Lecture 16

max flows, min cuts, and Ford-Fulkerson



Announcements:

* Part Il (2 videos) of EthiCS lectures on Algorithms in
the Real World will be added to website.

* HW7 due today.
* HWS8 (last homework!) out today

* This week’s lectures (including today) are included
in the course final.



The plan for today

* Minimum s-t cuts
e Maximum s-t flows

* The Ford-Fulkerson Algorithm This lecture will skip a few

proofs, but you can find

* Finds min cuts and max flows! them in the lecture notes.

* Applications
* Why do we want to find these things?

Lucky the lackadaisical lemur



Last time, graphs were

CUtS I n g ra p h S undirected and weighted.

* A cut is a partition of the vertices into two nonempty
parts.




Today

* Graphs are directed and edges have “capacities” (weights)

* We have a special “source” vertex s and “sink” vertex t.
* s has only outgoing edges*
e t has only incoming edges*

*simplifying assumptions, but everything can be generalized to arbitrary directed graphs



An s-t cut
IS a cut which separates s from t




An s-t cut
IS a cut which separates s from t




An s-t cut
IS a cut which separates s from t

* An edge crosses the cut if it goes from s’s side to t’s side.




An s-t cut
IS a cut which separates s from t

* An edge crosses the cut if it goes from s’s side to t’s side.

* The cost (or capacity) of a cut is the sum of the
capacities of the edges that cross the cut.

3 This cut has cost
4+2+10=16

——————————
LS

this edge does not
cross the cut; it’s going
in the wrong direction.



A minimum s-t cut
IS a cut which separates s from t
with minimum cost.

e Question: how do we find a minimum s-t cut?

This cut has cost
4+3+4=11




Example where this comes up

&5 §
R this says
“the bottleneck”

Schrijver 2002

1955 map of rail
networks from the Soviet

Union to Eastern Europe.
* Declassified in 1999.
* 44 edges, 105 vertices

The US wanted to cut off
routes from suppliers in

Russia to Eastern Europe
as efficiently as possible.

In 1955, Ford and
Fulkerson gave an
algorithm which finds the
optimal s-t cut.



Flows
 |[n addition to a capacity, each edge has a

* (unmarked edges in the picture have flow 0)
* The flow on an edge must be less than its capacity.

e At each vertex, the incoming flows must equal the outgoing
flows.

4 units in, 3
1+1+2 = 4 units out.

1+1 =2 unitsin,
2 units out.

Think of this as
meaning “send 2
units of stuff along
this edge.”




Because of conservation of

F ‘ OWS flows at vertices,

e The value of a flow is: stuff you put in

* The amount of stuff coming out of s

stuff you take out.

* The amount of stuff flowing into t

* These are the same! \j

The value of
this flow is 4.



A maximum flow
is a flow of maximum value.

* This example flow is pretty wasteful, I'm not utilizing
the capacities very well.

The value of
this flow is 4.



A maximum flow
is a flow of maximum value.

e This one is maximum; it has value 11.




Example where this comes up

Schriver 2002

1955 map of rail
networks from the Soviet

Union to Eastern Europe.
* Declassified in 1999.
* 44 edges, 105 vertices

The Soviet Union wants
to route supplies from
suppliers in Russia to
Eastern Europe as

efficiently as possible.



2. Max-Flow Min-Cut

The Soviet rail system also roused the interest of the Americans, and again it inspired
fundamental research in optimization.

In their basic paper Maximal Flow through a Network (published first as a RAND
Report of November 19, 1954), Ford and Fulkerson [5] mention that the maximum flow
problem was formulated by T.E. Harris as follows:

Consider a rail network connecting two cities by way of a number of intermediate cities,

where each link of the network has a number assigned to it representing its capacity.
Assuming a steady state condition, find a maximal flow from one given city to the other.

In their 1962 book Flows in Networks, Ford and Fulkerson [7] give a more precise
reference to the origin of the problem>:
It was posed to the authors in the spring of 1955 by T.E. Harris, who, in conjunction with

General E.S. Ross (Ret.), had formulated a simplified model of railway traffic flow, and
pinpointed this particular problem as the central one suggested by the model [11].

