
Lecture 4
Median and Selection



Announcements

• TBA



Last Time: 
Solving Recurrence Relations

• A recurrence relation expresses 𝑇(𝑛) in terms of 
𝑇(less than 𝑛)

• For example, 𝑇 𝑛 = 2 ⋅ 𝑇 !
"
+ 11 ⋅ 𝑛

• Two methods of solution:
1. Master theorem (aka, generalized “tree method”)
2. Substitution method (aka, guess and check)



The Master Theorem
• Suppose 𝑎 ≥ 1, 𝑏 > 1, and 𝑑 are constants (that don’t 

depend on n).

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 !
#
+ 𝑂 𝑛$ .  Then

A powerful 
theorem it is…

Jedi master Yoda

Three parameters:
a : number of subproblems
b : factor by which input size shrinks
d : need to do nd work to create all the 
subproblems and combine their solutions. 



The Substitution Method

• Step 1: Guess what the answer is.
• Step 2: Prove by induction that your guess is correct.
• Step 3: Profit.



The plan for today

1. More practice with the Substitution Method.
2. k-SELECT problem
3. k-SELECT solution
4. Return of the Substitution Method.



A fun recurrence relation

• 𝑇 𝑛 ≤ 𝑇 !
%
+ 𝑇 &!

'(
+ 𝑛 for 𝑛 > 10.

• Base case: 𝑇 𝑛 = 1 when 1 ≤ 𝑛 ≤ 10

Apply here, the 
Master Theorem does 

NOT.  

Jedi master Yoda



The Substitution Method

• Step 1: Guess what the answer is.
• Step 2: Prove by induction that your guess is correct.
• Step 3: Profit.



Step 1: guess the answer

• Trying to work backwards 
gets gross fast…
• We can also just try it out.

• (see Python notebook)  

• Let’s guess 𝑂(𝑛) and try to 
prove it.  

𝑇 𝑛 ≤ 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑛 for 𝑛 > 10.
Base case: 𝑇 𝑛 = 1 when 1 ≤ 𝑛 ≤ 10

Looks p
retty lin

ear?



Aside: Warning!
• It may be tempting to try to prove this with 

the inductive hypothesis “𝑇(𝑛) = 𝑂(𝑛)”
• But that doesn’t make sense!
• Formally, that’s the same as saying:
• Inductive Hypothesis for n: 
• There is some 𝑛! > 0 and some 𝐶 > 0 so that, 

for all 𝑛 ≥ 𝑛!, 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑛.

• Instead, we should pick 𝐶 first…

The IH is supposed 
to hold for a 
specific n.

But now we are letting n 
be anything big enough!



Step 2: prove our guess is right

• Inductive Hypothesis: 𝑇 𝑛 ≤ 𝑪𝑛
• Base case: 1 = 𝑇 𝑛 ≤ 𝑪𝑛 for all 1 ≤ n ≤ 10
• Inductive step:  

• Let k > 10. Assume that the IH holds for all n so that 1 ≤ 𝑛 < 𝑘.
• 𝑇 𝑘 ≤ 𝑘 + 𝑇 !

"
+ 𝑇 #!

$%
≤ 𝑘 + 𝑪 ⋅ !

"
+ 𝑪 ⋅ #!

$%
= 𝑘 + 𝑪

"
𝑘 + #𝑪

$%
𝑘

≤ 𝑪𝑘 ??
• (aka, want to show that IH holds for n=k).

• Conclusion:
• There is some 𝑪 so that for all 𝑛 ≥ 1, 𝑇 𝑛 ≤ 𝑪𝑛
• By the definition of big-Oh, T(n) = O(n).

We don’t know 
what C should be 

yet!  Let’s go 
through the proof 
leaving it as “C” 
and then figure 

out what works…

Whatever we 
choose C to be, it 
should have C≥1

Let’s solve for C and make this true!
C = 10 works. 

(write out)

𝑇 𝑛 ≤ 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑛 for 𝑛 > 10.
Base case: 𝑇 𝑛 = 1 when 1 ≤ 𝑛 ≤ 10



Step 3: Profit

• Inductive Hypothesis: 𝑇 𝑛 ≤ 𝟏𝟎𝑛.
• Base case: 1 = 𝑇(𝑛) ≤ 𝟏𝟎𝑛 for all 1 ≤ n ≤ 10
• Inductive step:

• Let k > 10. Assume that the IH holds for all n so that 1 ≤ 𝑛 < 𝑘.
• 𝑇 𝑘 ≤ 𝑘 + 𝑇 !

