
Lecture 2
Asymptotic Notation,

Worst-Case Analysis, and MergeSort

Announcements

• Please (continue to) send OAE letters to cs161-
win2223-staff@lists.stanford.edu

mailto:cs161-win2223-staff@lists.stanford.edu
mailto:cs161-win2223-staff@lists.stanford.edu

161A (ACE)

The goal of ACE is to increase confidence and content knowledge through
interactive small group sessions and additional academic resources. In
CS161 ACE, you can expect an additional weekly section, ACE-specific
office hours, and an extra community of people learning together and
supporting each other.

• Fri 9:30am - 11:20am in 100-101K (taught by Lauren Saue-Fletcher)
• Short application (link on course website too):

https://docs.google.com/forms/d/e/1FAIpQLSfz4xHbWbH_LZmn8PlQ9X
B24OLynzTdmC5YvQVC6s04R0C6dA/viewform

• A fair amount of space for more students!
• Final application deadline: Friday, January 13th at 5:00pm (sooner is

better – there is a quick meeting this Friday morning)
• Questions? Send an email to laurensauefletcher@stanford.edu

https://docs.google.com/forms/d/e/1FAIpQLSfz4xHbWbH_LZmn8PlQ9XB24OLynzTdmC5YvQVC6s04R0C6dA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfz4xHbWbH_LZmn8PlQ9XB24OLynzTdmC5YvQVC6s04R0C6dA/viewform
mailto:laurensauefletcher@stanford.edu

Homework!
• HW1 will be released today (Wednesday).
• It is due the next Wednesday, 11:59pm (in one week), on

Gradescope. As a reminder, HW1, HW2, and HW3 are solo
submissions only.
• Homework comes in two parts:

• Exercises:
• More straightforward.
• Try to do them on your own.

• Problems:
• Less straightforward.
• Try them on your own first, but then collaborate!

• See the website for guidelines on homework:
• Collaboration + late day policy (in the “Policies” tab)
• Best practices (in the “Resources” tab)
• Example homework (in the “Resources” tab)
• LaTeX help (in the “Resources” tab)

Office Hours and Sections
• Office hours calendar is on the course website.
• (under "Staff / Office Hours”)
• Office hours start today

• Sections have been scheduled.
• See course website
• One will be recorded (and put on Canvas)
• Don’t need to formally enroll in sections, just show up!

Huang basement

End of announcements!

Links on Canvas

Last time

• Algorithms are awesome!
• Our motivating questions:

• Does it work?
• Is it fast?
• Can I do better?

• Grade-school integer multiplication
• Not-so-rigorous analysis
• Divide-and-conquer
• Karatsuba integer multiplication

Philosophy

Technical content

w
ill

 d
o

no
w

Integer Multiplication

1234567895931413
4563823520395533x

Big-Oh Notation

• We say that Grade-School Multiplication
“runs in time O(n2)”

• Formal definition later today!
• Informally, big-Oh notation tells us how the running

time scales with the size of the input.

Why is big-Oh notation meaningful?

≈ .0063𝑛!

≈ "!.#

#$
+ 100

Wizard’s algorithm

Let n get bigger…

≈ .0063𝑛!

≈ "!.#

#$
+ 100

Ti
m

e
(m

s)

Wizard’s algorithm

Take-away

• An algorithm that runs in time O(n1.6) is “better”
than an algorithm that runs in time O(n2).

• So the question is…

Can we do better?

𝑛

𝑛!

Can we multiply n-digit integers
faster than 𝑂 𝑛) ?

