
CS 161 (Stanford, Winter 2023) Lecture 3
Adapted From Virginia Williams’ lecture notes. Additional credits: Albert Chen, Juliana
Cook, Ofir Geri, Sam Kim, Gregory Valiant, Aviad Rubinstein.
Please direct all typos and mistakes to Moses Charikar and Nima Anari.

Solving Recurrences and the Selection Problem

1 Introduction

Today we will continue to talk about divide and conquer, and go into detail on how to solve
recurrences.

Recall that divide and conquer algorithms divide up a problem into several subproblems that
are the smaller instances of the same problem, solve those problems recursively, and combine
the solutions to the subproblems into a solution for the original problem. When a subproblem
size is small enough, the subproblem is solved straightforwardly. In the past lectures, we have
seen two examples of divide-and-conquer algorithms: MergeSort and Karatsuba’s algorithm
for integer multiplication.

The running time of divide and conquer algorithms can be naturally expressed in terms of
the running time of smaller inputs. Today we will show two techniques for solving these
recurrences. The first is called the master method to solve these recurrences. This method
can only be used when the size of all the subproblems is the same (as was the case in the
examples). We will also see a surprising algorithm that does not fall into this category, and
how to analyze its running time using another method, the substitution method.

2 Recurrences

Stated more technically, a divide and conquer algorithm takes an input of size n and does
some operations all running in O(f (n)) time for some f and runs itself recursively on k ≥ 1
instances of size n1, n2, ..., nk , where ni < n for all i . To talk about what the runtime of
such an algorithm is, we can write a runtime recurrence. Recurrences are functions defined
in terms of themselves with smaller arguments, as well as one or more base cases. We can
define a recurrence more formally as follows:

Let T (n) be the worst-case runtime on instances of size n. If we have k recursive calls on a
given step (of sizes ni) and each step takes time O(f (n)), then we can write the runtime as

T (n) ≤ c · f (n) +
k∑
i=1

T (ni) for some constant c , where our base case is T (c ′) ≤ O(1).

Now let’s try finding recurrences for some of the divide-and-conquer algorithms we have seen.

1

2.1 Integer Multiplication

Recall the integer multiplication problem, where we are given two n-digit integers x and y and
output the product of the two numbers. The long multiplication/grade school algorithm runs
in O(n2) time. In lecture 1 we saw two divide-and-conquer algorithms for solving this problem.
In both of them, we divided each of x and y into two (n/2)-digit numbers in the following
way: x = 10

n
2a+ b and y = 10

n
2 c + d . Then we compute xy = ac · 10n+10 n2 (ad + bc)+ bd .

In the first algorithm, which we call Mult1, we simply computed the four products ac, ad, bc, bd .
Karatsuba found that since we only need the sum of ad and bc , we can save one multiplication
operation by noting that ad + bc = (a + b)(c + d)− ac − bd .

Algorithm 1: Mult1(x, y)

Split x and y into x = 10
n
2a + b and y = 10

n
2 c + d

z1 = Mult1(a, c)
z2 = Mult1(a, d)
z3 = Mult1(b, c)
z4 = Mult1(b, d)
return z1 · 10n + 10

n
2 (z2 + z3) + z4

Algorithm 2: Karatsuba(x, y)

Split x = 10
n
2a + b and y = 10

n
2 c + d

z1 = Karatsuba(a, c)
z2 = Karatsuba(b, d)
z3 = Karatsuba(a + b, c + d)
z4 = z3 − z1 − z2
return z1 · 10n + z4 · 10

n
2 + z2

We now express the running time of these two algorithms using recurrences. Adding two n
digit integers is an O(n) operation, since for each position we add at most three digits: the
ith digit from each number and possibly a carry from the additions due to the (i −1)th digits.

Let T1(n) and T2(n) denote the worst-case runtime of Mult1 and Karatsuba, respectively, on
inputs of size n. Then, the runtime of Mult1 can be written as the recurrence

T1(n) = 4T1

(n
2

)
+O(n),

and Karatsuba’s runtime can be written as the recurrence

T2(n) = 3T2

(n
2

)
+O(n).