"
+ 𝑇 #!

$%
≤ 𝑘 + 𝟏𝟎 ⋅ !

"
+ 𝟏𝟎 ⋅ #!

$%
= 𝑘 + 2𝑘 + 7𝑘 = 𝟏𝟎𝑘

• Thus, IH holds for n=k.
• Conclusion:

• For all 𝑛 ≥ 1, 𝑇 𝑛 ≤ 𝟏𝟎𝑛
• Then, T(n) = O(n), using the definition of big-Oh with 𝑛% = 1, 𝑐 = 10.

Theorem: 𝑇 𝑛 = 𝑂 𝑛
Proof:

𝑇 𝑛 ≤ 𝑛 + 𝑇
𝑛
5 + 𝑇

7𝑛
10 for 𝑛 > 10.

Base case: 𝑇 𝑛 = 1 when 1 ≤ 𝑛 ≤ 10
(Aka, pretend we knew this all along).



What have we learned?
• The substitution method can work when the 

master theorem doesn’t.
• For example, with different-sized sub-problems.

• Step 1: generate a guess
• Throw the kitchen sink at it.

• Step 2: try to prove that your guess is correct
• You may have to leave some constants unspecified till 

the end – then see what they need to be for the proof to 
work!!

• Step 3: profit
• Pretend you didn’t do Steps 1 and 2 and write down a 

nice proof.



The Plan

1. More practice with the Substitution Method.
2. k-SELECT problem
3. k-SELECT solution
4. Return of the Substitution Method.



The k-SELECT problem
from your pre-lecture exercise

• SELECT(A, k):
• Return the k’th smallest element of A.

A is an array of size n, k is in {1,…,n}

7 4 3 8 1 5 9 14

• SELECT(A, 1) = MIN(A)
• SELECT(A, n/2) = MEDIAN(A)
• SELECT(A, n) = MAX(A)

• SELECT(A, 1) = 1
• SELECT(A, 2) = 3
• SELECT(A, 3) = 4
• SELECT(A, 8) = 14

Being sloppy about 
floors and ceilings!

For today, assume 
all arrays have 

distinct elements.

Note that the definition of Select is 1-indexed…



On your pre-lecture exercise…

An O(nlog(n))-time algorithm
• SELECT(A, k):
• A = MergeSort(A)
• return A[k-1]

• Running time is O(n log(n)).
• So that’s the benchmark….

Can we do better?
We’re hoping to get O(n)

It’s k-1 and not k since my 
pseudocode is 0-indexed and 

the problem is 1-indexed…

Show that you can’t 
do better than O(n).



Goal: An O(n)-time algorithm

• On your pre-lecture exercise: SELECT(A, 1).
• (aka, MIN(A))

• MIN(A):
• ret = ∞
• For i=0, ..., n-1:
• If A[i] < ret:
• ret = A[i]

• Return ret

• Time O(n).  Yay!

This stuff is O(1)
This loop runs O(n) times



Also on your pre-lecture exercise

How about SELECT(A,2)?
• SELECT2(A):
• ret = ∞
• minSoFar = ∞
• For i=0, .., n-1:

• If A[i] < ret and A[i] < minSoFar:
• ret = minSoFar
• minSoFar = A[i]

• Else if A[i] < ret and A[i] >= minSoFar:
• ret = A[i]

• Return ret

(The actual algorithm here is 
not very important because 

this won’t end up being a 
very good idea…)

Still O(n)
SO FAR SO GOOD.



SELECT(A, n/2) aka MEDIAN(A)?

• MEDIAN(A):
• ret = ∞
• minSoFar = ∞
• secondMinSoFar = ∞
• thirdMinSoFar = ∞
• fourthMinSoFar = ∞
• ….

• This is not a good idea for large k (like n/2 or n).
• Basically, this is just going to turn into something like 

INSERTIONSORT…and that was O(n2).