Let’s dig into our algorithmic toolkit…

Divide and conquer
Break problem up into smaller (easier) sub-problems

Big problem

Smaller
problem

Smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Divide and conquer for multiplication

1234 × 5678

Break up an integer:

1234 = 12×100 + 34

= (12×100 + 34) (56×100 + 78)
= (12 × 56)10000 + (34 × 56 + 12 × 78)100 + (34 × 78)

1 2 3 4

One 4-digit multiply Four 2-digit multiplies

More generally

1 2 3 4

One n-digit multiply Four (n/2)-digit multiplies

Break up an n-digit integer:

Suppose n is even

Divide and conquer algorithm
not very precisely…

• If n=1:
• Return xy

• Write 𝑥 = 𝑎 10
!
" + 𝑏

• Write 𝑦 = 𝑐 10
!
" + 𝑑

• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑:
• ac = Multiply(a, c), etc..

• Add them up to get 𝑥𝑦:
• xy = ac 10n + (ad + bc) 10n/2 + bd

Multiply(𝑥, 𝑦):

a, b, c, d are
n/2-digit numbers

Base case: I’ve memorized my
1-digit multiplication tables…

x,y are n-digit numbers (Assume n is a power of 2…)

Siggi the Studious Stork

Make this pseudocode
more detailed! How

should we handle odd n?
How should we implement

“multiplication by 10n”?

See the Lecture 1 Python notebook for actual code!

Question

• We saw that 4-digit multiplication problem broke
up into four 2-digit multiplication problems

• If you recurse on those 2-digit multiplication
problems, how many 1-digit multiplications do you
end up with in total?

1234 × 5678

Recursion Tree

4 digits

2 digits

1
digit

2 digits 2 digits 2 digits

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

1
digit

16 one-digit
multiplies!

What is the running time?

• Better or worse than the grade school algorithm?

• How do we answer this question?
1. Try it.
2. Try to understand it analytically.

1. Try it.
Check out the Lecture 1 IPython Notebook

Conjectures about
running time?

Maybe one implementation
is slicker than the other?

Maybe if we were to run it
to n=10000, things would

look different.

Doesn’t look too good
but hard to tell…

Something funny is happening at powers of 2…

2. Try to understand the running
time analytically

• We saw that multiplying 4-digit numbers resulted in 16
one-digit multiplications.

• How about multiplying 8-digit numbers?

• What do you think about n-digit numbers?

Recursion Tree

8 digits

4 digits

2
digit

4 digits 4 digits 4 digits

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

2
digit

64 one-digit
multiplies!

1

11

11

11

11

11

11

11

1 1

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1
1

11

11

11

11

11

11

11

1

2. Try to understand the running
time analytically

Claim:

The running time of this algorithm is
AT LEAST n2 operations.

There are n2 1-digit problems
1 problem
of size n

4 problems
of size n/2

4t problems
of size n/2t

____ problems
of size 1

…

• If you cut n in half
log2(𝑛) times,
you get down to 1.

• So, at level
t = log2(𝑛)

we get…

4)*+" , =
𝑛)*+" - = 𝑛2
problems of size 1.

…

Note: this is just a
cartoon – I’m not
going to draw all 4t

circles!

That’s a bit disappointing
All that work and still (at least) 𝑂 𝑛. …

𝑛

𝑛!

But wait!!

Divide and conquer can actually make progress

• Karatsuba figured out how to do this better!

• If only we could recurse on three things instead of four…

Need these three things

Karatsuba integer multiplication

• Recursively compute these THREE things:
• ac
• bd
• (a+b)(c+d) (a+b)(c+d) = ac + bd + bc + ad

Subtract these off
get this

• Assemble the product:

How would this work?

• If n=1:
• Return xy

• Write 𝑥 = 𝑎 10
!
" + 𝑏 and 𝑦 = 𝑐 10

!
" + 𝑑

• ac = Multiply(a, c)
• bd = Multiply(b, d)
• z = Multiply(a+b, c+d)
• xy = ac 10n + (z – ac - bd) 10n/2 + bd
• Return xy

Multiply(𝑥, 𝑦):

a, b, c, d are
n/2-digit numbers

x,y are n-digit numbers
(Still not super precise, see IPython
notebook for detailed code. Also,

still assume n is a power of 2.)

