
Lecture 2
Asymptotic Notation, 

Worst-Case Analysis, and MergeSort



Announcements

• Please (continue to) send OAE letters to cs161-
win2223-staff@lists.stanford.edu

mailto:cs161-win2223-staff@lists.stanford.edu
mailto:cs161-win2223-staff@lists.stanford.edu


161A (ACE)

The goal of ACE is to increase confidence and content knowledge through 
interactive small group sessions and additional academic resources. In 
CS161 ACE, you can expect an additional weekly section, ACE-specific 
office hours, and an extra community of people learning together and 
supporting each other.

• Fri 9:30am - 11:20am in 100-101K (taught by Lauren Saue-Fletcher)
• Short application (link on course website too): 

https://docs.google.com/forms/d/e/1FAIpQLSfz4xHbWbH_LZmn8PlQ9X
B24OLynzTdmC5YvQVC6s04R0C6dA/viewform

• A fair amount of space for more students!
• Final application deadline: Friday, January 13th at 5:00pm (sooner is 

better – there is a quick meeting this Friday morning)
• Questions? Send an email to laurensauefletcher@stanford.edu

https://docs.google.com/forms/d/e/1FAIpQLSfz4xHbWbH_LZmn8PlQ9XB24OLynzTdmC5YvQVC6s04R0C6dA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfz4xHbWbH_LZmn8PlQ9XB24OLynzTdmC5YvQVC6s04R0C6dA/viewform
mailto:laurensauefletcher@stanford.edu


Homework!
• HW1 will be released today (Wednesday).
• It is due the next Wednesday, 11:59pm (in one week), on 

Gradescope. As a reminder, HW1, HW2, and HW3 are solo 
submissions only.
• Homework comes in two parts:

• Exercises: 
• More straightforward.
• Try to do them on your own.

• Problems: 
• Less straightforward.
• Try them on your own first, but then collaborate!  

• See the website for guidelines on homework:
• Collaboration + late day policy (in the “Policies” tab)
• Best practices (in the “Resources” tab)
• Example homework (in the “Resources” tab)
• LaTeX help (in the “Resources” tab)



Office Hours and Sections
• Office hours calendar is on the course website.
• (under "Staff / Office Hours”)
• Office hours start today

• Sections have been scheduled.
• See course website
• One will be recorded (and put on Canvas)
• Don’t need to formally enroll in sections, just show up!



Huang basement



End of announcements!

Links on Canvas



Last time

• Algorithms are awesome!
• Our motivating questions: 

• Does it work?
• Is it fast?
• Can I do better? 

• Grade-school integer multiplication
• Not-so-rigorous analysis
• Divide-and-conquer
• Karatsuba integer multiplication

Philosophy

Technical content
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Integer Multiplication

1234567895931413
4563823520395533x



Big-Oh Notation

• We say that Grade-School Multiplication
“runs in time O(n2)”

• Formal definition later today!
• Informally, big-Oh notation tells us how the running 

time scales with the size of the input.



Why is big-Oh notation meaningful?

≈ .0063𝑛!

≈ "!.#

#$
+ 100

Wizard’s algorithm



Let n get bigger…

≈ .0063𝑛!

≈ "!.#

#$
+ 100
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Wizard’s algorithm



Take-away

• An algorithm that runs in time O(n1.6) is “better” 
than an algorithm that runs in time O(n2).

• So the question is…



Can we do better?

𝑛

𝑛!

Can we multiply n-digit integers 
faster than 𝑂 𝑛) ?



Let’s dig into our algorithmic toolkit…



Divide and conquer
Break problem up into smaller (easier) sub-problems

Big problem

Smaller 
problem

Smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem



Divide and conquer for multiplication

1234 × 5678

Break up an integer:

1234 = 12×100 + 34

= ( 12×100 + 34 ) ( 56×100 + 78 )
= ( 12 × 56 )10000 + ( 34 × 56  +  12 × 78 )100 + ( 34 × 78 )

1 2 3 4

One 4-digit multiply Four 2-digit multiplies



More generally

1 2 3 4

One n-digit multiply Four (n/2)-digit multiplies

Break up an n-digit integer:

Suppose n is even



Divide and conquer algorithm
not very precisely…

• If n=1:
• Return xy

• Write 𝑥 = 𝑎 10
!
" + 𝑏

• Write 𝑦 = 𝑐 10
!
" + 𝑑

• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑:
• ac = Multiply(a, c), etc..

