
Lecture 16
max flows, min cuts, and Ford-Fulkerson



Announcements:

• Part II (2 videos) of EthiCS lectures on Algorithms in 
the Real World will be added to website.

• HW7 due today.
• HW8 (last homework!) out today

• This week’s lectures (including today) are included 
in the course final.



The plan for today

• Minimum s-t cuts
• Maximum s-t flows
• The Ford-Fulkerson Algorithm
• Finds min cuts and max flows!

• Applications
• Why do we want to find these things?

Lucky the lackadaisical lemur

This lecture will skip a few 
proofs, but you can find 

them in the lecture notes.



Cuts in graphs
• A cut is a partition of the vertices into two nonempty 

parts.

Part 1 Part 2

Last time, graphs were 
undirected and weighted.



Today
• Graphs are directed and edges have “capacities” (weights)

• We have a special “source” vertex s and “sink” vertex t.
• s has only outgoing edges*
• t has only incoming edges*
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*simplifying assumptions, but everything can be generalized to arbitrary directed graphs



An s-t cut 
is a cut which separates s from t
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An s-t cut 
is a cut which separates s from t
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An s-t cut 
is a cut which separates s from t

• An edge crosses the cut if it goes from s’s side to t’s side.
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An s-t cut 
is a cut which separates s from t

• An edge crosses the cut if it goes from s’s side to t’s side.
• The cost (or capacity) of a cut is the sum of the 

capacities of the edges that cross the cut.
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this edge does not 
cross the cut; it’s going 
in the wrong direction.

This cut has cost
4 + 2 + 10 = 16



A minimum s-t cut 
is a cut which separates s from t
with minimum cost.

• Question: how do we find a minimum s-t cut?
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This cut has cost
4 + 3 + 4 = 11



Example where this comes up

Schrijver 2002

• 1955 map of rail 
networks from the Soviet 
Union to Eastern Europe.
• Declassified in 1999.
• 44 edges, 105 vertices

• The US wanted to cut off 
routes from suppliers in 
Russia to Eastern Europe 
as efficiently as possible.

• In 1955, Ford and 
Fulkerson gave an 
algorithm which finds the 
optimal s-t cut.

this says 
“the bottleneck”

These numbers 
are capacities.



Flows
• In addition to a capacity, each edge has a

• (unmarked edges in the picture have flow 0)
• The flow on an edge must be less than its capacity.
• At each vertex, the incoming flows must equal the outgoing 

flows.
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Think of this as 
meaning “send 2 

units of stuff along 
this edge.”

4 units in, 
1+1+2 = 4 units out.

1+1 = 2 units in, 
2 units out.



Flows
• The value of a flow is:
• The amount of stuff coming out of s
• The amount of stuff flowing into t
• These are the same!
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Because of conservation of 
flows at vertices, 

stuff you put in 
= 

stuff you take out.

The value of 
this flow is 4.



A maximum flow
is a flow of maximum value.
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The value of 
this flow is 4.

• This example flow is pretty wasteful, I’m not utilizing 
the capacities very well.



A maximum flow
is a flow of maximum value.
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Example where this comes up

Schriver 2002

• 1955 map of rail 
networks from the Soviet 
Union to Eastern Europe.
• Declassified in 1999.
• 44 edges, 105 vertices

• The Soviet Union wants 
to route supplies from 
suppliers in Russia to 
Eastern Europe as 
efficiently as possible.

These numbers 
are capacities.

These numbers 
are flows.









A maximum flow
is a flow of maximum value.
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That’s the same as the 
minimum cut in this graph!



Pre-lecture exercise
• Each edge is a (directed) rickety bridge.
• How many bridges need to fall down to disconnect 

s from t?
• If only one person can be on a bridge at a time, and 

you want to keep traffic moving (aka, no waiting at 
vertices allowed), how many people can get to t at 
a time?

s t

For this graph, 2

Also 2!
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How about now?

s t

• Each edge is a (directed) rickety bridge.
• How many bridges need to fall down to disconnect 

s from t?
• If only one person can be on a bridge at a time, and 

you want to keep traffic moving (aka, no waiting at 
vertices allowed), how many people can get to t at 
a time?