The Plan

1. More practice with the Substitution Method.
2. k-SELECT problem
3. k-SELECT solution
4. Return of the Substitution Method.



Idea: divide and conquer!

9 8 3 6 1 4 2Say we want to 
find SELECT(A, k)

First, pick a “pivot.”
We’ll see how to do 
this later.

How about 
this pivot?

Next, partition the array into 
“bigger than 6” or “less than 6”

9 8 3 6 1 4 2

L = array with things 
smaller than A[pivot]

R = array with things 
larger than A[pivot]

This PARTITION step takes 
time O(n).  (Notice that 

we don’t sort each half).



Idea: divide and conquer!

6Say we want to 
find SELECT(A, k)

First, pick a “pivot.”
We’ll see how to do 
this later.

How about 
this pivot?

Next, partition the array into 
“bigger than 6” or “less than 6”

9 83

6

1 4 2
L = array with things 
smaller than A[pivot]

R = array with things 
larger than A[pivot]

This PARTITION step takes 
time O(n).  (Notice that 

we don’t sort each half).



Idea continued…

9 83

6

1 4 2 pivot

L = array with things 
smaller than A[pivot]

R = array with things 
larger than A[pivot]

Say we want to 
find SELECT(A, k)

• If k = 5 = len(L) + 1:
• We should return A[pivot]

• If k < 5: 
• We should return SELECT(L, k)

• If k > 5:
• We should return SELECT(R, k – 5)

This suggests a 
recursive algorithm

(still need to figure out 
how to pick the pivot…)



Pseudocode
• getPivot(A)returns some pivot for us.

• How?? We’ll see later…

• Partition(A,p) splits up A into L, A[p], R. 
• See Lecture 4 Python notebook for code

• Select(A,k):
• If len(A) <= 50:
• A = MergeSort(A)
• Return A[k-1]  

• p = getPivot(A)
• L, pivotVal, R = Partition(A,p)
• if len(L) == k-1:
• return pivotVal

• Else if len(L) > k-1:
• return Select(L, k)

• Else if len(L) < k-1:
• return Select(R, k – len(L) – 1)

Base Case: If  len(A) = O(1), 
then any sorting algorithm 

runs in time O(1).

Case 1: We got lucky and found 
exactly the k’th smallest value!

Case 2: The k’th smallest value 
is in the first part of the list

Case 3: The k’th smallest value 
is in the second part of the list



Does it work?
• Check out the Python notebook for Lecture 4, 

which implements this with a bunch of different 
pivot-selection methods.
• Seems to work!

• Check out the lecture notes for a rigorous proof 
based on induction that this works, with any pivot-
choosing mechanism.
• It provably works!
• Also, this is a good example of proving that a recursive 

algorithm is correct.

Convince yourself that 
Select is correct!



What is the running time?
Assuming we pick the pivot in time O(n)…

• 𝑇 𝑛 =
𝑇 𝐥𝐞𝐧 𝐋 + 𝑂 𝑛 𝐥𝐞𝐧 𝐋 > 𝑘 − 1
𝑇 𝐥𝐞𝐧 𝐑 + 𝑂 𝑛 𝐥𝐞𝐧 𝐋 < 𝑘 − 1
𝑂 𝑛 𝐥𝐞𝐧 𝐋 = 𝑘 − 1

• What are len(L) and len(R)?
• That depends on how we pick the pivot…

What would be a “good” pivot?
What would be a “bad” pivot?

Think-Share Terrapins
The best way would be to always pick the pivot so that 
len(L) = k-1.  But say we don’t have control over k, just 
over how we pick the pivot.

Think: one minute
Share: (wait) one minute



The ideal pivot

• We split the input exactly in half:
• len(L) = len(R) = (n-1)/2

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 !
"
+ 𝑂 𝑛# .  Then

𝑇 𝑛 =
O 𝑛# log 𝑛 if 𝑎 = 𝑏#

O 𝑛# if 𝑎 < 𝑏#

O 𝑛$%&! ' if 𝑎 > 𝑏#

What happens in that case?

In case it’s helpful…

Think: one minute
Share: (wait) one minute



The ideal pivot

• We split the input exactly in half:
• len(L) = len(R) = (n-1)/2

• Let’s pretend that’s the case and  use the 
Master Theorem!