What’s the running time?
1 problem
of size n

3 problems
of size n/2

3t problems
of size n/2t

____ problems
of size 1

…

• If you cut n in half
log2(𝑛) times, you get
down to 1.

• So at level
t = log2(𝑛)

we get…

3*+,! - = 𝑛*+,! . ≈ 𝑛/.0
problems of size 1.

𝑛!.#
We aren’t accounting for

the work at the higher
levels! But we’ll see next
lecture that this turns out

to be okay.

Note: this is just a
cartoon – I’m not
going to draw all 3t

circles!

…

This is much better!

𝑛!

𝑛#.'

𝑛

Can we do better?
• Toom-Cook (1963): instead of breaking into three n/2-

sized problems, break into five n/3-sized problems.
• Runs in time O 𝑛/.102

• Schönhage–Strassen (1971):
• Runs in time O(𝑛 log 𝑛 log log 𝑛)

• Furer (2007)
• Runs in time 𝑛 log 𝑛 ⋅ 23(*+,∗ -)

• Harvey and van der Hoeven (2019)
• Runs in time O(𝑛 log 𝑛)

Ollie the Over-achieving Ostrich

Try to figure out how to break
up an n-sized problem into five
n/3-sized problems! (Hint: start
with nine n/3-sized problems).

Siggi the Studious Stork

Given that you can break an
n-sized problem into five

n/3-sized problems, where
does the 1.465 come from?

[This is just for fun, you
don’t need to know

these algorithms!]

Sorting

• We are going to ask:
• Does it work?
• Is it fast?

• We’ll start to see how to answer these by looking at
some examples of sorting algorithms.
• InsertionSort
• MergeSort

SortingHatSort not discussed

The Plan

• Sorting!
• Worst-case analysis
• InsertionSort: Does it work?

• Asymptotic Analysis
• InsertionSort: Is it fast?

• MergeSort
• Does it work?
• Is it fast?

Sorting

• Important primitive
• For today, we’ll pretend all elements are distinct.

6 4 3 8 1 5 2 7

1 2 3 4 5 6 7 8

Length of the list is n

Pre-lecture exercise:

What was the
mystery sort
algorithm?

1. MergeSort
2. QuickSort
3. InsertionSort
4. BogoSort

def mysteryAlgorithmTwo(A):
for i in range(1,len(A)):

current = A[i]
j = i-1
while j >= 0 and A[j] > current:

A[j+1] = A[j]
j -= 1

A[j+1] = current

def mysteryAlgorithmOne(A):
B = [None for i in range(len(A))]
for x in A:

for i in range(len(B)):
if B[i] == None or B[i] > x:

j = len(B)-1
while j > i:

B[j] = B[j-1]
j -= 1

B[i] = x
break

return B

What was the
mystery sort
algorithm?

1. MergeSort
2. QuickSort
3. InsertionSort
4. BogoSort

def mysteryAlgorithmTwo(A):
for i in range(1,len(A)):

current = A[i]
j = i-1
while j >= 0 and A[j] > current:

A[j+1] = A[j]
j -= 1

A[j+1] = current

def mysteryAlgorithmOne(A):
B = [None for i in range(len(A))]
for x in A:

for i in range(len(B)):
if B[i] == None or B[i] > x:

j = len(B)-1
while j > i:

B[j] = B[j-1]
j -= 1

B[i] = x
break

return B

Pre-lecture exercise:

InsertionSort
example

46 3 8 5

64 3 8 5

64 3 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 5 6 8

Start by moving A[1] toward
the beginning of the list until
you find something smaller
(or can’t go any further):

Then move A[2]:

Then move A[3]:

Then move A[4]:

Then we are done!

46 3 8 5

Insertion Sort

1. Does it work?
2. Is it fast?

Plucky the
Pedantic Penguin

What does that
mean???

The Plan

• InsertionSort recap
• Worst-case Analysis
• Back to InsertionSort: Does it work?