For this graph, 3

Also 3!



How about now?

s t

• Each edge is a (directed) rickety bridge.
• How many bridges need to fall down to disconnect 

s from t?
• If only one person can be on a bridge at a time, and 

you want to keep traffic moving (aka, no waiting at 
vertices allowed), how many people can get to t at 
a time?

For this graph, 3

Also 3!



Pre-lecture exercise

• Can you find a graph where the two numbers are 
different?



Theorem
Max-flow min-cut theorem
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The value of a max flow from s to t 
is equal to 

the cost of a min s-t cut.

Intuition: in a max flow, 
the min cut better fill up, 
and this is the bottleneck.



Proof outline

• Lemma 1: max flow ≤ min cut.
• Proof-by-picture

• What we actually want: max flow = min cut.
• Proof-by-algorithm…the Ford-Fulkerson algorithm!
• (Also using Lemma 1)



One half of Min-Cut Max-Flow Thm
• Lemma 1: 
• For ANY s-t flow and ANY s-t cut, the value of the flow is 

at most the cost of the cut.
• Hence max flow ≤ min cut.

Proof by picture:

s
t

ANY s-t CUT

x stuff 
comes 
out of s

All that stuff has to cross 
the cut at some point. So x ≤ cost of this cut



One half of Min-Cut Max-Flow Thm
• Lemma 1: 
• For ANY s-t flow and ANY s-t cut, the value of the flow is 

at most the cost of the cut.
• Hence max flow ≤ min cut.

• That was proof-by-picture.
• Good exercise to convert this to a proof-by-proof!



Min-Cut Max-Flow Thm
• Lemma 1: 
• For ANY s-t flow and ANY s-t cut, the value of the flow is 

at most the cost of the cut.
• Hence max flow ≤ min cut.

• The theorem is stronger:
• max flow = min cut
• This will be proof-by-algorithm!



Maximum flow

• Let’s brainstorm some algorithms for 
maximum flow.
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Ford-Fulkerson algorithm

• Outline of algorithm:
• Start with zero flow
• We will maintain a “residual graph” Gf

• A path from s to t in Gf will give us a way to improve 
our flow.

• We will continue until there are no s-t paths left.

Assume for today that we 
don’t have edges like this, 
although it’s not necessary.



Tool: Residual networks
Say we have a flow
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Call the flow 𝑓
Call the graph 𝐺

Call this graph 𝐺!

This forward edge has 
weight “capacity – flow”.

This backward edge 
has weight “flow”.



Tool: Residual networks
Say we have a flow
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Call the flow 𝑓
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Forward edges are the 
amount that’s left.

Backwards edges are the 
amount that’s been used.



Residual networks tell us how to 
improve the flow.
• Definition: A path from s to t in the residual 

network is called an augmenting path.
• Claim: If there is an augmenting path, we can 

increase the flow along that path.
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Claim: 
if there is an augmenting path, we can 
increase the flow along that path.

• Easy case: every edge on the path in Gf is a forward edge.

• Forward edges indicate how much stuff can still go through.
• Just increase the flow on all the edges! 
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• Harder case: there are backward edges in the path.
• Here’s a slightly different example of a flow:  
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the weights and 
edge directions.

Claim: 
if there is an augmenting path, we can 
increase the flow along that path.



• Harder case: there are backward edges in the path.
• Here’s a slightly different example of a flow:  
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the weights and 
edge directions.

Claim: 
if there is an augmenting path, we can 
increase the flow along that path.

Now we should NOT increase the flow at 
all the edges along the path!

• For example, that will mess up the 
conservation of stuff at this vertex.



• In this case we do something a bit different:
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• In this case we do something a bit different:

Claim: 
if there is an augmenting path, we can 
increase the flow along that path.

Then we’ll update the residual graph:
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• increaseFlow(path P in 𝐺𝑓 , flow f ):
• x = min weight on any edge in P
• for (u,v) in P:

• if (u,v) in E,  𝒇’ 𝒖, 𝒗 ← 𝒇(𝒖, 𝒗) + 𝒙.
• if (v,u) in E,  𝒇’ 𝒗, 𝒖 ← 𝒇(𝒗, 𝒖) – 𝒙

• return f’

Claim: 
if there is an augmenting path, we can 
increase the flow along that path.
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bigger (and legit) 
flow!