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 !
"
+ 𝑂 𝑛# .  Then

Apply here, the Master 
Theorem does NOT.  

Making unsubstantiated 
assumptions about 

problem sizes, we are.

Jedi master Yoda
• 𝑇 𝑛 ≤ 𝑇 =

>
+ 𝑂(𝑛)

• So a = 1, b = 2, d = 1

• 𝑇 𝑛 ≤ 𝑂 𝑛? = 𝑂 𝑛
𝑇 𝑛 =

O 𝑛# log 𝑛 if 𝑎 = 𝑏#

O 𝑛# if 𝑎 < 𝑏#

O 𝑛$%&! ' if 𝑎 > 𝑏#That would be great!



The worst pivot
• Say our choice of pivot doesn’t depend on A.
• A bad guy who knows what pivots we will choose

gets to come up with A.  

pivot

12 3



The distinction matters!

See Lecture 4 Python notebook for code that generated this picture.

This one is a random 
pivot, so it splits the 
array about in half.

Looks fast!

For this one I chose the worst 
possible pivot.  Looks like O(n2).

MergeSort-based solution



How do we pick a good pivot?

• In practice, there is often no bad guy.  In 
that case, just pick a random pivot and it 
works really well!

• (More on this next lecture)

Aside: 

• Randomly?
• That works well if there’s no bad guy.
• But if there is a bad guy who gets to see our pivot 

choices, that’s just as bad as the worst-case pivot.



How do we pick a good pivot?

• For today, let’s assume there’s this bad guy.
• Reasons:
• This gives us a very strong guarantee
• We’ll get to see a really clever algorithm.

• Necessarily it will look at A to pick the pivot.
• We’ll get to use the substitution method.



The Plan

1. More practice with the Substitution Method.
2. k-SELECT problem
3. k-SELECT solution

a) The outline of the algorithm.
b) How to pick the pivot.

4. Return of the Substitution Method.



Approach

• First, we’ll figure out what the ideal pivot would be.
• But we won’t be able to get it.

• Then, we’ll figure out what a pretty good pivot would be.
• But we still won’t know how to get it.

• Finally, we will see how to get our pretty good pivot!
• And then we will celebrate.



How do we pick our ideal pivot?

• We’d like to live in the ideal world.

• Pick the pivot to divide the input in half.
• Aka, pick the median!
• Aka, pick SELECT(A, n/2)!



How about a good enough pivot?

• We’d like to approximate the ideal world.

• Pick the pivot to divide the input about in half!
• Maybe this is easier!



A good enough pivot

• We split the input not quite in half:
• 3n/10 < len(L) < 7n/10
• 3n/10 < len(R) < 7n/10

• If we could do that (let’s say, in time O(n)), the Master 
Theorem would say:

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 !
"
+ 𝑂 𝑛# .  Then

We still don’t know that we 
can get such a pivot, but at 
least it gives us a goal and a 

direction to pursue!

Lucky the lackadaisical lemur

• 𝑇 𝑛 ≤ 𝑇 @=
A! + 𝑂(𝑛)

• So a = 1, b = 10/7, d = 1

• 𝑇 𝑛 ≤ 𝑂 𝑛? = 𝑂 𝑛

STILL GOOD!



Goal

• Efficiently pick the pivot so that

9 83

6

1 4 2 pivot

L = array with things 
smaller than A[pivot]

R = array with things 
larger than A[pivot]

𝟑𝒏
𝟏𝟎

< 𝐥𝐞𝐧 𝑳 <
𝟕𝒏
𝟏𝟎

𝟑𝒏
𝟏𝟎

< 𝐥𝐞𝐧 𝑹 <
𝟕𝒏
𝟏𝟎



Another divide-and-conquer alg!
• We can’t solve SELECT(A,n/2) (yet)
• But we can divide and conquer and solve SELECT(B,m/2) for smaller 

values of m (where len(B) = m). 
• Lemma*: The median of sub-medians is close to the median.