Note that the constant “hidden" in the O(n) term in T2 may be greater than in T1, but for
the asymptotic analysis of the running time, these constants are not important.

2

2.2 MergeSort

Consider the basic steps for algorithm MergeSort(A), where |A| = n.

1. If |A| = 1, return A.

2. Split A into A1, A2 of size n
2
.

3. Run MergeSort(A1) and MergeSort(A2).

4. Merge(A1, A2)

Steps 2 and 4 each take time O(n). In step 3, we are splitting the work up into two
subproblems of size n

2
. Therefore, we get the following recurrence:

T (n) = 2T
(n
2

)
+O(n).

In the previous lecture, we saw that the running time of MergeSort is O(n log n). In this
lecture, we will show how to derive this using the master method.

3 The Master Method

We now introduce a general method, called the master method, for solving recurrences where
all the subproblems are of the same size. We assume that the input to the master method is
a recurrence of the form

T (n) = a · T
(n
b

)
+O(nd).

In this recurrence, there are three constants:

• a is the number of subproblems that we create from one problem and must be an integer
greater than or equal to 1.

• b is the factor by which the input size shrinks (it must hold that b > 1).

• d is the exponent of n in the time it takes to generate the subproblems and combine
their solutions.

There is another constant “hidden” in the big-O notation. We will introduce it in the proof
and see that it does not affect the result.

In addition, we need to specify the “base case" of the recurrence, that is, the runtime when
the input gets small enough. For a sufficiently small n (say, when n = 1), the worst-case
runtime of the algorithm is constant, namely, T (n) = O(1).

We now state the master theorem, which is used to solve the recurrences.

3

Theorem 1 (Master Theorem). Let T (n) = a · T
(
n
b

)
+ O(nd) be a recurrence where a ≥

1, b > 1. Then,

T (n) =

O(nd log n) if a = bd

O(nd) if a < bd

O(nlogb a) if a > bd

Remark 2. In some cases, the recurrence may involve subproblems of size ⌈n
b
⌉, ⌊n

b
⌋, or n

b
+1.

The master theorem holds for these cases as well. However, we do not prove that here.

Before we turn to the proof of the master theorem, we show how it can be used to solve the
recurrences we saw earlier.

• Mult1: T (n) = 4T
(
n
2

)
+O(n).

The parameters are a = 4, b = 2, d = 1, so a > bd , hence T (n) = O(nlog2 4) = O(n2).

• Karatsuba: T (n) = 3T
(
n
2

)
+O(n).

The parameters are a = 3, b = 2, d = 1, so a > bd , hence T (n) = O(nlog2 3) = O(n1.59).

• MergeSort: T (n) = 2T
(
n
2

)
+O(n).

The parameters are a = 2, b = 2, d = 1, so a = bd , hence T (n) = O(n log n).

• Another example: T (n) = 2T
(
n
2

)
+O(n2).

The parameters are a = 2, b = 2, d = 2, so a < bd , hence T (n) = O(n2).

We see that for integer multiplication, Karatsuba is the clear winner!

Proof of the Master Theorem. Let T (n) = a · T
(
n
b

)
+ O(nd) be the recurrence we solve

using the master theorem. For simplicity, we assume that T (1) = 1 and that n is a power
of b. From the definition of big-O, we know that there is a constant c > 0 such that for
sufficiently large n, T (n) ≤ a · T

(
n
b

)
+ c · nd . The proof of the master theorem will use the

recursion tree in a similar way to our analysis of the running time of MergeSort.

4

Level 0: n

vvlll
lll

lll
lll

lll
lll

}}zz
zz
zz
zz
z

 A
AA

AA
AA

AA
A

((PP
PPP

PPP
PPP

PPP
PP

Level 1: n/b

vvlll
lll

lll
lll

lll
ll

}}zz
zz
zz
zz

�� !!D
DD

DD
DD

D
n/b . . . n/b

Level 2: n/b2 n/b2 · · · n/b2 · · ·

vvlll
lll

lll
lll

lll
lll

lll

} }zz
zz
zz
zz
zz
zz

�� !!D
DD

DD
DD

DD
DD

D
...