Ford-Fulkerson’s reference 11 is a secret report by Harris and Ross [11] entitled
Fundamentals of a Method for Evaluating Rail Net Capacities, dated October 24,
1955° and written for the US Air Force. At our request, the Pentagon downgraded it to
“unclassified” on May 21, 1999.




SECRET

U S.)x!k PR
PROJECT RAND
RESEARCH MEMORANDUM

T ™

FUNDAMENTALS OF A METHOD FOR FVALUATING
RAIL NET CAPACITIES (U)

T. E. Harris
F. S. Ross

RM-1573

Qetobez- 24, 1955 Copy No. 17 /J

e —— = s r—— e e - - - et vmmsn . .. ."/

This matenal contains infuormation uffeding the notional defense of the Umited Srotes witkin
the meaning of the cspionage laws, Title 18 U.S.¢ , Sees 793 and 794 the transmission or the
revelation of which 1n any manner 1o an unavihorized peeson s paohibited by fow




SECRET

RM-1572
10-24-55
-4~

SUMMARY

Air pover is an effective means of interdicting an enemy’s
rall system, and such usage is a logical and important mission
for this Arm,

As in many military operations, however, the success of inter-
diction depends largely on how complete, accuwrate, and timely is
the commander's information, particularly concerning the effect of
his interdiction-program efforts on the enexy's capabllity to move
men and supplies. This information should be available at the
time the results are being achieved,

The present paper describes the fundasmentals of s method inten-
ded to help the specislist who is engaged in estimating railvay cape-
cities, so that he might more zeadily accomplish this purpose and
thus assist the commander and his staff with greater efficlency than

is possible at present,




That’s the same as the
minimum cut in this graph!

A maximum flow
is a flow of maximum value.

e This one is maximum; it has value 11.



Pre-lecture exercise

e Each edge is a (directed) rickety bridge.

* How many bridges need to fall down to disconnect
s fromt? rorthis graph, 2

* If only one person can be on a bridge at a time, and
you want to keep traffic moving (aka, no waiting at
vertices allowed), how many people can get to t at
atime? Also2!




Pre-lecture exercise

e Each edge is a (directed) rickety bridge.

* How many bridges need to fall down to disconnect
s fromt? rorthis graph, 2

* If only one person can be on a bridge at a time, and
you want to keep traffic moving (aka, no waiting at
vertices allowed), how many people can get to t at
atime? Also2!




How about now?

e Each edge is a (directed) rickety bridge.

* How many bridges need to fall down to disconnect
s fromt? rorthis graph, 3

* If only one person can be on a bridge at a time, and
you want to keep traffic moving (aka, no waiting at
vertices allowed), how many people can get to t at
atime? Alsos!




How about now?

e Each edge is a (directed) rickety bridge.

* How many bridges need to fall down to disconnect
s fromt? rorthis graph, 3

* If only one person can be on a bridge at a time, and
you want to keep traffic moving (aka, no waiting at
vertices allowed), how many people can get to t at
atime? Alsos!




Pre-lecture exercise

e Can you find a graph where the two numbers are
different?



Theorem
Max-flow min-cut theorem

The value of a max flow from s to t Intuition: in a max flow,
is equal to the min cut better fill up,

the cost of a min s-t cut and this is the bottleneck.




Proof outline

e Lemma 1: max flow < min cut.
* Proof-by-picture

* What we actually want: max flow = min cut.
* Proof-by-algorithm...the Ford-Fulkerson algorithm!
e (Also using Lemma 1)



One half of Min-Cut Max-Flow Thm

* Lemma 1:

* For ANY s-t flow and ANY s-t cut, the value of the flow is
at most the cost of the cut.

* Hence max flow < min cut.
ANY s-t CUT
V4

Proof by picture:

All that stuff has to cross
the cut at some point.
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One half of Min-Cut Max-Flow Thm

* Lemma 1:

 For ANY s-t flow and ANY s-t cut, the value of the flow is
at most the cost of the cut.

* Hence max flow < min cut.

 That was proof-by-picture.
* Good exercise to convert this to a proof-by-proof!




Min-Cut Max-Flow Thm

* Lemma 1:

 For ANY s-t flow and ANY s-t cut, the value of the flow is
at most the cost of the cut.