*we will make this a bit more precise.

sub-mediansub-mediansub-mediansub-mediansub-median

median of 
sub-medians

median of the 
whole thing≈What we’ll use as the pivot

Ideal pivot



How to pick the pivot
• CHOOSEPIVOT(A):

• Split A into m = !
"

groups, of size <=5 each.
• For i=1, .., m:

• Find the median within the i’th group, call it pi

• p = SELECT( [ p1, p2, p3, …, pm ] , m/2 ) 
• return the index of p in A

5 9 1 3 41 8 9 3 15 12 2 1 5 20 15 13 2 4 6 12 1 15 22 3

This takes time O(1) for each group, since each group 
has size 5.  So that’s O(m)=O(n) total in the for loop.

8

4

5

6

12
Pivot is SELECT(                                      , 3  ) = 6: 8 4 5 6 12

5 9 1 3 41 8 9 3 15 12 2 1 5 20 15 13 2 4
6

12 1 15 22 3

5 91 3 41 8 93 15 122 1 5 20 15 132 4
6

121 15 223

PARTITION around that 6:

This part is L This part is R: it’s almost the same size as L.

Why 5 and not 3? 
See the concept 
check questions!



CLAIM: this works
divides the array approximately in half

• Empirically (see Lecture 4 Python Notebook):



CLAIM: this works
divides the array approximately in half

• Formally, we will prove (later):

Lemma: If we choose the pivots like this, then

𝐿 ≤
7𝑛
10

+ 5
and

𝑅 ≤
7𝑛
10

+ 5



Sanity Check
𝐿 ≤ &!

'(
+ 5 and 𝑅 ≤ &!

'(
+ 5

That’s this window

In practice (on 
randomly chosen 

arrays) it looks 
even better!

But this is a 
worst-case 

bound.



How about the running time?

• Suppose the Lemma is true.  (It is).
• 𝐿 ≤ @=

A! + 5 and 𝑅 ≤ @=
A! + 5

• Recurrence relation:
𝑇 𝑛 ≤ ?

Think: 1 minute
Share: (wait) 1 minute



Pseudocode
• Lemma says that 𝐿 ≤ (!

)*
+ 5 and 𝑅 ≤ (!

)*
+ 5

• Suppose Partition runs in time O(n)

• Come up with a recurrence relation for T(n), the 
running time of Select, using the choosePivot
algorithm we just described.

• Select(A,k):
• If len(A) <= 50:
• A = MergeSort(A)
• Return A[k-1]  

• p = choosePivot(A)
• L, pivotVal, R = Partition(A,p)
• if len(L) == k-1:
• return pivotVal

• Else if len(L) > k-1:
• return Select(L, k)

• Else if len(L) < k-1:
• return Select(R, k – len(L) – 1)

Base Case: If len(A) = O(1), 
then any sorting algorithm 

runs in time O(1).

Case 1: We got lucky and found 
exactly the k’th smallest value!

Case 2: The k’th smallest value 
is in the first part of the list

Case 3: The k’th smallest value 
is in the second part of the list



How about the running time?

• Suppose the Lemma is true.  (It is).
• 𝐿 ≤ @=

A! + 5 and 𝑅 ≤ @=
A! + 5

• Recurrence relation:

𝑇 𝑛 ≤ 𝑇 !
%
+ 𝑇 &!

'(
+ 𝑂 𝑛

Outside of CHOOSEPIVOT, there’s at most one 
recursive call to SELECT on array of size 7n/10 + 5.  

The call to CHOOSEPIVOT makes 
one further recursive call to 

SELECT on an array of size n/5.
We’re going to drop the “+5” for convenience,
but it does not change the final answer. Why?
Hint: Define T’(n) := T(n+1000) and write recurrence for T’

Siggi the Studious Stork



The Plan

1. More practice with the Substitution Method.
2. k-SELECT problem
3. k-SELECT solution

a) The outline of the algorithm.
b) How to pick the pivot.

4. Return of the Substitution Method.



This sounds like a job for…

The Substitution Method!

𝑇 𝑛 ≤ 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑂(𝑛)

Conclusion: 𝑇 𝑛 = 𝑂 𝑛

Step 1: generate a guess
Step 2: try to prove that your guess is correct
Step 3: profit

Technically we only did it for 
𝑇 𝑛 ≤ 𝑇 !

"
+ 𝑇 #!