Level logb n: 1 1 · · · 1 · · ·

The recursion tree drawn above has logb n + 1 level. We analyze the amount of work done
at each level and then sum over all levels to get the total running time. Consider level j . At
level j , there are aj subproblems. Each of these subproblems is of size n

bj
, and will take time

at most c
(
n
bj

)d
to solve (this only considers the work done at level j and does not include the

time it takes to solve the subsubproblems). We conclude that the total work done at level j
is at most aj · c

(
n
bj

)d
= cnd

(
a
bd

)j
.

Writing the running time this way shows us where the terms a and bd come from: a is the
branching factor and measures how the number of subproblems grows at each level, and bd

is the shrinkage in the work needed (per subproblem).

Summing over all levels, we get that the total running time is at most cnd
∑logbn
j=0

(
a
bd

)j
. We

now consider each of the three cases.

1. a = bd . In this case, the amount of work done at each level is the same: cnd . Since
there are logb n+1 levels, the total running time is at most (logb n+1)cnd = O(nd log n).

2. a < bd . In this case, a
bd
< 1, hence,

∑logb n
j=0

(
a
bd

)j ≤∑∞
j=0

(
a
bd

)j
= 1
1− a

bd
= bd

bd−a . Hence,

the total running time is cnd · bd
bd−a = O(n

d).

Intuitively, in this case, the shrinkage in the work needed per subproblem is more signifi-
cant, so the work done in the highest level “dominates" the other factors in the running
time.

3. a > bd . In this case,
∑logb n
j=0

(
a
bd

)j
=
(a
bd
)
logb n+1−1
a

bd
−1 . Since a, b, c, d are constants, we

get that the total work done is O
(
nd ·

(
a
bd

)logb n) = O (
nd · alogb n

bd logb n

)
= O

(
nd · nlogb a

nd

)
=

O(nlogb a).

Intuitively, here the branching factor is more significant, so the total work done at each
level increases, and the leaves of the tree “dominate".

5

We conclude with a more general version of the master theorem.

Theorem 3 (Master Theorem - more general version). Let T (n) = a · T
(
n
b

)
+ f (n) be a

recurrence where a ≥ 1, b > 1. Then,

• If f (n) = O
(
nlogb(a)−ϵ

)
for some constant ϵ > 0, T (n) = Θ

(
nlogb(a)

)
.

• If f (n) = Θ
(
nlogb(a)

)
, T (n) = Θ

(
nlogb a log n

)
.

• If f (n) = Ω
(
nlogb(a)+ϵ

)
for some constant ϵ > 0 and if af (n/b) ≤ cf (n) for some c < 1

and all sufficiently large n, then T (n) = Θ(f (n)).

4 The Substitution Method

Recurrence trees can get quite messy when attempting to solve complex recurrences. With
the substitution method, we can guess what the runtime is, plug it into the recurrence and
see if it works out.

Given a recurrence T (n) ≤ f (n)+
k∑
i=1

T (ni), we can guess that the solution to the recurrence

is

T (n) ≤
{
d · g(n0) if n = n0
d · g(n) if n > n0

for some constants d > 0 and n0 ≥ 1 and a function g(n). We are essentially guessing that
T (n) ≤ O(g(n)).

For our base case, we must show that you can pick some d such that T (n0) ≤ d · g(n0). For
example, this can follow from our standard assumption that T (1) = 1.

Next, we assume that our guess is correct for everything smaller than n, meaning T (n′) ≤
d · g(n′) for all n′ < n. Using the inductive hypothesis, we prove the guess for n. We must
pick some d such that

f (n) +

k∑
i=1

d · g(ni) ≤ d · g(n),whenever n ≥ n0.

Typically the way this works is that you first try to prove the inductive step starting from the
inductive hypothesis, and then from this obtain a condition that d needs to obey. Using this
condition you try to figure out the base case, i.e., what n0 should be.

5 Selection

The selection problem is to find the kth smallest number in an array A.

6

Input: array A of n numbers, and an integer k ∈ {1, · · · , n}.

