
Lecture 6
Sorting lower bounds and O(n)-time sorting

1



Announcements

• Getting help in OH:
• Try the problem first.
• Ask: “I was trying this approach and I got stuck here.”
• The CAs will try their best to help you get unstuck, but 

don’t expect the entire solution.
• With the hint you got, spend at least some time trying 

on your own again. If you are stuck again, you can ask 
for more help, but thinking for just a few minutes during 
OH and not seeing the full solution does NOT mean you 
are stuck.
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Sorting

• We’ve seen a few O(n log(n))-time algorithms.
• MERGESORT has worst-case running time O(n log(n))
• QUICKSORT has expected running time O(n log(n))

Can we do better?

Depends on who 
you ask…
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An O(1)-time algorithm for sorting:
StickSort

• Problem: sort these n sticks by length.

• Algorithm:
• Drop them on a table.

• Now they 
are sorted 
this way.
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That may have been unsatisfying

• But StickSort does raise some important questions:
• What is our model of computation?

• Input: array
• Output: sorted array
• Operations allowed: comparisons

-vs-

• Input: sticks
• Output: sorted sticks in vertical order
• Operations allowed: dropping on tables

• What are reasonable models of computation?
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Today: two models
• Comparison-based sorting model
• This includes MergeSort, QuickSort, InsertionSort
• We’ll see that any algorithm in this model must take at 

least Ω(n log(n)) steps.

• Another model (more reasonable than the stick model…)

• CountingSort and RadixSort
• Both run in time O(n)
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Comparison-based sorting
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Comparison-based sorting algorithms

• You want to sort an array of items.
• You can’t access the items’ values directly: you can 

only compare two items and find out which is 
bigger or smaller.
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Comparison-based sorting algorithms

There is a genie who knows what 
the right order is.

The genie can answer YES/NO 
questions of the form:

is [this] bigger than [that]?Algorithm

Want to sort these items. 
There’s some ordering on them, but we don’t know what it is.

Is          bigger than          ?  

YES

The algorithm’s job is to 
output a correctly sorted 

list of all the objects.

is shorthand for

“the first thing in the input list”
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All the sorting algorithms we 
have seen work like this.

7 6 3 5 1 4 2
eg, QuickSort:

Is        bigger than        ?  7 5

Is        bigger than        ?  

Is        bigger than        ?  

6

3

5

5

YES

YES

NO

7 6 3

5 etc.

Pivot!
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Lower bound of Ω(n log(n)). 

• Theorem:
• Any deterministic comparison-based sorting algorithm must 

take Ω(n log(n)) steps.
• Any randomized comparison-based sorting algorithm must 

take Ω(n log(n)) steps in expectation.

• How might we prove this?

1. Consider all comparison-based algorithms, one-by-one, 
and analyze them.

2. Don’t do that.

This covers all the 
sorting algorithms 

we know!!!

Instead, argue that all comparison-based sorting 
algorithms give rise to a decision tree.  
Then analyze decision trees. 12



Decision trees

Sort these three things. ?≤

YES NO

≤

YES

?
NO

≤ ?
YES NO

etc…
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Decision trees

YES NO
?

??
YES NOYES NO

????

• Internal nodes 
correspond to yes/no 
questions.

• Each internal node has 
two children, one for 
“yes” and one for “no.”

• Leaf nodes correspond 
to outputs.  
• In this case, all possible 

orderings of the items.
• Running an algorithm 

on a particular input 
corresponds to a 
particular path through 
the tree. 14



Comparison-based algorithms look like decision trees.

Example: Sort these 
three things using 

QuickSort.

≤
NO

?
YES

L RRL

≤ ?
NOYES

L RL R
Return ≤

NOYES
?Then we’re done 

(after some base-
case stuff)

Now 
recurse

on R

Pivot!

L R L R

Pivot!

Return ReturnIn either case, we’re done 
(after some base case stuff and 

returning recursive calls).

etc...
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Q: What’s the runtime on a particular input?

YES NO
?

??
YES NOYES NO

????

If we take this path through 
the tree, the runtime is 
Ω(length of the path).

A: At least the length of 
the path from the root to 
the corresponding leaf.
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Q: What’s the worst-case runtime?

YES NO
?

??
YES NOYES NO

????

A: At least Ω(length of the longest path).
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How long is the longest path?

YES NO
?

