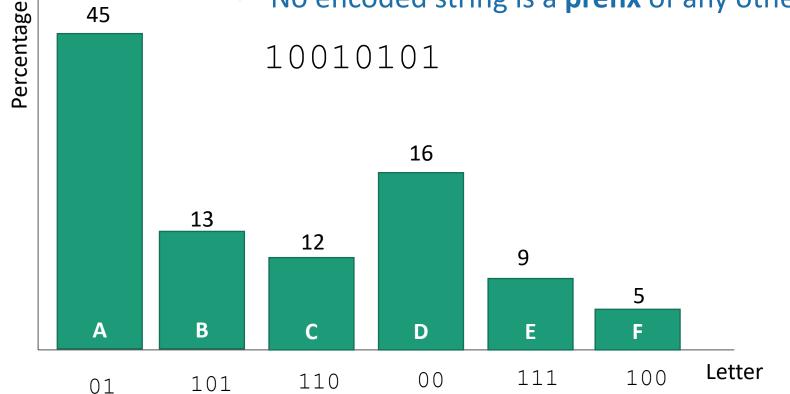
We should have a shorter way of



Confusingly, "prefix-free codes" are also sometimes called "prefix codes" (e.g. in CLRS).

Try 2: prefix-free coding

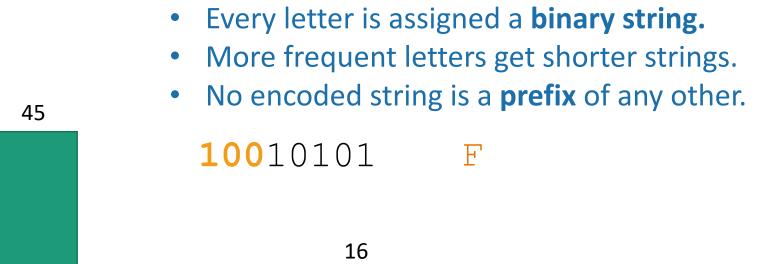
- Every letter is assigned a **binary string**.
- More frequent letters get shorter strings.
- No encoded string is a **prefix** of any other.

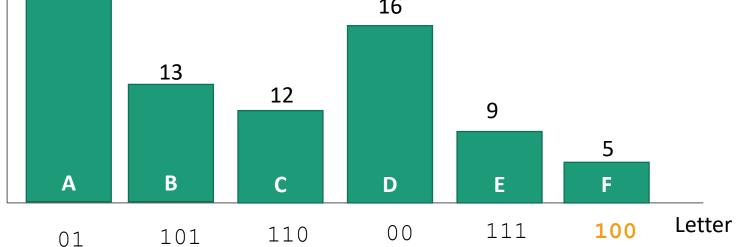


Confusingly, "prefix-free codes" are also sometimes called "prefix codes" (including in CLRS).

Try 2: prefix-free coding

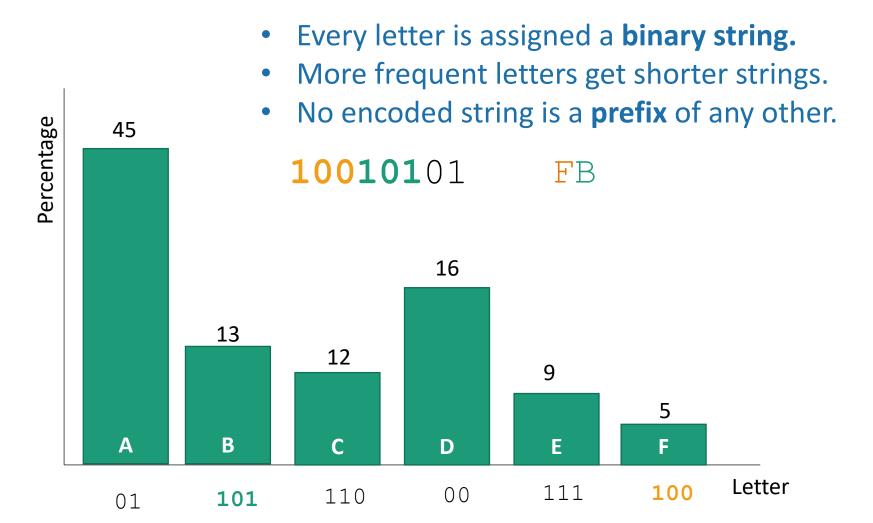
Percentage





Confusingly, "prefix-free codes" are also sometimes called "prefix codes" (including in CLRS).