Output: the k-th smallest number in A.

One approach is to sort the numbers in ascending order, and then return the kth number in
the sorted list. This takes O(n log n) time since it takes O(n log n) time for the sort (e.g. by
MergeSort) and O(1) time to return kth number.

5.1 Minimum Element

As always, we ask if we can do better (i.e. faster in big-O terms). In the special case where
k = 1, selection is the problem of finding the minimum element. We can do this in O(n)
time by scanning through the array and keeping track of the minimum element so far. If the
current element is smaller than the minimum so far, we update the minimum.

Algorithm 3: SelectMin(A)

m ←∞
n ← length(A)
for i = 1 to n do

if A(i) < m then
m ← A(i)

return m

This is the best running time we could hope for.

Definition 4. A deterministic algorithm is one which, given a fixed input, always performs
the same operations (as opposed to an algorithm that uses randomness).

Claim 5. Any deterministic algorithm for finding the minimum has runtime Ω(n).

Proof of Claim 5. Intuitively, the claim holds because any algorithm for the minimum must
look at all the elements, each of which could be the minimum. Suppose a correct deterministic
algorithm does not look at A(i) for some i . Then the output cannot depend on A(i), so the
algorithm returns the same value whether A(i) is the minimum element or the maximum
element. Therefore the algorithm is not always correct, which is a contradiction. So there is
no sublinear deterministic algorithm for finding the minimum.

So for k = 1, we have an algorithm that achieves the best running time possible. By similar
reasoning, this lower bound of Ω(n) applies to the general selection problem. So ideally we
would like to have a linear-time selection algorithm in the general case.

7

6 Linear-Time Selection

A linear-time selection algorithm does exist. Before showing the linear time selection algo-
rithm, it’s helpful to build some intuition on how to approach the problem. The high-level
idea will be to try to do a Binary Search over an unsorted input. At each step, we hope to
divide the input into two parts, the subset of smaller elements of A, and the subset of larger
elements of A. We will then determine whether the kth smallest element lies in the first part
(with the “smaller” elements) or the part with larger elements, and recurse on exactly one of
those two parts.

How do we decide how to partition the array into these two pieces? Suppose we have a
black-box algorithm ChoosePivot that chooses some element in the array A, and we use this
pivot to define the two sets–any A[i] less than the pivot is in the set of “smaller” values, and
any A[i] greater than the pivot is in the other part. We will figure out precisely how to specify
this subroutine ChoosePivot a bit later, after specifying the high-level algorithm structure.
For clarity, we’ll assume all elements are distinct from now on, but the idea generalizes easily.
Let n be the size of the array and assume we are trying to find the k th element.

Algorithm 4: Select(A, n, k)

if n = 1 then
return A[1]

p ← ChoosePivot(A, n)
A< ← {A(i) | A(i) < p}
A> ← {A(i) | A(i) > p}
if |A<| = k − 1 then

return p

else if |A<| > k − 1 then
return Select(A<, |A<|, k)

else if |A<| < k − 1 then
return Select(A>, |A>|, k − |A<| − 1)

At each iteration, we use the element p to partition the array into two parts: all elements
smaller than the pivot and all elements larger than the pivot, which we denote A< and A>,
respectively.

Depending on the size of the resulting sub-arrays, the runtime can be different. For example,
if one of these sub-arrays is of size n− 1, at each iteration, we only decreased the size of the
problem by 1, resulting in total running time O(n2). If the array is split into two equal parts,
then the size of the problem at iteration reduces by half, resulting in a linear time solution.
(We assume ChoosePivot runs in O(n).)

Claim 6. If the pivot p is chosen to be the minimum or maximum element, then Select runs
in Θ(n2) time.

8

Proof. At each iteration, the number of elements decreases by 1. Since running ChoosePivot
and creating A< and A> takes linear time, the recurrence for the runtime is T (n) = T (n −
1) + Θ(n). Expanding this,

T (n) ≤ c1n + c1(n − 1) + c1(n − 2) + ...+ c1 = c1n(n + 1)/2

and
T (n) ≥ c2n + c2(n − 1) + c2(n − 2) + ...+ c2 = c2n(n + 1)/2.