• Asymptotic Analysis
• Back to InsertionSort: Is it fast?

• MergeSort
• Does it work?
• Is it fast?

Claim: InsertionSort “works”

• “Proof:” It just worked in this example:

46 3 8 5
64 3 8 5

64 3 8 5
43 6 8 5

43 6 8 5
43 6 8 5

43 6 8 5
43 5 6 8

46 3 8 5

Sorted!

Claim: InsertionSort “works”

• “Proof:” I did it on a bunch of random lists and it
always worked:

What does it mean to “work”?

• Is it enough to be correct on only one input?
• Is it enough to be correct on most inputs?

• In this class, we will use worst-case analysis:
• An algorithm must be correct on all possible inputs.
• The running time of an algorithm is the worst possible

running time over all inputs.

Worst-case analysis

• Pros: very strong guarantee
• Cons: very strong guarantee

Algorithm
designer

Algorithm:
Do the thing
Do the stuff
Return the answer

Here is my algorithm!

Here is an input!
(Which I designed
to be terrible for
your algorithm!)

Think of it like a game:

Insertion Sort

1. Does it work?
2. Is it fast?

• Okay, so it’s pretty obvious that it works.

• HOWEVER! In the future it won’t be so
obvious, so let’s take some time now to
see how we would prove this rigorously.

Why does this work?

• Say you have a sorted list, , and

another element .

• Insert right after the largest thing that’s still

smaller than . (Aka, right after).

• Then you get a sorted list:

43 6 8
5

5

43 6 85

5 4

So just use this logic at every step.
The first element, [6], makes up a sorted list.

So correctly inserting 4 into the list [6] means
that [4,6] becomes a sorted list.

The first two elements, [4,6], make up a
sorted list.

The first three elements, [3,4,6], make up a
sorted list.

So correctly inserting 3 into the list [4,6] means
that [3,4,6] becomes a sorted list.

So correctly inserting 8 into the list [3,4,6] means
that [3,4,6,8] becomes a sorted list.

The first four elements, [3,4,6,8], make up a
sorted list.

46 3 8 54 3 8 5

64 3 8 5

64 3 8 5

4 63 8 5

43 6 8 5

43 6 85

43 6 8 5

43 6 8 5
So correctly inserting 5 into the list [3,4,6,8]
means that [3,4,5,6,8] becomes a sorted list.

YAY WE ARE DONE!

This sounds like a job for…

Proof By
Induction!

The notes contain the details!

• See website!

Outline of a proof by induction
• Inductive Hypothesis:

• A[:i+1] is sorted at the end of the ith iteration (of the outer loop).
• Base case (i=0):

• A[:1] is sorted at the end of the 0’th iteration. ✓
• Inductive step:

• For any 0 < k < n, if the inductive hypothesis holds for i=k-1, then it
holds for i=k.

• Aka, if A[:k] is sorted at step k-1, then A[:k+1] is sorted at step k
• Conclusion:

• The inductive hypothesis holds for i = 0, 1, …, n-1.
• In particular, it holds for i=n-1.
• At the end of the n-1’st iteration (aka, at the end of the algorithm),
A[:n] = A is sorted.

• That’s what we wanted! ✓

This logic
(see notes for details)

The first two elements, [4,6], make up a
sorted list.

So correctly inserting 3 into the list [4,6] means
that [3,4,6] becomes a sorted list.

64 3 8 5

4 63 8 5 This was
iteration i=2.

Let A be a list of length n

Aside: proofs by induction

• We’re going to see/do/skip over a lot of them.
• I’m assuming you’re comfortable with them from CS103.
• When you assume…

• If that went by too fast and was confusing:
• GO TO SECTION
• GO TO SECTION
• Notes
• References
• Office hours

Make sure you really understand the
argument on the previous slide! Check

out the notes for a more formal write-up
and go to the sections for an overview of

what we are looking for in proofs by
induction.