Ford-Fulkerson Algorithm

• Ford-Fulkerson(G):
• 𝑓 ← all zero flow.
• 𝐺$ ← 𝐺
• while t is reachable from s in 𝐺$

• Find a path P from s to t in 𝐺! // e.g., use DFS or BFS
• 𝑓 ← increaseFlow(P,f)
• update 𝐺!

• return f



Example of Ford-Fulkerson
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Example of Ford-Fulkerson
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Example of Ford-Fulkerson
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Example of Ford-Fulkerson
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Example of Ford-Fulkerson
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Example of Ford-Fulkerson
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Notice that we’re 
going back along one 
of the backwards 
edges we added.

We will remove flow 
from this edge.



Example of Ford-Fulkerson
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Example of Ford-Fulkerson
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Example of Ford-Fulkerson
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Example of Ford-Fulkerson
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Example of Ford-Fulkerson
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Now we have nothing left to do!

There’s no path 
from s to t, and 
here’s the cut to 

prove it.



Why does Ford-Fulkerson work?

• Just because we can’t improve the flow anymore 
using an augmenting path, does that mean there 
isn’t a better flow?
• Lemma 2: If there is no augmenting path in 𝐺𝑓 then 
𝑓 is a maximum flow.



No augmenting path ⇒ max flow.

• Suppose there is not a path from s to t in 𝐺𝑓.
• Consider the cut given by:

{things reachable from s} , {things not reachable from s}
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No augmenting path ⇒ max flow.

• Suppose there is not a path from s to t in 𝐺𝑓.
• Consider the cut given by:

{things reachable from s} , {things not reachable from s}
• The value of the flow 𝑓 from s to t is equal to the cost of this cut.

• Similar to proof-by-picture we saw before:
• All of the stuff has to cross the cut.
• The edges in the cut are full because they don’t exist in 𝐺𝑓
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No augmenting path ⇒ max flow.
• Suppose there is not a path from s to t in 𝐺𝑓.
• Consider the cut given by:

{things reachable from s} , {things not reachable from s}
• The value of the flow 𝑓 from s to t is equal to the cost of this cut.
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Lemma 1
Value of 𝑓 = cost of this cut ≥ min cut ≥ max /low



No augmenting path ⇒ max flow.
• Suppose there is not a path from s to t in 𝐺𝑓.
• Consider the cut given by:

{things reachable from s} , {things not reachable from s}
• The value of the flow 𝑓 from s to t is equal to the cost of this cut.

• Therefore 𝑓 is a max flow!
• Thus, when Ford-Fulkerson stops, it’s found the maximum flow.
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Lemma 1

≥ min cut ≥ max /lowValue of 𝑓 = cost of this cut



Min-Cut Max-Flow Theorem

≥ min cut ≥ max /lowValue of 𝑓 = cost of this cutmax /low ≥

So everything is equal and min cut = max flow!



What have we learned?

• Max s-t flow is equal to min s-t cut!
• The USSR and the USA were trying to 

solve the same problem…

• The Ford-Fulkerson algorithm can 
find the min-cut/max-flow.  
• Repeatedly improve your flow along 

an augmenting path.

• How long does this take???



Why should we be concerned?
Suppose we just picked paths arbitrarily.
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Why should we be concerned?
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Why should we be concerned?
Suppose we just picked paths arbitrarily.
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Why should we be concerned?
Suppose we just picked paths arbitrarily.

s

a

b

t
1

C

C
2

1

1

2

1

C

C

s

a

b

t

C-1

C-2C-1

C-2

Choose a really 
big number C.

2

2

1

1

1
The edge (b,a) disappeared 
from the residual graph!

This will go on for C steps, 
adding flow along (b,a) and 

then subtracting it again.



How do we choose which paths to use?

• The analysis we did still works no matter how we 
choose the paths.
• That is, the  algorithm will be correct if it terminates.