We conclude that T (n) = Θ(n2).

Claim 7. If the pivot p is chosen to be the median element, then Select runs in O(n) time.

Proof. Intuitively, the running time is linear since we remove half of the elements from con-
sideration in each iteration. Formally, each recursive call is made on inputs of half the size,
namely, T (n) ≤ T (n/2) + cn. Expanding this, the runtime is T (n) ≤ cn + cn/2 + cn/4 +
...+ c ≤ 2cn, which is O(n).

So how do we design ChoosePivot that chooses a pivot in linear time? In the following, we
describe three ideas.

6.1 Idea #1: Choose a random pivot

As we saw earlier, depending on the pivot chosen, the worst-case runtime can be O(n2) if we
are unlucky in the choice of the pivot at every iteration. As you might expect, it is extremely
unlikely to be this unlucky, and one can prove that the expected runtime is O(n) provided
the pivot is chosen uniformly at random from the set of elements of A. In practice, this
randomized algorithm is what is implemented, and the hidden constant in the O(n) runtime
is very small.

6.2 Idea #2: Choose a pivot that creates the most “balanced" split

Consider ChoosePivot that returns the pivot that creates the most “balanced" split, which
would be the median of the array. However, this is exactly the selection problem we are trying
to solve, with k = n/2! As long as we do not know how to find the median in linear time, we
cannot use this procedure as ChoosePivot.

6.3 Idea #3: Find a pivot "close enough" to the median

Given a linear-time median algorithm, we can solve the selection problem in linear time (and
vice versa). Although ideally, we would want to find the median, notice that as far as
correctness goes, there was nothing special about partitioning around the median. We could
use this same idea of partitioning and recursing on a smaller problem even if we partition
around an arbitrary element. To get a good runtime, however, we need to guarantee that
the subproblems get smaller quickly. In 1973, Blum, Floyd, Pratt, Rivest, and Tarjan came

9

up with the Median of Medians algorithm. It is similar to the previous algorithm, but rather
than partitioning around the exact median, uses a surrogate “median of medians". We update
ChoosePivot accordingly.

Algorithm 5: ChoosePivot(A, n)

Split A into g = ⌈n/5⌉ groups p1, . . . , pg
for i = 1 to g do
pi ← MergeSort(pi)

C ← {median of pi | i = 1, . . . , g}
p ← Select(C, g, g/2)
return p

What is this algorithm doing? First, it divides A into segments of size 5. Within each group,
it finds the median by first sorting the elements with MergeSort. Recall that MergeSort sorts
in O(n log n) time. However, since each group has a constant number of elements, it takes
constant time to sort. Then it makes a recursive call to Select to find the median of C, the
median of medians. Intuitively, by partitioning around this value, we can find something close
to the true median for partitioning, yet is ‘easier’ to compute, because it is the median of
g = ⌈n/5⌉ elements rather than n. The last part is as before: once we have our pivot element
p, we split the array and recurse on the proper subproblem, or halt if we found our answer.

We have devised a slightly complicated method to determine which element to partition
around, but the algorithm remains correct for the same reasons as before. So what is its
running time? As before, we’re going to show this by examining the size of the recursive
subproblems. As it turns out, by taking the median of medians approach, we have a guarantee
on how much smaller the problem gets each iteration. The guarantee is good enough to
achieve O(n) runtime.

6.3.1 Running Time

Lemma 8. |A<| ≤ 7n/10 + 5 and |A>| ≤ 7n/10 + 5.

Proof of Lemma 8. p is the median of p1, · · · , pg. Because p is the median of g = ⌈n/5⌉
elements, the medians of ⌈g/2⌉ − 1 groups pi are smaller than p. If p is larger than a group
median, it is larger than at least three elements in that group (the median and the smaller
two numbers). This applies to all groups except the remainder group, which might have fewer
than 5 elements. Accounting for the remainder group, p is greater than at least 3 ·(⌈g/2⌉−2)
elements of A. By symmetry, p is less than at least the same number of elements.