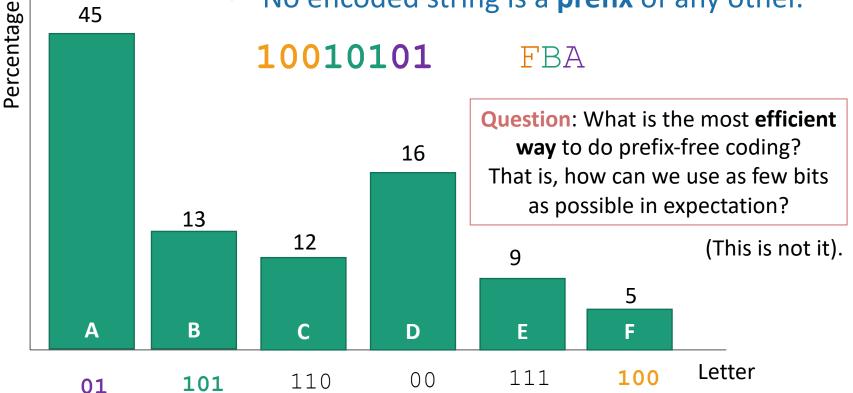
Try 2: prefix-free coding



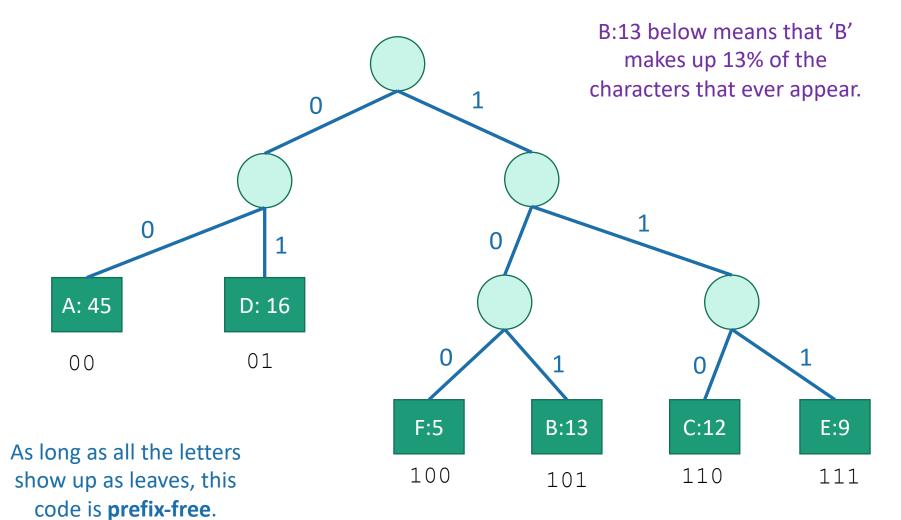
Confusingly, "prefix-free codes" are also sometimes called "prefix codes" (including in CLRS).

Try 2: prefix-free coding

- More frequent letters get shorter strings.
- No encoded string is a **prefix** of any other.

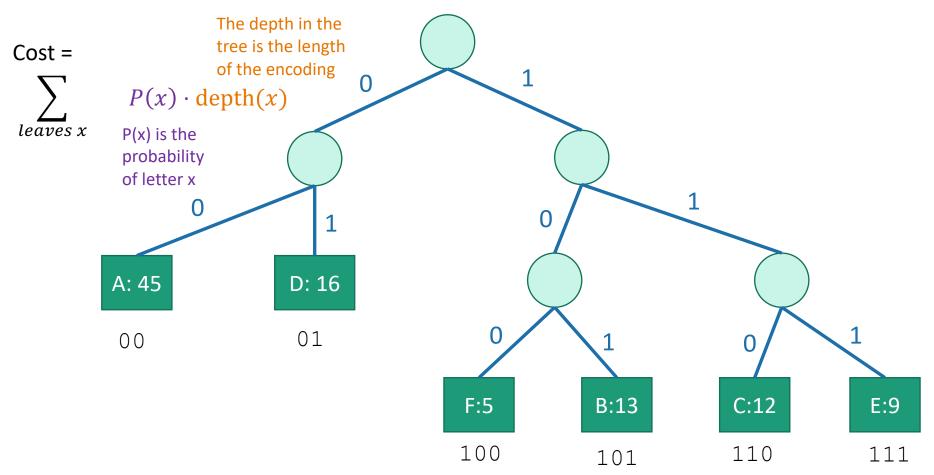


A prefix-free code is a tree



How good is a tree?