Siggi the Studious Stork

What have we learned?

• In this class we will use worst-case analysis:
• We assume that a “bad guy” produces a worst-case

input for our algorithm, and we measure performance
on that worst-case input.

• With this definition, InsertionSort “works”
• Proof by induction!

The Plan

• InsertionSort recap
• Worst-case Analysis
• Back to InsertionSort: Does it work?

• Asymptotic Analysis
• Back to InsertionSort: Is it fast?

• MergeSort
• Does it work?
• Is it fast?

How fast is InsertionSort?

• This fast:

Issues with this answer?

• The “same” algorithm can be
slower or faster depending
on the implementations.
• It can also be slower or

faster depending on the
hardware that we run it on.

With this answer,
“running time” isn’t
even well-defined!

How fast is InsertionSort?

• Let’s count the number of operations!

def InsertionSort(A):
for i in range(1,len(A)):

current = A[i]
j = i-1
while j >= 0 and A[j] > current:

A[j+1] = A[j]
j -= 1

A[j+1] = current

By my count*…
• 2𝑛! − 𝑛 − 1 variable assignments
• 2𝑛! − 𝑛 − 1 increments/decrements
• 2𝑛! − 4𝑛 + 1 comparisons
• … *Do not pay attention to these formulas, they do not matter.

Also not valid for bug bounty (good citizenship) points.

Issues with this answer?

• It’s very tedious!
• In order to use this to

understand running
time, I need to know
how long each operation
takes, plus a whole
bunch of other stuff…

Counting individual
operations is a lot of work and

doesn’t seem very helpful!

Lucky the lackadaisical lemur

def InsertionSort(A):
for i in range(1,len(A)):

current = A[i]
j = i-1
while j >= 0 and A[j] > current:

A[j+1] = A[j]
j -= 1

A[j+1] = current

In this class we will use…

• Big-Oh notation!
• Gives us a meaningful way to talk about the

running time of an algorithm, independent of
programming language, computing platform, etc.,
without having to count all the operations.

Main idea:

Focus on how the runtime scales with n (the input size).

Number of operations Asymptotic Running
Time

!
!"
⋅ 𝑛# + 100 𝑂 𝑛#

0.063 ⋅ 𝑛# − .5 𝑛 + 12.7 𝑂 𝑛#

100 ⋅ 𝑛!.% − 10!"""" 𝑛 𝑂 𝑛!.%

11 ⋅ 𝑛 log 𝑛 + 1 𝑂 𝑛 log 𝑛

We say this algorithm is
“asymptotically faster”

than the others.

(Heuristically: only pay attention to the
largest function of n that appears.)Some examples…

Pre-lecture exercise:

Why is this a good idea?

• Suppose the running time of an algorithm is:

𝑇 𝑛 = 10𝑛. + 3𝑛 + 7 ms

This constant factor of 10
depends a lot on my

computing platform… These lower-order
terms don’t really

matter as n gets large.

We’re just left with the n2 term!
That’s what’s meaningful.

Pros and Cons of Asymptotic Analysis

• Abstracts away from
hardware- and language-
specific issues.
• Makes algorithm analysis

much more tractable.
• Allows us to meaningfully

compare how algorithms will
perform on large inputs.

• Only makes sense if n is
large (compared to the
constant factors).

Pros: Cons:

1000000000 n
is “better” than n2 ?!?!

Informal definition for O(…)

• Let 𝑇 𝑛 , 𝑔 𝑛 be functions of positive integers.
• Think of 𝑇 𝑛 as a runtime: positive and increasing in n.

• We say “𝑇 𝑛 is 𝑂 𝑔 𝑛 ” if:
for all large enough n,

𝑇 𝑛 is at most some constant multiple of 𝑔 𝑛 .

Here, “constant” means “some number
that doesn’t depend on n.”

pronounced “big-oh of …” or sometimes “oh of …”

Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

for large enough n,
𝑇 𝑛 is at most some constant

multiple of 𝑔 𝑛 .

Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

for large enough n,
𝑇 𝑛 is at most some constant

multiple of 𝑔 𝑛 .

Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

n0=4

for large enough n,
𝑇 𝑛 is at most some constant

multiple of 𝑔 𝑛 .

Formal definition of O(…)

• Let 𝑇 𝑛 , 𝑔 𝑛 be functions of positive integers.
• Think of 𝑇 𝑛 as a runtime: positive and increasing in n.

• Formally,
𝑇 𝑛 = 𝑂 𝑔 𝑛

⟺
∃𝑐 > 0, 𝑛; 𝑠. 𝑡. ∀𝑛 ≥ 𝑛;,

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)“There exists”

“For all”

“such that”

“If and only if”

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

(c=3)

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

n0=4

(c=3)

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

Example
2𝑛! + 10 = 𝑂 𝑛!

Formally:
• Choose c = 3
• Choose n0 = 4
• Then:

∀𝑛 ≥ 4,

2𝑛) + 10 ≤ 3 ⋅ 𝑛)T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

n0=4

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

Same example
2𝑛! + 10 = 𝑂 𝑛!

Formally:
• Choose c = 7
• Choose n0 = 2
• Then:

∀𝑛 ≥ 2,

2𝑛) + 10 ≤ 7 ⋅ 𝑛)T(n) = 2n2 + 10

g(n) = n2

7g(n) = 7n2

n0=2

There is not a

“correct” choice

of c and n0

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

O(…) is an upper bound:
𝑛 = 𝑂(𝑛2)

• Choose c = 1
• Choose n0 = 1
• Then

∀𝑛 ≥ 1,

𝑛 ≤ 𝑛.

g(n) = n2

T(n) = n

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

Ω(…) means a lower bound

• We say “𝑇 𝑛 is Ω 𝑔 𝑛 ” if, for large enough n,
𝑇 𝑛 is at least as big as a constant multiple of 𝑔 𝑛 .

• Formally,
𝑇 𝑛 = Ω 𝑔 𝑛

⟺
∃𝑐 > 0 , 𝑛$ 𝑠. 𝑡. ∀𝑛 ≥ 𝑛$,

𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛

Switched these!!

Example
𝑛 log3 𝑛 = Ω 3𝑛

• Choose c = 1/3
• Choose n0 = 2
• Then

𝑇 𝑛 = Ω 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛

∀𝑛 ≥ 2,
3𝑛
3
≤ 𝑛 log) 𝑛

g(n)/3 = n

T(n) =
 nlog(n)g(n) = 3n

Θ(…) means both!

•We say “𝑇 𝑛 is Θ 𝑔(𝑛) ” iff both:

𝑇 𝑛 = 𝑂 𝑔 𝑛

and

𝑇 𝑛 = Ω 𝑔 𝑛

Non-Example:
𝑛3is not O 𝑛
• Proof by contradiction:
• Suppose that 𝑛. = 𝑂 𝑛 .
• Then there is some positive c and n0 so that:

∀𝑛 ≥ 𝑛;, 𝑛. ≤ 𝑐 ⋅ 𝑛
• Divide both sides by n:

∀𝑛 ≥ 𝑛;, 𝑛 ≤ 𝑐
• That’s not true!!! What about max(𝑛;, 𝑐 + 1)?
• Then 𝑛 ≥ 𝑛I, but 𝑛 > 𝑐.

• Contradiction!

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

Take-away from examples

• To prove T(n) = O(g(n)), you have to come up with c
and n0 so that the definition is satisfied.

• To prove T(n) is NOT O(g(n)), one way is proof by
contradiction:
• Suppose (to get a contradiction) that someone gives you

a c and an n0 so that the definition is satisfied.
• Show that this someone must be lying to you by deriving

a contradiction.