10

Now,
|A>| = # of elements greater than p

≤ (n − 1)− 3 · (⌈g/2⌉ − 2)
= n + 5− 3 · ⌈g/2⌉
≤ n − 3n/10 + 5
= 7n/10 + 5.

(1)

By symmetry, |A<| ≤ 7n/10 + 5 as well.

Intuitively, we know that 60% of half of the groups are less than the pivot, which is 30% of
the total number of elements, n. Therefore, at most 70% of the elements are greater than
the pivot. Hence, |A>| ≈ 7n/10. We can make the same argument for |A<|.

The recursive call used to find the median of medians has an input of size ⌈n/5⌉ ≤ n/5 + 1.
The other work in the algorithm takes linear time: constant time on each of ⌈n/5⌉ groups
for MergeSort (linear time total for that part), O(n) time scanning A to make A< and A>.

Thus, we can write the full recurrence for the runtime,

T (n) ≤

{
c1n + T (n/5 + 1) + T (7n/10 + 5) if n > 5

c2 if n ≤ 5.

How do we prove that T (n) = O(n)? The master theorem does not apply here. Instead, we
will prove this using the substitution method.

6.4 Solving the Recurrence of Select using the Substitution Method

For simplicity, we consider the recurrence T (n) ≤ T (n/5) + T (7n/10) + cn instead of the
exact recurrence of Select.

To prove that T (n) = O(n), we guess:

T (n) ≤
{
dn0 if n = n0
d · n if n > n0

For the base case, we pick n0 = 1 and use the standard assumption that T (1) = 1 ≤ d . For
the inductive hypothesis, we assume that our guess is correct for any n < k , and we prove
our guess for k . That is, consider d such that for all n0 ≤ n < k , T (n) ≤ dn.

To prove for n = k , we solve the following equation:

T (k) ≤ T (k/5) + T (7k/10) + ck ≤ dk/5 + 7dk/10 + ck ≤ dk

9/10d + c ≤ d

c ≤ d/10

d ≥ 10c

11

Therefore, we can choose d = max(1, 10c), which is a constant factor. The induction is
completed. By the definition of big-O, the recurrence runs in O(n) time.

6.5 Issues when using the Substitution Method

Now we will try out an example where our guess is incorrect. Consider the recurrence T (n) =
2T

(
n
2

)
+ n (similar to MergeSort). We will guess that the algorithm is linear.

T (n) ≤
{
dn0 if n = n0
d · n if n > n0

We try the inductive step. We try to pick some d such that for all n ≥ n0,

n +

k∑
i=1

dg(ni) ≤ d · g(n)

n + 2 · d ·
n

2
≤ dn

n(1 + d) ≤ dn

n + dn ≤ dn

n < 0.

However, the above can never be true, and there is no choice of d that works! Thus our
guess was incorrect.

This time the guess was incorrect since MergeSort takes superlinear time. Sometimes, how-
ever, the guess can be asymptotically correct but the induction might not work out. Consider
for instance T (n) ≤ 2T (n/2) + 1.

We know that the runtime is O(n) so let’s try to prove it with the substitution method. Let’s
guess that T (n) ≤ cn for all n ≥ n0.

First, we do the induction step: We assume that T (n/2) ≤ cn/2 and consider T (n). We
want that 2 · cn/2 + 1 ≤ cn, that is, cn + 1 ≤ cn. However, this is impossible.

This doesn’t mean that T (n) is not O(n), but in this case, we chose the wrong linear function.
We could guess instead that T (n) ≤ cn−1. Now for the induction we get 2 ·(cn/2−1)+1 =
cn − 1 which is true for all c . We can then choose the base case T (1) = 1.

12

	Introduction
	Recurrences
	Integer Multiplication
	MergeSort

	The Master Method
	The Substitution Method
	Selection
	Minimum Element

	Linear-Time Selection
	Idea #1: Choose a random pivot
	Idea #2: Choose a pivot that creates the most ``balanced" split
	Idea #3: Find a pivot "close enough" to the median
	Running Time

	Solving the Recurrence of Select using the Substitution Method
	Issues when using the Substitution Method