- Imagine choosing a letter at random from the language.
 - Not uniformly random, but according to our histogram!
- The **cost of a tree** is the expected length of the encoding of a random letter.



Expected cost of encoding a letter with this tree:

2(0.45 + 0.16) + 3(0.05 + 0.13 + 0.12 + 0.09) = 2.39

Question

• Given a distribution *P* on letters, find the lowest-cost tree, where

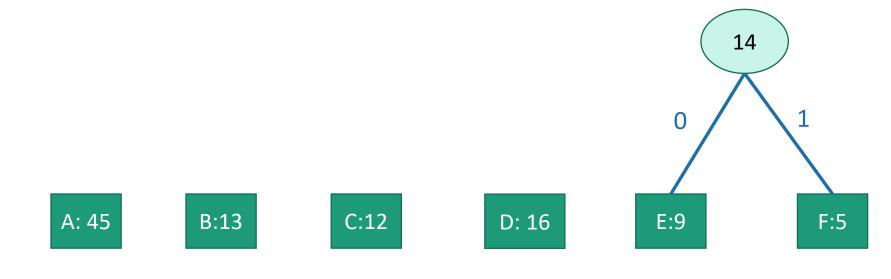
$$cost(tree) = \sum_{leaves x} P(x) \cdot \frac{depth(x)}{depth(x)}$$

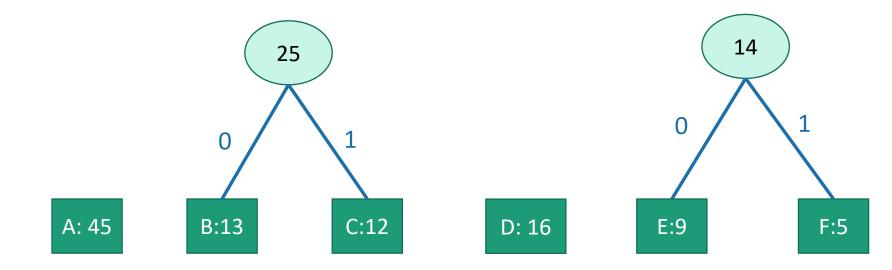
$$P(x) = \sum_{leaves x} P(x) \cdot \frac{depth(x)}{depth(x)}$$

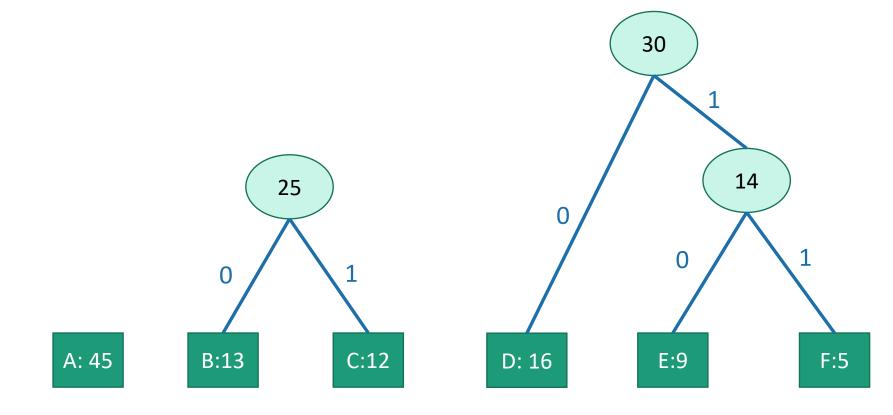
$$P(x) = \sum_{leaves x} P(x) \cdot \frac{depth(x)}{depth(x)}$$