* Hence max flow < min cut.

* The theorem is stronger:
* max flow = min cut
* This will be proof-by-algorithm!



Maximum flow

* Let’s brainstorm some algorithms for
maximum flow.

o

Think-share!




Ford-Fulkerson algorithm

* Qutline of algorithm:

e Start with zero flow
* We will maintain a “residual graph” G;

* Apath fromstotin G; will give us a way to improve
our flow.

 We will continue until there are no s-t paths left.

Assume for today that we
don’t have edges like this,
although it’s not necessary.

C—0



Tool: Residual networks
Say we have a flow

This forward edge has
weight “capacity — flow”.

This backward edge
has weight “flow”.

Call the flow f
Call the graph G

Create a new residual
network from this flow:

Call this graph Gf



Tool: Residual networks
Say we have a flow

Forward edges are the
amount that’s left.
Backwards edges are the
amount that’s been used.

Call the flow f
Call the graph G

Create a new residual
network from this flow:

Call this graph Gf



Residual networks tell us how to
improve the flow.

* Definition: A path from s to t in the residual
network is called an augmenting path.

e Claim: If there is an augmenting path, we can
increase the flow along that path.

Call the flow f
Call the graph G Call this graph Gy



Claim:

if there is an augmenting path, we can
increase the flow along that path.

* Easy case: every edge on the path in G; is a forward edge.

/A
4
1
3
/
Call the flow f
Call the graph G Call this graph Gy

* Forward edges indicate how much stuff can still go through.
* Just increase the flow on all the edges!



Claim:
if there is an augmenting path, we can
increase the flow along that path.

* Harder case: there are backward edges in the path.
* Here’s a slightly different example of a flow:

2

Call the flow f
Call the graph G Call this graph Gy

| changed some of
the weights and
edge directions.



Claim:
if there is an augmenting path, we can
increase the flow along that path.

* Harder case: there are backward edges in the path.
* Here’s a slightly different example of a flow:

Call the flow f

Call the graph G Call this graph Gy

Now we should NOT increase the flow at

all the edges along the path!
For example, that will mess up the
conservation of stuff at this vertex.

| changed some of
the weights and
edge directions.



Claim:
if there is an augmenting path, we can
increase the flow along that path.

* In this case we do something a bit different:

We will add We will remove flow here,
flow here since our augmenting path
is going backwards along
this edge.

Call the flow f

Call the graph G Call this graph Gy

We will add
flow here



Claim:
if there is an augmenting path, we can
increase the flow along that path.

* In this case we do something a bit different:

Then we’ll update the residual graph:

2

Call the flow f
Call the graph G Call this graph Gy



2in, 2 out

Before:

flow value is 2

Call the flow f /
Call the graph G 1in, 1out Call this graph G

After- 2in, 2 out

flow value is 3

Call the flow f
Call the graph G 1in, 1 out Call this graph Gy

Still a legit flow, but with a bigger value!



F:Iaim: . . Check that this
if there is an augmenting path, we can aways makesa

increase the flow along that path. Pleger fand egly

flow!

* increaseFlow(path P in G¢, flow f):
* X =min weight on any edge in P
 for (u,v) in P:
e if (uv)inE, f(uv) « f(uv) + x.
e if(vu)inE, f(v,u) « f(v,u) - x
* return f’

This is f’




Ford-Fulkerson Algorithm

* Ford-Fulkerson(G):

* f «all zero flow.
* Gr < G
* while tis reachable from s in G
* Find a path P fromstotin G // e.g., use DFS or BFS

* f < increaseFlow(~j)
* update G

* return f



Example of Ford-Fulkerson




Example of Ford-Fulkerson




Example of Ford-Fulkerson




Example of Ford-Fulkerson




Example of Ford-Fulkerson




Example of Ford-Fulkerson  weuiiremove fiow

from this edge.

Notice that we're 3

going back along one e
of the backwards 4
edges we added.




Example of Ford-Fulkerson  weuiiremove fiow

from this edge.

Notice that we’re
going back along one
of the backwards
edges we added.




Example of Ford-Fulkerson — weuirremove fow

from this edge AGAIN.