• Add them up to get 𝑥𝑦:
• xy = ac 10n + (ad + bc) 10n/2 + bd

Multiply(𝑥, 𝑦):

a, b, c, d are 
n/2-digit numbers

Base case: I’ve memorized my 
1-digit multiplication tables…

x,y are n-digit numbers (Assume n is a power of 2…)

Siggi the Studious Stork

Make this pseudocode 
more detailed! How 

should we handle odd n?  
How should we implement 

“multiplication by 10n”?

See the Lecture 1 Python notebook for actual code!



Question

• We saw that 4-digit multiplication problem broke 
up into four 2-digit multiplication problems

• If you recurse on those 2-digit multiplication 
problems, how many 1-digit multiplications do you 
end up with in total?

1234 × 5678



Recursion Tree

4 digits

2 digits

1 
digit

2 digits 2 digits 2 digits

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

16 one-digit 
multiplies!



What is the running time?

• Better or worse than the grade school algorithm?

• How do we answer this question?
1. Try it.
2. Try to understand it analytically.



1. Try it.
Check out the Lecture 1 IPython Notebook

Conjectures about 
running time?

Maybe one implementation 
is slicker than the other?

Maybe if we were to run it 
to n=10000, things would 

look different.

Doesn’t look too good 
but hard to tell…

Something funny is happening at powers of 2…



2. Try to understand the running 
time analytically 

• We saw that multiplying 4-digit numbers resulted in 16 
one-digit multiplications.

• How about multiplying 8-digit numbers?

• What do you think about n-digit numbers?



Recursion Tree

8 digits

4 digits

2 
digit

4 digits 4 digits 4 digits

2 
digit

2 
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digit

2 
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2 
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64 one-digit 
multiplies!
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2. Try to understand the running 
time analytically 

Claim: 

The running time of this algorithm is 
AT LEAST n2 operations.



There are n2 1-digit problems
1 problem 
of size n

4 problems 
of size n/2

4t problems 
of size n/2t

____ problems 
of size 1

…

• If you cut n in half 
log2(𝑛) times,           
you get down to 1.

• So, at level
t = log2(𝑛)

we get…

4)*+" , =
𝑛)*+" - = 𝑛2
problems of size 1.

…

Note: this is just a 
cartoon – I’m not 
going to draw all 4t

circles!



That’s a bit disappointing
All that work and still (at least) 𝑂 𝑛. …

𝑛

𝑛!

But wait!!



Divide and conquer can actually make progress

• Karatsuba figured out how to do this better!

• If only we could recurse on three things instead of four…

Need these three things



Karatsuba integer multiplication

• Recursively compute these THREE things:
• ac 
• bd
• (a+b)(c+d) (a+b)(c+d) = ac + bd + bc + ad

Subtract these off
get this

• Assemble the product:



How would this work?

• If n=1:
• Return xy

• Write 𝑥 = 𝑎 10
!
" + 𝑏 and 𝑦 = 𝑐 10

!
" + 𝑑

• ac = Multiply(a, c)
• bd = Multiply(b, d)
• z = Multiply(a+b, c+d)
• xy = ac 10n + (z – ac - bd) 10n/2 + bd
• Return xy

Multiply(𝑥, 𝑦):

a, b, c, d are 
n/2-digit numbers

x,y are n-digit numbers
(Still not super precise, see IPython
notebook for detailed code.   Also, 

still assume n is a power of 2.)



What’s the running time?
1 problem 
of size n

3 problems 
of size n/2

3t problems 
of size n/2t

____ problems 
of size 1

…

• If you cut n in half 
log2(𝑛) times, you get 
down to 1.