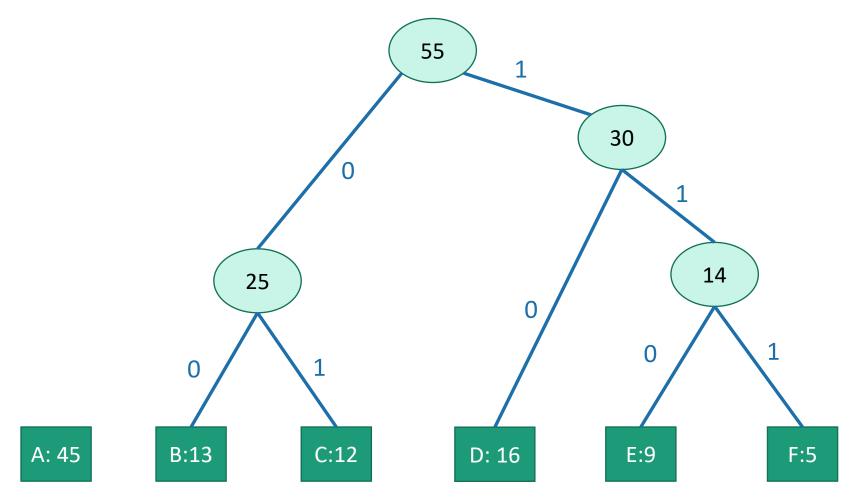
Greedy algorithm

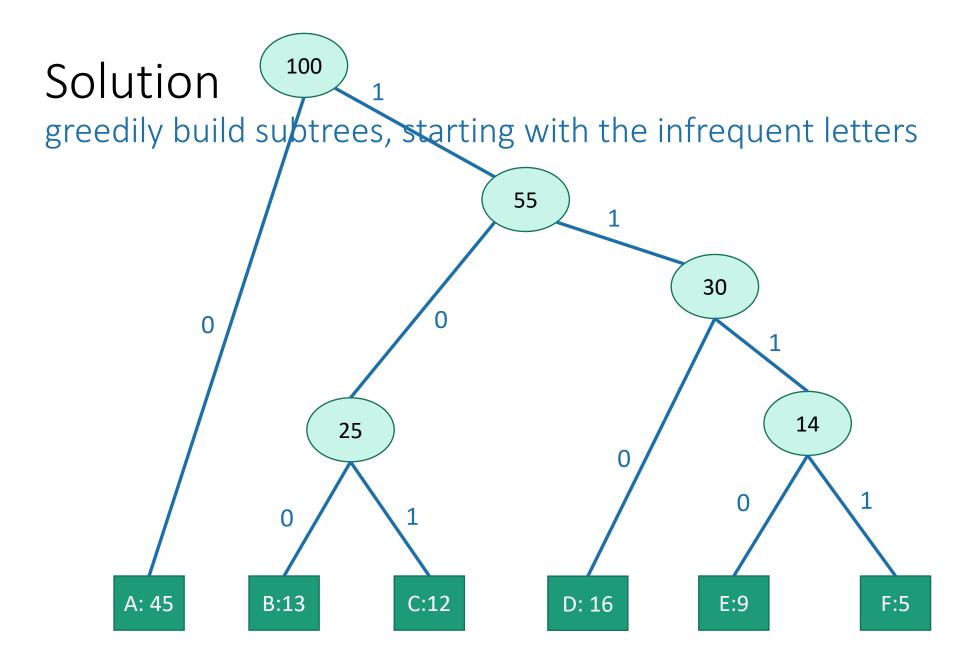
- Greedily build sub-trees from the bottom up.
- Greedy goal: less frequent letters should be further down the tree.