Example of Ford-Fulkerson — weuirremove fow

from this edge AGAIN.




Example of Ford-Fulkerson Now ,,,

Ieft tO

do/




Example of Ford-Fulkerson Now ,,,

ha Ve nO
Ieft to

thip
8
do/

.h
" iy,
-

There’s no path

fromstot, and

here’s the cut to
prove it.




Why does Ford-Fulkerson work?

* Just because we can’t improve the flow anymore
using an augmenting path, does that mean there
isn’t a better flow?

* Lemma 2: If there is no augmenting path in G¢ then
f is a maximum flow.



No augmenting path = max flow.

* Suppose there is not a path from s to tin Gy.
e Consider the cut given by:

{things reachable from s}, {things not reachable from s}

Call the flow f
Call the graph G Call this graph Gy



No augmenting path = max flow.

* Suppose there is not a path from s to tin Gy.

* Consider the cut given by: ¢ lives here
{things reachable from s}, {things not reachable from s}

* The value of the flow f from s to t is equal to the cost of this cut.

* Similar to proof-by-picture we saw before:

e All of the stuff has to cross the cut.
* The edges in the cut are full because they don’t exist in G

Call the flow f .
Call the graph G \ Call this graph G



No augmenting path = max flow.

* Suppose there is not a path from s to tin Gy.

* Consider the cut given by: _
t lives here
{things reachable from s}, {things not reachable from s}

* The value of the flow f from s to t is equal to the cost of this cut.

i Lemma 1
Value of f = cost of this cut = min cut > max flow

Call the flow f .
Call the graph G \ Call this graph G



No augmenting path = max flow.

Suppose there is not a path from sto tin G.

Consider the cut given by: ¢ lives here
{things reachable from s}, {things not reachable from s}

The value of the flow f from s to t is equal to the cost of this cut.

Lo ’

Value of f = cost of this cut = min cut > max flow
Therefore f is a max flow!

Thus, when Ford-Fulkerson stops, it’s found the maximum flow.

Call the flow f
Call the graph G \ Call this graph G



Min-Cut Max-Flow Theorem

max flow = Value of f = cost of this cut > min cut > max flow

So everything is equal and min cut = max flow!

— IKNEWT!




What have we |learned?

* Max s-t flow is equal to min s-t cut!

 The USSR and the USA were trying to
solve the same problem...

* The Ford-Fulkerson algorithm can
find the min-cut/max-flow.

* Repeatedly improve your flow along
an augmenting path.

* How long does this take???



Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.



Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.



Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

The edge (b,a) disappeared
from the residual graph!



Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.



Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

The edge (b,a) re-appeared
in the residual graph!



Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.



Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

The edge (b,a) disappeared
from the residual graph!



Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

This will go on for C steps,
adding flow along (b,a) and
then subtracting it again.

The edge (b,a) disappeared
from the residual graph!



How do we choose which paths to use?

* The analysis we did still works no matter how we
choose the paths.

 Thatis, the algorithm will be correct if it terminates.

* However, the algorithm may not be efficient!!!
* May take a long time to terminate
e (Or may actually never terminate?)

* We need to be careful with our path selection to make
sure the algorithm terminates quickly.
* Using BFS leads to the Edmonds-Karp algorithm.
* |t turns out this will work in time O(nm?) — proof skipped.
e (That’s not the only way to do it!)



One more useful observation

* If all the capacities are integers, then the flows in
any max flow are also all integers.

* When we update flows in Ford-Fulkerson, we’re only
ever adding or subtracting integers.

 Since we started with O (an integer), everything stays an
integer.



But wait, there’s more!

* Min-cut and max-flow are not just useful for the
USA and the USSR in 1955.

* The Ford-Fulkerson algorithm is the basis for many
other graph algorithms.

* For the rest of today, we’ll see a few:
 Maximum bipartite matching
* Integer assignment problems

Some of the following material shamelessly stolen from Jeff Erickson’s excellent lecture notes:
http://jeffe.cs.illinois.edu/teaching/algorithms/2009/notes/17-maxflowapps.pdf



Maximum matching in bipartite graphs

Different students only
want certain items of
Stanford swag (depending
on fit, style, etc.)