$%
+ 𝑛, 

not when the last term 
has a big-Oh…

Plucky the Pedantic Penguin

That’s convenient!  We did this at the 
beginning of lecture!



Recap of approach

• First, we figured out what the ideal pivot would be.
• Find the median

• Then, we figured out what a pretty good pivot would be.
• An approximate median

• Finally, we saw how to get our pretty good pivot!
• Median of medians and divide and conquer!
• Hooray!



In practice?
• With not-very-slick implementation, our fancy version of SELECT is 

worse than the MergeSort-based SELECT L
• But O(n) is better than O(n log(n))!  How can that be?
• What’s the constant in front of the n in our proof?  20?  30? 

• On non-adversarial inputs, random pivot choice is much better.

Optimize the implementation of 
SELECT (with the fancy pivot).  
Can you beat MergeSort?

Moral: 

Just pick a random pivot 

if you don’t expect 

nefarious arrays.

Siggi the Studious Stork



What have we learned?
Pending the Lemma

• It is possible to solve SELECT in time O(n).
• Divide and conquer!

• If you want a deterministic algorithm expect that a 
bad guy will be picking the list, choose a pivot 
cleverly.
• More divide and conquer!

• If you don’t expect that a bad guy will be picking 
the list, in practice it’s better just to pick a random 
pivot.



The Plan

1. More practice with the Substitution Method.
2. k-SELECT problem
3. k-SELECT solution

a) The outline of the algorithm.
b) How to pick the pivot.

4. Return of the Substitution Method.
5. (If time) Proof of that Lemma.



If time, back to the Lemma
• Lemma: If L and R are as in the algorithm SELECT 

given above, then

𝐿 ≤
7𝑛
10

+ 5

and

𝑅 ≤
7𝑛
10

+ 5

• We will see a proof by picture.
• See lecture notes for proof by proof.



Proof by picture

1

8

9

3

15

5

18

4

6

35

2

10

7

12

11

3

13

70

4

2

6

7

17

22

Say these are our m = [n/5] sub-arrays of size at most 5.

5

m



Proof by picture 

1

3

8

9

15

4

5

6

18

35

2

7

10

11

12

2

3

4

13

70

6

7

17

22

In our head, let’s sort them.

5

m

Then find medians.

8 6 10 4

7



Proof by picture 

1

3

8

9

15

4

5

6

18

35

2

7

10

11

12

2

3

4

13

70

6

7

17

22

5

m

Then let’s sort them by the median



Proof by picture 

1

3

8

9

15

4

5

6

18

35

2

7

10

11

12

2

3

4

13

70

6

7

17

22

5

m

The median of the medians is 7.  That’s our pivot!



Proof by picture 

1

3

8

9

15

4

5

6

18

35

2

7

10

11

12

2

3

4

13

70

6

7

17

22

5

m

How many elements are SMALLER than the pivot? 

We will show that lots of elements are 
smaller than the pivot, hence not too 

many are larger than the pivot.



Proof by picture
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At least these ones: everything above and to the left.



Proof by picture
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at least   3 ⋅ )

"
− 2

3 ⋅ +
,
− 1 of these, but 

then one of them could have 
been the “leftovers” group.



Proof by picture
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So how many are LARGER than the pivot?  At most…

𝑛 − 1 − 3
𝑚
2
− 2 ≤

7𝑛
10

+ 5
Remember 

𝑚 =
𝑛
5

(derivation 
on board)



That was one part of the lemma

• Lemma: If L and R are as in the algorithm SELECT 
given above, then

𝐿 ≤
7𝑛
10

+ 5

and

𝑅 ≤
7𝑛
10

+ 5

The other part is exactly the same.



The Plan

1. More practice with the Substitution Method.
2. k-SELECT problem
3. k-SELECT solution

a) The outline of the algorithm.
b) How to pick the pivot.

4. Return of the Substitution Method.
5. (If time) Proof of that Lemma.

Recap



Recap

• Substitution method can work when the master 
theorem doesn’t.

• One place we needed it was for SELECT.
• Which we can do in time O(n)!



Next time
• Randomized algorithms and QuickSort!

BEFORE next time
• Pre-lecture 5 exercise
• Remember probability theory? 
• The pre-lecture exercise will jog your memory.