Another example: polynomials

• Say 𝑝 𝑛 = 𝑎<𝑛< + 𝑎<=>𝑛<=> +⋯+ 𝑎>𝑛 + 𝑎;
is a polynomial of degree 𝑘 ≥ 1 and 𝑎< > 0.

• Then:
1. 𝑝 𝑛 = 𝑂 𝑛J

2. 𝑝 𝑛 is not 𝑂 𝑛JK/

• See the notes/references for a proof.

Siggi the Studious Stork

Try to prove it
yourself first!

More examples

• n3 + 3n = O(n3 – n2)
• n3 + 3n = Ω(n3 – n2)
• n3 + 3n = Θ(n3 – n2)

• 3n is NOT O(2n)
• log2(n) = Ω(ln(n))
• log2(n) = Θ(2loglog(n))

Siggi the Studious Stork

Work through these
on your own! Also

look at the examples
in the reading!

Brainteaser

• Are there functions f, g so that NEITHER f = O(g)
nor f = Ω(g)?

Ollie the Over-achieving Ostrich

Recap: Asymptotic Notation
• This makes both Plucky and Lucky happy.
• Plucky the Pedantic Penguin is happy because

there is a precise definition.
• Lucky the Lackadaisical Lemur is happy because we

don’t have to pay close attention to all those pesky
constant factors.

• But we should always be careful not to abuse it.

• In the course, (almost) every algorithm we see
will be practical, without needing to take 𝑛 ≥
𝑛; = 2>;;;;;;;.

This is my
happy face!

Back to Insertion Sort

1. Does it work?
2. Is it fast?

Insertion Sort: running time

• Operation count was:

• The running time is 𝑂 𝑛.

Seems
plausible

Go back to the pseudocode
and convince yourself of this!

• 2𝑛! − 𝑛 − 1 variable assignments
• 2𝑛! − 𝑛 − 1 increments/decrements
• 2𝑛! − 4𝑛 + 1 comparisons
• …

What have we learned?

InsertionSort is an algorithm that
correctly sorts an arbitrary n-element

array in time 𝑂 𝑛! .

Can we do better?

The Plan

• InsertionSort recap
• Worst-case analyisis
• Back to InsertionSort: Does it work?

• Asymptotic Analysis
• Back to InsertionSort: Is it fast?

• MergeSort
• Does it work?
• Is it fast?

Can we do better?

• MergeSort: a divide-and-conquer approach
• Recall:

Big problem

Smaller
problem

Smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Recurse!

Divide and
Conquer:

Recurse!

1

MergeSort

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Recursive magic!Recursive magic!

Code for the MERGE step is given in the
Lecture2 IPython notebook, or the notes

MERGE!
How would
you do this

in-place?

Ollie the over-achieving Ostrich

MergeSort Pseudocode

• n = length(A)
• if n ≤ 1:
• return A

• L = MERGESORT(A[0 : n/2])
• R = MERGESORT(A[n/2 : n])
• return MERGE(L, R)

MERGESORT(A):

If A has length 1,
It is already sorted!

Sort the right half

Sort the left half

Merge the two halves

See Lecture 2 IPython notebook for MergeSort Python Code.

What actually happens?
First, recursively break up the array all the way down to the
base cases

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7
This array of
length 1 is
sorted!

Then, merge them all back up!

64 3 8 1 5 2 7

1 2 5 73 4 6 8

1 2 3 4 5 6 7 8

Merge!Merge!Merge!Merge!

Merge! Merge!

Merge!

4 3 8 1 5 2 76
A bunch of sorted lists of length 1 (in the order of the original sequence).

Sorted sequence!

Two questions

1. Does this work?
2. Is it fast?

Empirically:
1. Seems to work.
2. Seems fast.

IPython notebook says…

It works
• Yet another job for…

Proof By
Induction!

Work this out! There’s a skipped slide
with an outline to help you get started.