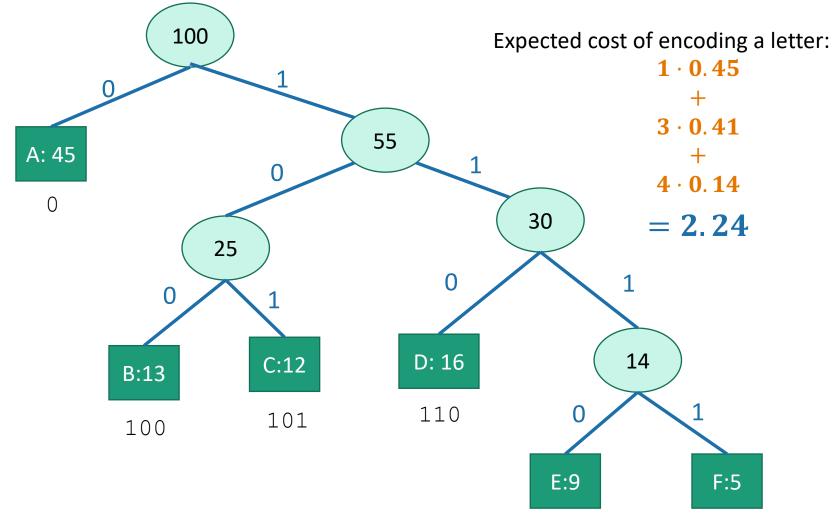






Solution

greedily build subtrees, starting with the infrequent letters



1110 111196

What exactly was the algorithm?

- Create a node like ^{D: 16} for each letter/frequency
 The key is the frequency (16 in this case)
- Let **CURRENT** be the list of all these nodes.
- while len(CURRENT) > 1:
 - X and Y ← the nodes in CURRENT with the smallest keys.

D: 16

• Create a new node Z with Z.key = X.key + Y.key

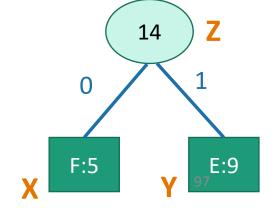
C:12

• Set Z.left = X, Z.right = Y

B:13

- Add Z to CURRENT and remove X and Y
- return CURRENT[0]

A: 45



This is called Huffman Coding:

- Create a node like ^{D: 16} for each letter/frequency
 The key is the frequency (16 in this case)
- Let **CURRENT** be the list of all these nodes.
- while len(CURRENT) > 1:
 - X and Y ← the nodes in CURRENT with the smallest keys.

D: 16

• Create a new node Z with Z.key = X.key + Y.key

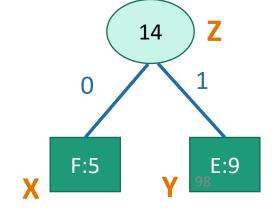
C:12

• Set Z.left = X, Z.right = Y

B:13

- Add Z to CURRENT and remove X and Y
- return **CURRENT**[0]

A: 45



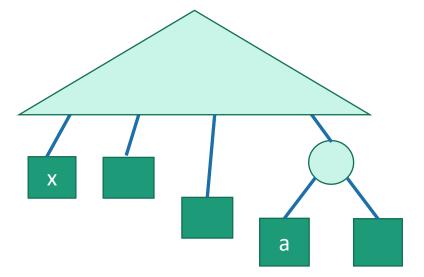
Does it work?

- Yes.
- We will *sketch* a proof here.
- Same strategy:
 - Show that at each step, the choices we are making won't rule out an optimal solution.
 - Lemma:
 - Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.

Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal tree where x and y are siblings.

• Say that an optimal tree looks like this:



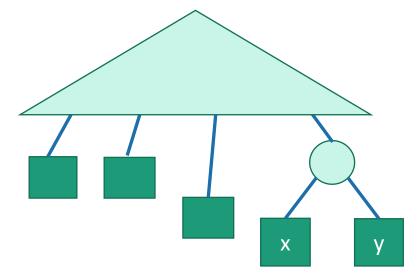
Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
 - the cost can't increase; a was more frequent than x, and we just made a's encoding shorter and x's longer.
- Repeat this logic until we get an optimal tree with x and y as siblings.
 - The cost never increased so this tree is still optimal.

Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal tree where x and y are siblings.