• So at level
t = log2(𝑛)

we get…

3*+,! - = 𝑛*+,! . ≈ 𝑛/.0
problems of size 1.

𝑛!.#
We aren’t accounting for 

the work at the higher 
levels!  But we’ll see next 
lecture that this turns out 

to be okay.

Note: this is just a 
cartoon – I’m not 
going to draw all 3t

circles!

…



This is much better!

𝑛!

𝑛#.'

𝑛



Can we do better?
• Toom-Cook (1963): instead of breaking into three n/2-

sized problems, break into five n/3-sized problems. 
• Runs in time O 𝑛/.102

• Schönhage–Strassen (1971):
• Runs in time O(𝑛 log 𝑛 log log 𝑛 )

• Furer (2007)
• Runs in time 𝑛 log 𝑛 ⋅ 23(*+,∗ - )

• Harvey and van der Hoeven (2019)
• Runs in time O(𝑛 log 𝑛 )

Ollie the Over-achieving Ostrich

Try to figure out how to break 
up an n-sized problem into five 
n/3-sized problems!  (Hint: start 
with nine n/3-sized problems).

Siggi the Studious Stork

Given that you can break an 
n-sized problem into five 

n/3-sized problems, where 
does the 1.465 come from?

[This is just for fun, you 
don’t need to know 

these algorithms!]



Sorting

• We are going to ask:
• Does it work?
• Is it fast?

• We’ll start to see how to answer these by looking at 
some examples of sorting algorithms.
• InsertionSort
• MergeSort

SortingHatSort not discussed



The Plan

• Sorting!
• Worst-case analysis 
• InsertionSort: Does it work?

• Asymptotic Analysis
• InsertionSort: Is it fast?

• MergeSort
• Does it work?
• Is it fast?



Sorting

• Important primitive
• For today, we’ll pretend all elements are distinct.

6 4 3 8 1 5 2 7

1 2 3 4 5 6 7 8

Length of the list is n



Pre-lecture exercise:

What was the 
mystery sort 
algorithm?

1. MergeSort
2. QuickSort
3. InsertionSort
4. BogoSort

def mysteryAlgorithmTwo(A):    
for i in range(1,len(A)):  

current = A[i]
j = i-1
while j >= 0 and A[j] > current:

A[j+1] = A[j]
j -= 1

A[j+1] = current

def mysteryAlgorithmOne(A):    
B = [None for i in range(len(A))]
for x in A:    

for i in range(len(B)):            
if B[i] == None or B[i] > x:                    

j = len(B)-1                
while j > i:

B[j] = B[j-1]                       
j -= 1

B[i] = x                
break 

return B



What was the 
mystery sort 
algorithm?

1. MergeSort
2. QuickSort
3. InsertionSort
4. BogoSort

def mysteryAlgorithmTwo(A):    
for i in range(1,len(A)):  

current = A[i]
j = i-1
while j >= 0 and A[j] > current:

A[j+1] = A[j]
j -= 1

A[j+1] = current

def mysteryAlgorithmOne(A):    
B = [None for i in range(len(A))]
for x in A:    

for i in range(len(B)):            
if B[i] == None or B[i] > x:                    

j = len(B)-1                
while j > i:

B[j] = B[j-1]                       
j -= 1

B[i] = x                
break 

return B

Pre-lecture exercise:



InsertionSort
example

46 3 8 5

64 3 8 5

64 3 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 6 8 5

43 5 6 8

Start by moving A[1] toward 
the beginning of the list until 
you find something smaller 
(or can’t go any further):

Then move A[2]:

Then move A[3]:

Then move A[4]:

Then we are done!

46 3 8 5



Insertion Sort

1. Does it work?
2. Is it fast?

Plucky the 
Pedantic Penguin

What does that 
mean???



The Plan

• InsertionSort recap
• Worst-case Analysis 
• Back to InsertionSort: Does it work?

• Asymptotic Analysis
• Back to InsertionSort: Is it fast?

• MergeSort
• Does it work?
• Is it fast?