How can we make as
many students as possible

happy?

4
/
%
c% 4

Stanford Students Stanford Swag



Maximum matching in bipartite graphs

* Different students only A % ‘
want certain items of

Stanford swag (depending

on fit, style, etc). %
B

How can we make as
many students as possible
C %

FEAR' THE
ThEE

happy?

Stanford Students Stanford Swag



All edges have

Solution via max flow capacity 1.

Stanford Students Stanford Swag



All edges have

Solution via max flow capacity 1.

7
:
Q%\n\

% STANFORD

Stanford Students Stanford Swag




Solution via max flow All edges have
why does this work? capacity 1.

4. The value of the
flow is the size of the
matching.

1. Because the

capacities are all % >
integers, so are the

flows — so they are
either O or 1.

o Value of this
flow is 4.
Q'z\l;:mn
2. Stuff in = stuff out T ' 5. We conclude that
means that the number 3. Thus, the edges with flow on the max flow
of items assigned to them form a matching. (And, any corresponds to a
each student O or 1. matching gives a flow). max matching.

(And vice versa).



A slightly more complicated example:
assignment problems

* Oneset X
* Example: Stanford students

* Another setY
 Example: tubs of ice cream

e Each x in X can participate in c(x) matches.
e Student x can only eat 4 scoops of ice cream.

e Each yin Y can only participate in c(y) matches.
* Tub of ice cream y only has 10 scoops in it.

e Each pair (x,y) can only be matched c(x,y) times.
e Student x only wants 3 scoops of flavory
e Student x’ doesn’t want any scoops of flavor y’

* Goal: assign as many matches as possible.




How can we serve as much ice cream as possible?

O);
O

This person wants 1
scoop of ice cream,
either 1 chocolate or

1 vanilla.

This person wants two
scoops of the sorbet.

Stanford Students Tubs of ice cream

Example




Solution via max flow

Stanford Students Tubs of ice cream



Give this person

SOlUt|On Vla M aX 'ﬂOW scoop of this ice cream.

Stanford Students Tubs of ice cream



No more than 3
scoops of sorbet

SOlUthn Vla maX flOW can be assigned.

This student can
have flow at most
10 going in, and so
at most 10 going
out, so at most 10
scoops assigned.

As before, flows correspond to assignments, and
max flows correspond to max assignments.



What have we |learned?

* Max flows and min cuts aren’t just for railway routing.
* Immediately, they apply to other sorts of routing too!

e But also they are useful for assigning items to Stanford
students!



Can we do better?

State-of-the-art max flow

Ivl [cs.DS] 1 Mar 2022

Maximum Flow and Minimum-Cost Flow in Almost-Linear Time

(Preliminary Version)

Li Chen* Rasmus Kyng! Yang P. Liu?
Georgia Tech ETH Zurich Stanford University
lichen@gatech.edu kyng@Qinf.ethz.ch yangpliu@stanford.edu
Richard Peng Maximilian Probst Gutenberg? Sushant Sachdeval
University of Waterloo $ ETH Zurich University of Toronto
yopeng@uwaterloo.ca maxprobst@ethz.ch sachdeva@Qcs.toronto.edu

March 2, 2022

Abstract

We give an algorithm that computes exact maximum flows and minimum-cost flows on
directed graphs with m edges and polynomially bounded integral demands, costs, and capacities
in m**t°() time. Our algorithm builds the flow through a sequence of mt°(1) approximate
undirected minimum-ratio cycles, each of which is computed and processed in amortized me°(®)
time using a dynamic data structure.

85




Recap

* Today we talked about s-t cuts and s-t flows.

* The Min-Cut Max-Flow Theorem says that minimizing
the cost of cuts is the same as maximizing the value of
flows.

* The Ford-Fulkerson algorithm does this!
* Find an augmenting path
* Increase the flow along that path
* Repeat until you can’t find any more paths and then you're
done!
* An important algorithmic primitive!
* E.g., assignment problems.



Next time

 Stable Matchings!
e Deferred Acceptance (Gale-Shapley) Algorithm

Register.
Rank. - ) B |
Results. |

Source: https://www.nrmp.org/about/