??
YES NOYES

NO

????

• This is a binary tree with at 
least _____ leaves.

• The shallowest tree with n! 
leaves is the completely 
balanced one, which has 
depth ______.

• So in all such trees, the 
longest path is at least log(n!).

n!

log(n!)

• n! is about (n/e)n (Stirling’s approx.*).
• log(n!) is about n log(n/e) = Ω(n log(n)).

Conclusion: the longest path 
has length at least Ω(n log(n)).

being sloppy about 
floors  and ceilings!

We want a statement: in all such trees, 
the longest path is at least _____

*Stirling’s approximation is a bit more complicated than this, but this is good enough for the asymptotic result we want.
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Lower bound of Ω(n log(n)). 
• Theorem:
• Any deterministic comparison-based sorting algorithm must 

take Ω(n log(n)) steps.

• Proof recap:
• Any deterministic comparison-based algorithm can be 

represented as a decision tree with n! leaves.

• The worst-case running time is at least the depth of the decision 
tree.

• All decision trees with n! leaves have depth Ω(n log(n)).

• So any comparison-based sorting algorithm must have worst-
case running time at least Ω(n log(n)). 19



\end{Aside}

• For example, QuickSort?
• Theorem:
• Any randomized comparison-based sorting algorithm 

must take Ω(n log(n)) steps in expectation.

• Proof:
• (same ideas as deterministic case)
• (you are not responsible for this proof in this class)

Try to prove this 
yourself!

Ollie the over-achieving ostrich

Aside: 
What about randomized algorithms?
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• Theorem:
• Any deterministic comparison-based sorting algorithm must 

take Ω(n log(n)) steps.

• Theorem:
• Any randomized comparison-based sorting algorithm must take 

Ω(n log(n)) steps in expectation.

So that’s bad news
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• This is one of the cool things about lower bounds like this: 
we know when we can declare victory!

On the bright side,
MergeSort is optimal!

22



But what about StickSort?
• StickSort can’t be implemented as a comparison-based 

sorting algorithm.  So these lower bounds don’t apply.
• But StickSort was kind of silly.

Especially if I have 
to spend time 

cutting all those 
sticks to be the 

right size!

• Is there another model of computation 
that’s less silly than the StickSort model, in 
which we can sort faster than nlog(n)?

Can we do better?
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Beyond comparison-based 
sorting algorithms
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Another model of computation

• The items you are sorting have meaningful values.

9 6 3 5 2 1 2

instead of
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Pre-lecture exercise

• How long does it take to sort n people by their 
month of birth?

1 (Jan) 1 (Jan) 4 (Apr) 5 (May)
26

Share your answers



Another model of computation

• The items you are sorting have meaningful values.

9 6 3 5 2 1 2

instead of
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Why might this help?

CountingSort: 9 6 3 5 2 1 2

1 2 3 4 5 6 7 8 9

963 521

2

SORTED!
In time O(n).

Implement the buckets as linked 
lists.  They are first-in, first-out.   
This will be useful later.

Concatenate 
the buckets!

28



Assumptions
• Need to be able to know what bucket to put something in.

• We assume we can evaluate the items directly, not just by comparison 

• Need to know what values might show up ahead of time.

• Need to assume there are not too many such values.

2 12345 13 21000 50 100000000 1
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RadixSort

• For sorting integers up to size M
• or more generally for lexicographically sorting strings

• Can use less space than CountingSort

• Idea: CountingSort on the least-significant digit 
first, then the next least-significant, and so on.
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1 2 3 4 5 6 7 8 9

21 345 13 101 50 234 1

0

345
50 1321

101

1 234

50 21 101 1 13 234 345

Step 1: CountingSort on least significant digit
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Step 2: CountingSort on the 2nd least sig. digit

1 2 3 4 5 6 7 8 90

50 21 101 1 13 234 345

502113101

234

1 345

101 1 13 21 234 345 50
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Step 3: CountingSort on the 3rd least sig. digit

1 2 3 4 5 6 7 8 90

50

21
13

101

2341

345
1 13 21 50 101 234 345

101 1 13 21 234 345 50

It worked!!33



Why does this work?

21 345 13 101 50 234 1

50 21 101 1 13 234 345

1 13 21 50 101 234 345

101 1 13 21 234 345 50

Original array:

Next array is sorted by the first digit.

Next array is sorted by the first two digits.