Claim: InsertionSort “works”

• “Proof:” It just worked in this example:

46 3 8 5
64 3 8 5

64 3 8 5
43 6 8 5

43 6 8 5
43 6 8 5

43 6 8 5
43 5 6 8

46 3 8 5

Sorted!



Claim: InsertionSort “works”

• “Proof:” I did it on a bunch of random lists and it 
always worked:



What does it mean to “work”?

• Is it enough to be correct on only one input?
• Is it enough to be correct on most inputs?

• In this class, we will use worst-case analysis: 
• An algorithm must be correct on all possible inputs.
• The running time of an algorithm is the worst possible 

running time over all inputs.



Worst-case analysis

• Pros: very strong guarantee
• Cons: very strong guarantee

Algorithm 
designer

Algorithm:
Do the thing
Do the stuff
Return the answer

Here is my algorithm!

Here is an input!
(Which I designed 
to be terrible for 
your algorithm!)

Think of it like a game:



Insertion Sort

1. Does it work?
2. Is it fast?

• Okay, so it’s pretty obvious that it works.

• HOWEVER!  In the future it won’t be so 
obvious, so let’s take some time now to 
see how we would prove this rigorously.



Why does this work?

• Say you have a sorted list,                                  ,  and 

another element         .

• Insert         right after the largest thing that’s still 

smaller than        .  (Aka, right after        ). 

• Then you get a sorted list:

43 6 8
5

5

43 6 85

5 4



So just use this logic at every step.
The first element, [6], makes up a sorted list.

So correctly inserting 4 into the list [6] means 
that [4,6] becomes a sorted list.

The first two elements, [4,6], make up a 
sorted list.

The first three elements, [3,4,6], make up a 
sorted list.

So correctly inserting 3 into the list [4,6] means 
that [3,4,6] becomes a sorted list.

So correctly inserting 8 into the list [3,4,6] means 
that [3,4,6,8] becomes a sorted list.

The first four elements, [3,4,6,8], make up a 
sorted list.

46 3 8 54 3 8 5

64 3 8 5

64 3 8 5

4 63 8 5

43 6 8 5

43 6 85

43 6 8 5

43 6 8 5
So correctly inserting 5 into the list [3,4,6,8] 
means that [3,4,5,6,8] becomes a sorted list.

YAY WE ARE DONE!



This sounds like a job for…

Proof By 
Induction!



The notes contain the details!

• See website!



Outline of a proof by induction
• Inductive Hypothesis:  

• A[:i+1] is sorted at the end of the ith iteration (of the outer loop).
• Base case (i=0):  

• A[:1] is sorted at the end of the 0’th iteration. ✓
• Inductive step:  

• For any 0 < k < n, if the inductive hypothesis holds for i=k-1, then it 
holds for i=k.

• Aka, if A[:k] is sorted at step k-1, then A[:k+1] is sorted at step k
• Conclusion: 

• The inductive hypothesis holds for i = 0, 1, …, n-1.
• In particular, it holds for i=n-1.
• At the end of the n-1’st iteration (aka, at the end of the algorithm), 
A[:n] = A is sorted.  

• That’s what we wanted! ✓

This logic
(see notes for details)

The first two elements, [4,6], make up a 
sorted list.

So correctly inserting 3 into the list [4,6] means 
that [3,4,6] becomes a sorted list.

64 3 8 5

4 63 8 5 This was 
iteration i=2.

Let A be a list of length n 



Aside: proofs by induction

• We’re going to see/do/skip over a lot of them.
• I’m assuming you’re comfortable with them from CS103.
• When you assume…

• If that went by too fast and was confusing:
• GO TO SECTION 
• GO TO SECTION 
• Notes
• References
• Office hours

Make sure you really understand the 
argument on the previous slide!  Check 

out the notes for a more formal write-up 
and go to the sections for an overview of 

what we are looking for in proofs by 
induction.

Siggi the Studious Stork



What have we learned?

• In this class we will use worst-case analysis:
• We assume that a “bad guy” produces a worst-case 

input for our algorithm, and we measure performance 
on that worst-case input.