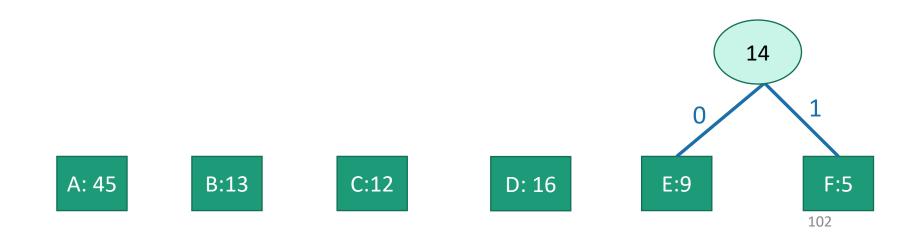
• Say that an optimal tree looks like this:



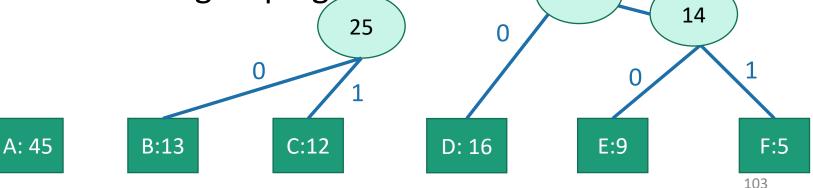
Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
 - the cost can't increase; a was more frequent than x, and we just made a's encoding shorter and x's longer.
- Repeat this logic until we get an optimal tree with x and y as siblings.
 - The cost never increased so this tree is still optimal.

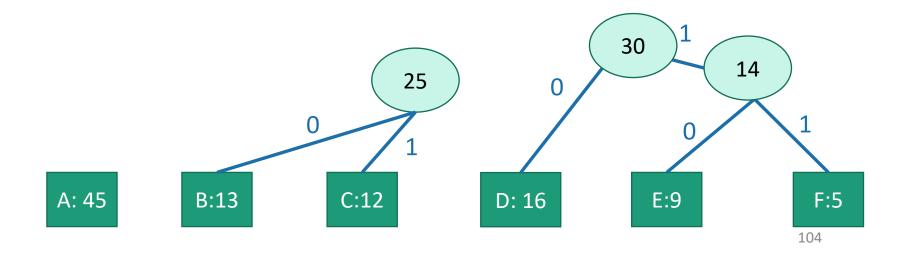
- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
 - Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.
- That's enough to show that we don't rule out optimality on the first step.



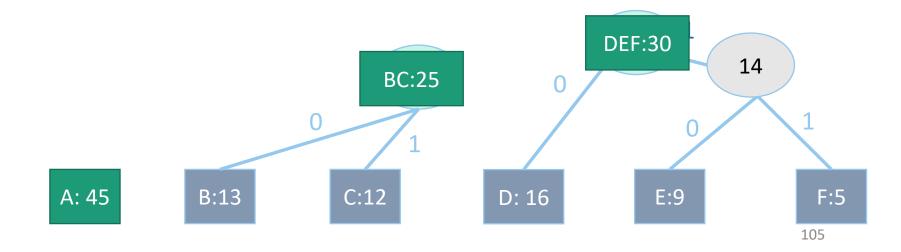
- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
 - Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.
- That's enough to show that we don't rule out optimality on the first step.
- To show that continue to not rule out optimality once we start grouping stuff...



- To show that continue to not rule out optimality once we start grouping stuff...
- The basic idea is that we can treat the "groups" as leaves in a new alphabet.



- To show that continue to not rule out optimality once we start grouping stuff...
- The basic idea is that we can treat the "groups" as leaves in a new alphabet.
- Then we can use the lemma from before.

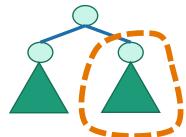


For a full proof

• See lecture notes or CLRS!

What have we learned?

- ASCII isn't an optimal way* to encode English, since the distribution on letters isn't uniform.
- Huffman Coding is an optimal way!
- To come up with an optimal scheme for any language efficiently, we can use a greedy algorithm.
- To come up with a greedy algorithm:
 - Identify optimal substructure
 - Find a way to make choices that won't rule out an optimal solution.
 - Create subtrees out of the smallest two current subtrees.



Recap I

- Greedy algorithms!
- Three examples:
 - Activity Selection
 - Scheduling Jobs
 - Huffman Coding
 - If we had time

Recap II

- Greedy algorithms!
- Often easy to write down
 - But may be hard to come up with and hard to justify
- The natural greedy algorithm may not always be correct.
- A problem is a good candidate for a greedy algorithm if:
 - it has optimal substructure
 - that optimal substructure is REALLY NICE
 - solutions depend on just one other sub-problem.

Next time

• Greedy algorithms for Minimum Spanning Tree!

Before next time

• Pre-lecture exercise: thinking about MSTs