It’s fast

CLAIM:
MergeSort runs in time 𝑂 𝑛 log 𝑛

• Proof coming soon.
• But first, how does this compare to InsertionSort?
• Recall InsertionSort ran in time O 𝑛) .

Assume that n is a power of 2
for convenience.

𝑂(𝑛 log 𝑛) vs. 𝑂(𝑛")?

Quick log refresher
• Def: log(n) is the number so that 2"#$ % = 𝑛.
• Intuition: log(n) is how many times you need to divide n

by 2 in order to get down to 1.

32, 16, 8, 4, 2, 1 log(32) = 5

All logarithms in this course are base 2

64, 32, 16, 8, 4, 2, 1 log(64) = 6

log(128) = 7
log(256) = 8
log(512) = 9
….
log(# particles in the universe) < 280

Halve 5 times

Halve 6 times

⇒

⇒

• log(n) grows
very slowly!

Aside:

• log 𝑛 grows much more slowly than 𝑛
• 𝑛 log 𝑛 grows much more slowly than 𝑛.

𝑂(𝑛 log 𝑛) vs. 𝑂(𝑛")?

Punchline: A running time of O(n log n) is a
lot better than O(n2)!

Now let’s prove the claim

CLAIM:
MergeSort runs in time 𝑂 𝑛 log 𝑛

Assume that n is a power of 2
for convenience.

Let’s prove the claim
Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…Focus on just one of
these sub-problems

Level 0

Level 1

Level t

Level log(n)

2t subproblems
at level t.

How much work in this sub-problem?

n/2t

n/2t+1 n/2t+1

Time spent MERGE-ing
the two subproblems

Time spent within the
two sub-problems

+

How much work in this sub-problem?

k

k/2 k/2

Time spent MERGE-ing
the two subproblems

Time spent within the
two sub-problems

+

Let k=n/2t…

1

How long does it
take to MERGE?

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Code for the MERGE
step is given in the
Lecture2 notebook.

MERGE!

k

k/2 k/2

k/2k/2

k

How long does it
take to MERGE?

Code for the MERGE
step is given in the
Lecture2 notebook.

k

k/2 k/2

Think-Pair-Share Terrapins (if time)

How long does it take to run MERGE on
two lists of size k/2?

Answer: It takes time O(k), since we just walk across the list once.

Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

k

k/2 k/2

There are O(k) operations
done at this node.

Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

How many operations are done at this level of the
tree? (Just MERGE-ing subproblems).

How about at this level of the tree?
(between both n/2-sized problems)

This level?

This level?

k

k/2 k/2

There are O(k) operations
done at this node.

…

Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

Level
Amount of work

at this level

0

problems

1
2

t

log(n)

1

2

4

2t

n

Size of
each

problem

n

n/2

n/4

n/2t

1

O(n)

O(n)

O(n)

O(n)

O(n)

…

Work this out yourself!

Total runtime…

• O(n) steps per level, at every level

• log(n) + 1 levels

•O(n log(n)) total!

That was the claim!

What have we learned?

• MergeSort correctly sorts a list of n integers in time
O(n log(n)).
• That’s (asymptotically) better than InsertionSort!

The Plan

• InsertionSort recap
• Worst-case analyisis
• Back to InsertionSort: Does it work?

• Asymptotic Analysis
• Back to InsertionSort: Is it fast?

• MergeSort
• Does it work?
• Is it fast?

Wrap-Up

Recap

• InsertionSort runs in time O(n2)
• MergeSort is a divide-and-conquer algorithm that runs

in time O(n log(n))

• How do we show an algorithm is correct?
• Today, we did it by induction

• How do we measure the runtime of an algorithm?
• Worst-case analysis
• Asymptotic analysis

• How do we analyze the running time of a recursive
algorithm?
• One way is to draw a recursion tree.

Next time
• A more systematic approach to analyzing the

runtime of recursive algorithms.

Before next time

• Pre-lecture Exercise:
• A few recurrence relations (see website)