• With this definition, InsertionSort “works”
• Proof by induction!



The Plan

• InsertionSort recap
• Worst-case Analysis 
• Back to InsertionSort: Does it work?

• Asymptotic Analysis
• Back to InsertionSort: Is it fast?

• MergeSort
• Does it work?
• Is it fast?



How fast is InsertionSort?

• This fast:



Issues with this answer?

• The “same” algorithm can be 
slower or faster depending 
on  the implementations.
• It can also be slower or 

faster depending on the 
hardware that we run it on.

With this answer, 
“running time” isn’t 
even well-defined!



How fast is InsertionSort?

• Let’s count the number of operations!

def InsertionSort(A):    
for i in range(1,len(A)):  

current = A[i]
j = i-1
while j >= 0 and A[j] > current:

A[j+1] = A[j]
j -= 1

A[j+1] = current

By my count*…
• 2𝑛! − 𝑛 − 1 variable assignments
• 2𝑛! − 𝑛 − 1 increments/decrements
• 2𝑛! − 4𝑛 + 1 comparisons
• … *Do not pay attention to these formulas, they do not matter.  

Also not valid for bug bounty (good citizenship) points.



Issues with this answer?

• It’s very tedious!
• In order to use this to 

understand running 
time, I need to know 
how long each operation 
takes, plus a whole 
bunch of other stuff…

Counting individual 
operations is a lot of work and 

doesn’t seem very helpful!

Lucky the lackadaisical lemur

def InsertionSort(A):    
for i in range(1,len(A)):  

current = A[i]
j = i-1
while j >= 0 and A[j] > current:

A[j+1] = A[j]
j -= 1

A[j+1] = current



In this class we will use…

• Big-Oh notation!
• Gives us a meaningful way to talk about the 

running time of an algorithm, independent of 
programming language, computing platform, etc., 
without having to count all the operations.



Main idea:

Focus on how the runtime scales with n (the input size). 

Number of operations Asymptotic Running 
Time

!
!"
⋅ 𝑛# + 100 𝑂 𝑛#

0.063 ⋅ 𝑛# − .5 𝑛 + 12.7 𝑂 𝑛#

100 ⋅ 𝑛!.% − 10!"""" 𝑛 𝑂 𝑛!.%

11 ⋅ 𝑛 log 𝑛 + 1 𝑂 𝑛 log 𝑛

We say this algorithm is 
“asymptotically faster” 

than the others.

(Heuristically: only pay attention to the 
largest function of n that appears.)Some examples…

Pre-lecture exercise:



Why is this a good idea?

• Suppose the running time of an algorithm is:

𝑇 𝑛 = 10𝑛. + 3𝑛 + 7 ms

This constant factor of 10 
depends a lot on my 

computing platform… These lower-order 
terms don’t really 

matter as n gets large.

We’re just left with the n2 term!  
That’s what’s meaningful.  



Pros and Cons of Asymptotic Analysis

• Abstracts away from 
hardware- and language-
specific issues.
• Makes algorithm analysis 

much more tractable.
• Allows us to meaningfully 

compare how algorithms will 
perform on large inputs.

• Only makes sense if n is 
large (compared to the 
constant factors).

Pros: Cons:

1000000000 n 
is “better” than n2 ?!?!



Informal definition for O(…)

• Let 𝑇 𝑛 , 𝑔 𝑛 be functions of positive integers.
• Think of 𝑇 𝑛 as  a runtime: positive and increasing in n.

• We say “𝑇 𝑛 is 𝑂 𝑔 𝑛 ” if: 
for all large enough n,  

𝑇 𝑛 is at most some constant multiple of 𝑔 𝑛 .

Here, “constant” means “some number 
that doesn’t depend on n.”

pronounced “big-oh of …” or sometimes “oh of …”



Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

for large enough n,  
𝑇 𝑛 is at most some constant 

multiple of 𝑔 𝑛 .



Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

for large enough n,  
𝑇 𝑛 is at most some constant 

multiple of 𝑔 𝑛 .



Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

n0=4

for large enough n,  
𝑇 𝑛 is at most some constant 

multiple of 𝑔 𝑛 .



Formal definition of O(…)

• Let 𝑇 𝑛 , 𝑔 𝑛 be functions of positive integers.
• Think of 𝑇 𝑛 as  a runtime: positive and increasing in n.

• Formally,
𝑇 𝑛 = 𝑂 𝑔 𝑛

⟺
∃𝑐 > 0, 𝑛; 𝑠. 𝑡. ∀𝑛 ≥ 𝑛;,

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)“There exists”

“For all”

“such that”

“If and only if”



𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2



Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

(c=3)

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)



Example
2𝑛! + 10 = 𝑂 𝑛!

T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

n0=4

(c=3)

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)



Example
2𝑛! + 10 = 𝑂 𝑛!

Formally:
• Choose c = 3
• Choose n0 = 4
• Then:

∀𝑛 ≥ 4,

2𝑛) + 10 ≤ 3 ⋅ 𝑛)T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

n0=4

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)



Same example
2𝑛! + 10 = 𝑂 𝑛!

Formally:
• Choose c = 7
• Choose n0 = 2
• Then:

∀𝑛 ≥ 2,

2𝑛) + 10 ≤ 7 ⋅ 𝑛)T(n) = 2n2 + 10

g(n) = n2

7g(n) = 7n2

n0=2

There is not a 

“correct” choice 

of c and n0

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)



O(…) is an upper bound:
𝑛 = 𝑂(𝑛2)

• Choose c = 1
• Choose n0 = 1
• Then

∀𝑛 ≥ 1,

𝑛 ≤ 𝑛.

g(n) = n2

T(n) = n

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)



Ω(…) means a lower bound

• We say “𝑇 𝑛 is Ω 𝑔 𝑛 ” if, for large enough n, 
𝑇 𝑛 is at least as big as a constant multiple of 𝑔 𝑛 .

• Formally,
𝑇 𝑛 = Ω 𝑔 𝑛

⟺
∃𝑐 > 0 , 𝑛$ 𝑠. 𝑡. ∀𝑛 ≥ 𝑛$,

𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛

Switched these!!



Example
𝑛 log3 𝑛 = Ω 3𝑛

• Choose c = 1/3
• Choose n0 = 2
• Then

𝑇 𝑛 = Ω 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑐 ⋅ 𝑔 𝑛 ≤ 𝑇 𝑛

∀𝑛 ≥ 2,
3𝑛
3
≤ 𝑛 log) 𝑛

g(n)/3 = n

T(n) =
 nlog(n)g(n) = 3n



Θ(…) means both!

•We say “𝑇 𝑛 is Θ 𝑔(𝑛) ” iff both:

𝑇 𝑛 = 𝑂 𝑔 𝑛

and 

𝑇 𝑛 = Ω 𝑔 𝑛



Non-Example:
𝑛3is not O 𝑛
• Proof by contradiction:  
• Suppose that 𝑛. = 𝑂 𝑛 .
• Then there is some positive c and n0 so that:

∀𝑛 ≥ 𝑛;, 𝑛. ≤ 𝑐 ⋅ 𝑛
• Divide both sides by n:

∀𝑛 ≥ 𝑛;, 𝑛 ≤ 𝑐
• That’s not true!!!  What about max(𝑛;, 𝑐 + 1)?
• Then 𝑛 ≥ 𝑛I, but 𝑛 > 𝑐.

• Contradiction!

𝑇 𝑛 = 𝑂 𝑔 𝑛
⟺

∃𝑐 > 0, 𝑛" 𝑠. 𝑡. ∀𝑛 ≥ 𝑛",

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)



Take-away from examples

• To prove T(n) = O(g(n)), you have to come up with c 
and n0 so that the definition is satisfied.

• To prove T(n) is NOT O(g(n)), one way is proof by 
contradiction:
• Suppose (to get a contradiction) that someone gives you 

a c and an n0 so that the definition is satisfied.
• Show that this someone must be lying to you by deriving 

a contradiction.