• However, the algorithm may not be efficient!!!
• May take a long time to terminate
• (Or may actually never terminate?)

• We need to be careful with our path selection to make 
sure the algorithm terminates quickly.
• Using BFS leads to the Edmonds-Karp algorithm. 
• It turns out this will work in time O(nm2) – proof skipped.
• (That’s not the only way to do it!)



One more useful observation

• If all the capacities are integers, then the flows in 
any max flow are also all integers.
• When we update flows in Ford-Fulkerson, we’re only 

ever adding or subtracting integers.
• Since we started with 0 (an integer), everything stays an 

integer.



But wait, there’s more!

• Min-cut and max-flow are not just useful for the 
USA and the USSR in 1955.
• The Ford-Fulkerson algorithm is the basis for many 

other graph algorithms.
• For the rest of today, we’ll see a few:
• Maximum bipartite matching
• Integer assignment problems

Some of the following material shamelessly stolen from Jeff Erickson’s excellent lecture notes: 
http://jeffe.cs.illinois.edu/teaching/algorithms/2009/notes/17-maxflowapps.pdf



Maximum matching in bipartite graphs

Stanford Students Stanford Swag

• Different students only 
want certain items of 
Stanford swag (depending 
on fit, style, etc.)

• How can we make as 
many students as possible 
happy?
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D
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Solution via max flow

Stanford Students Stanford Swag

ts

All edges have 
capacity 1.



Solution via max flow

Stanford Students Stanford Swag

ts

All edges have 
capacity 1.
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Solution via max flow
why does this work?

All edges have 
capacity 1.

2. Stuff in = stuff out
means that the number 
of items assigned to 
each student 0 or 1.  
(And vice versa).

1. Because the 
capacities are all 
integers, so are the 
flows – so they are 
either 0 or 1.

3. Thus, the edges with flow on 
them form a matching.  (And, any 
matching gives a flow).

4. The value of the 
flow is the size of the 
matching.

Value of this 
flow is 4.

5. We conclude that 
the max flow 
corresponds to a 
max matching.



A slightly more complicated example: 
assignment problems
• One set X
• Example: Stanford students

• Another set Y
• Example: tubs of ice cream

• Each x in X can participate in c(x) matches.
• Student x can only eat 4 scoops of ice cream.

• Each y in Y can only participate in c(y) matches.
• Tub of ice cream y only has 10 scoops in it.

• Each pair (x,y) can only be matched c(x,y) times.
• Student x only wants 3 scoops of flavor y
• Student x’ doesn’t want any scoops of flavor y’

• Goal: assign as many matches as possible.



Example

Stanford Students Tubs of ice cream
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This person wants 1 
scoop of ice cream, 

either 1 chocolate or 
1 vanilla.

This person wants two 
scoops of the sorbet.

How can we serve as much ice cream as possible?



Solution via max flow

Stanford Students Tubs of ice cream
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Solution via max flow

Stanford Students Tubs of ice cream
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Give this person 
scoop of this ice cream.
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Solution via max flow

This student can 
have flow at most 
10 going in, and so 
at most 10 going 
out, so at most 10 
scoops assigned.

As before, flows correspond to assignments, and 
max flows correspond to max assignments.

W
e dish out 17 

scoops of ice cream.
No more than 3 
scoops of sorbet 
can be assigned.

No more than 10 scoops of 

Cherry Garcia can be 

assigned to this student.



What have we learned?

• Max flows and min cuts aren’t just for railway routing.
• Immediately, they apply to other sorts of routing too!
• But also they are useful for assigning items to Stanford 

students!



Can we do better?
State-of-the-art max flow

85



Recap
• Today we talked about s-t cuts and s-t flows.
• The Min-Cut Max-Flow Theorem says that minimizing 

the cost of cuts is the same as maximizing the value of 
flows.
• The Ford-Fulkerson algorithm does this!
• Find an augmenting path
• Increase the flow along that path
• Repeat until you can’t find any more paths and then you’re 

done!

• An important algorithmic primitive!
• E.g., assignment problems.



Next time
• Stable Matchings!
• Deferred Acceptance (Gale-Shapley) Algorithm

Source: https://www.nrmp.org/about/ 