Another example: polynomials

• Say 𝑝 𝑛 = 𝑎<𝑛< + 𝑎<=>𝑛<=> +⋯+ 𝑎>𝑛 + 𝑎;
is a polynomial of degree 𝑘 ≥ 1 and 𝑎< > 0.

• Then: 
1. 𝑝 𝑛 = 𝑂 𝑛J

2. 𝑝 𝑛 is not 𝑂 𝑛JK/

• See the notes/references for a proof.

Siggi the Studious Stork

Try to prove it 
yourself first!



More examples

• n3 + 3n = O(n3 – n2)
• n3 + 3n = Ω(n3 – n2)
• n3 + 3n = Θ(n3 – n2)

• 3n is NOT O(2n)
• log2(n) = Ω(ln(n))
• log2(n) = Θ( 2loglog(n) )

Siggi the Studious Stork

Work through these 
on your own!  Also 

look at the examples 
in the reading!



Brainteaser

• Are there functions f, g so that NEITHER f = O(g) 
nor f = Ω(g)?

Ollie the Over-achieving Ostrich



Recap: Asymptotic Notation
• This makes both Plucky and Lucky happy.
• Plucky the Pedantic Penguin is happy because 

there is a precise definition.
• Lucky the Lackadaisical Lemur is happy because we 

don’t have to pay close attention to all those pesky 
constant factors.

• But we should always be careful not to abuse it.

• In the course, (almost) every algorithm we see 
will be practical, without needing to take 𝑛 ≥
𝑛; = 2>;;;;;;;.

This is my 
happy face!



Back to Insertion Sort

1. Does it work?
2. Is it fast?



Insertion Sort: running time

• Operation count was:

• The running time is 𝑂 𝑛.

Seems 
plausible

Go back to the pseudocode 
and convince yourself of this!

• 2𝑛! − 𝑛 − 1 variable assignments
• 2𝑛! − 𝑛 − 1 increments/decrements
• 2𝑛! − 4𝑛 + 1 comparisons
• …



What have we learned?

InsertionSort is an algorithm that 
correctly sorts an arbitrary n-element 

array in time 𝑂 𝑛! .

Can we do better?



The Plan

• InsertionSort recap
• Worst-case analyisis
• Back to InsertionSort: Does it work?

• Asymptotic Analysis
• Back to InsertionSort: Is it fast?

• MergeSort
• Does it work?
• Is it fast?



Can we do better?

• MergeSort: a divide-and-conquer approach
• Recall:

Big problem

Smaller 
problem

Smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Recurse!

Divide and 
Conquer:

Recurse!



1

MergeSort

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Recursive magic!Recursive magic!

Code for the MERGE step is given in the 
Lecture2 IPython notebook, or the notes

MERGE!
How would 
you do this 

in-place?

Ollie the over-achieving Ostrich



MergeSort Pseudocode

• n = length(A)
• if n ≤ 1:
• return A

• L = MERGESORT(A[ 0 : n/2])
• R = MERGESORT(A[n/2 : n ])
• return MERGE(L, R)

MERGESORT(A):

If A has length 1,
It is already sorted!

Sort the right half

Sort the left half

Merge the two halves

See Lecture 2 IPython notebook for MergeSort Python Code.



What actually happens?
First, recursively break up the array all the way down to the 
base cases

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7
This array of 
length 1 is 
sorted!



Then, merge them all back up!

64 3 8 1 5 2 7

1 2 5 73 4 6 8

1 2 3 4 5 6 7 8

Merge!Merge!Merge!Merge!

Merge! Merge!

Merge!

4 3 8 1 5 2 76
A bunch of sorted lists of length 1 (in the order of the original sequence).

Sorted sequence!



Two questions

1. Does this work?
2. Is it fast?

Empirically: 
1. Seems to work. 
2. Seems fast.

IPython notebook says…



It works
• Yet another job for…

Proof By 
Induction!

Work this out!  There’s a skipped slide 
with an outline to help you get started.



It’s fast

CLAIM:
MergeSort runs in time 𝑂 𝑛 log 𝑛

• Proof coming soon.
• But first, how does this compare to InsertionSort?
• Recall InsertionSort ran in time O 𝑛) .

Assume that n is a power of 2 
for convenience.



𝑂(𝑛 log 𝑛 ) vs. 𝑂(𝑛")? 



Quick log refresher
• Def: log(n) is the number so that 2"#$ % = 𝑛.
• Intuition: log(n) is how many times you need to divide n 

by 2 in order to get down to 1.

32, 16, 8, 4, 2, 1 log(32) = 5

All logarithms in this course are base 2

64, 32, 16, 8, 4, 2, 1 log(64) = 6

log(128) = 7
log(256) = 8 
log(512) = 9
….
log(# particles in the universe) < 280

Halve 5 times

Halve 6 times

⇒

⇒

• log(n) grows 
very slowly!

Aside:



• log 𝑛 grows much more slowly than 𝑛
• 𝑛 log 𝑛 grows much more slowly than 𝑛.

𝑂(𝑛 log 𝑛) vs. 𝑂(𝑛")? 

Punchline: A running time of O(n log n) is a 
lot better than O(n2)!



Now let’s prove the claim

CLAIM:
MergeSort runs in time 𝑂 𝑛 log 𝑛

Assume that n is a power of 2 
for convenience.



Let’s prove the claim
Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…Focus on just one of 
these sub-problems

Level 0

Level 1

Level t

Level log(n)

2t subproblems 
at level t.



How much work in this sub-problem?

n/2t

n/2t+1 n/2t+1

Time spent MERGE-ing
the two subproblems

Time spent within the 
two sub-problems

+



How much work in this sub-problem?

k

k/2 k/2

Time spent MERGE-ing
the two subproblems

Time spent within the 
two sub-problems

+

Let k=n/2t…



1

How long does it 
take to MERGE?

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Code for the MERGE
step is given in the 
Lecture2 notebook.

MERGE!

k

k/2 k/2

k/2k/2

k



How long does it 
take to MERGE?

Code for the MERGE
step is given in the 
Lecture2 notebook.

k

k/2 k/2

Think-Pair-Share Terrapins (if time)

How long does it take to run MERGE on 
two lists of size k/2?

Answer: It takes time O(k), since we just walk across the list once.



Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

k

k/2 k/2

There are O(k) operations 
done at this node.  



Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

How many operations are done at this level of the 
tree?  (Just MERGE-ing subproblems).

How about at this level of the tree?
(between both n/2-sized problems)

This level?

This level?

k

k/2 k/2

There are O(k) operations 
done at this node.  



…

Recursion tree

Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

Level
Amount of work 

at this level

0

# 
problems

1
2

t

log(n)

1

2

4

2t

n

Size of 
each

problem

n

n/2

n/4

n/2t

1

O(n)

O(n)

O(n)

O(n)

O(n)

…

Work this out yourself!



Total runtime…

• O(n) steps per level, at every level

• log(n) + 1 levels

•O( n log(n) ) total!

That was the claim!



What have we learned?

• MergeSort correctly sorts a list of n integers in time 
O(n log(n) ).
• That’s (asymptotically) better than InsertionSort!



The Plan

• InsertionSort recap
• Worst-case analyisis
• Back to InsertionSort: Does it work?

• Asymptotic Analysis
• Back to InsertionSort: Is it fast?

• MergeSort
• Does it work?
• Is it fast?

Wrap-Up



Recap

• InsertionSort runs in time O(n2)
• MergeSort is a divide-and-conquer algorithm that runs 

in time O(n log(n))

• How do we show an algorithm is correct?
• Today, we did it by induction

• How do we measure the runtime of an algorithm?
• Worst-case analysis
• Asymptotic analysis

• How do we analyze the running time of a recursive 
algorithm?
• One way is to draw a recursion tree.



Next time
• A more systematic approach to analyzing the 

runtime of recursive algorithms.

Before next time

• Pre-lecture Exercise:
• A few recurrence relations (see website)