Next array is sorted by all three digits.

Sorted array

50 21 101 1 13 234 345

101 01 13 21 234 345 50

001 013 021 050 101 234 345
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To prove this is correct…

• What is the inductive hypothesis?

21 345 13 101 50 234 1

50 21 101 1 13 234 345

1 13 21 50 101 234 345

101 1 13 21 234 345 50

Original array:

Next array is sorted by the first digit.

Next array is sorted by the first two digits.

Next array is sorted by all three digits.

Sorted array

50 21 101 1 13 234 345

101 01 13 21 234 345 50

001 013 021 050 101 234 345

Think-Share Terrapins
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RadixSort is correct

• Inductive hypothesis:  
• After the k’th iteration, the array is sorted by the first k 

least-significant digits.
• Base case: 
• “Sorted by 0 least-significant digits” means not yet 

sorted, so the IH holds for k=0.
• Inductive step:
• TO DO

• Conclusion:
• The inductive hypothesis holds for all k, so after the last 

iteration, the array is sorted by all the digits.  Hence, it’s 
sorted!
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Inductive step

• Need to show: if IH holds for k=i-1, then it holds for k=i.
• Suppose that after the i-1’st iteration, the array is sorted by 

the first i-1 least-significant digits.
• Need to show that after the i’th iteration, the array is sorted 

by the first i least-significant digits.

Inductive hypothesis:  
After the k’th iteration, the array is sorted 
by the first k least-significant digits.

1 2 3 4 5 6 7 8 90

050 021 101 002 013 234 345

050021013101 234
002

345

101 002 013 021 234 345 050

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.

EX
AM

PL
E:

 i=
2
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• Let x=[xdxd-1…x2x1] and y=[ydyd-1…y2y1] be any x,y.
• Suppose [xixi-1…x2x1] < [yiyi-1…y2y1].
• Want to show that x appears before y at end of i’th iteration.
• CASE 1: xi<yi

• x is in an earlier bucket than y.

1 2 3 4 5 6 7 8 90

050 021 101 002 013 234 345

050021013101 234
002

345

101 002 013 021 234 345 050

Want to show: after the i’th
iteration, the array is sorted by 

the first i least-significant digits.

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.

EX
AM

PL
E:

 i=
2

Proof sketch…
proof on next (skipped) slide

xy

yx

x y

Aka, we want to show that for any x and y so 
that x belongs before y, we put x before y.
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• Let x=[xdxd-1…x2x1] and y=[ydyd-1…y2y1] be any x,y.
• Suppose [xixi-1…x2x1] < [yiyi-1…y2y1].
• Want to show that x appears before y at end of i’th iteration.
• CASE 1: xi<yi

• x is in an earlier bucket than y.
• CASE 2: xi=yi

• [xi-1…x2x1] < [yi-1…y2y1],
• x and y in same bucket, but x was put in the bucket first.

1 2 3 4 5 6 7 8 90

050 021 101 002 013 234 345

050021013101 234
002

345

101 002 013 021 234 345 050

Want to show: after the i’th
iteration, the array is sorted by 

the first i least-significant digits.

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.

EX
AM

PL
E:

 i=
2

Proof sketch…
proof on next (skipped) slide

x
y

y

x

x y

Aka, we want to show that for any x and y so 
that x belongs before y, we put x before y.
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• Let x=[xdxd-1…x2x1] and y=[ydyd-1…y2y1] be any x,y.
• Suppose [xixi-1…x2x1] < [yiyi-1…y2y1].
• Want to show that x appears before y at end of i’th iteration.
• CASE 1: xi<yi. 
• x appears in an earlier bucket than y, so x appears before y 

after the i’th iteration.
• CASE 2: xi=yi. 
• x and y end up in the same bucket. 
• In this case, [xi-1…x2x1] < [yi-1…y2y1], so by the inductive 

hypothesis, x appeared before y after i-1’st iteration. 
• Then x was placed into the bucket before y was, so it also 

comes out of the bucket before y does.  
• Recall that the buckets are FIFO queues.  

• So x appears before y in the i’th iteration.

Want to show: after the i’th iteration, the array is sorted by the 
first i least-significant digits.

SLIDE SKIPPED 
IN CLASS.  Here 

for reference.

40



Inductive step
Inductive hypothesis:  

After the k’th iteration, the array is sorted 
by the first k least-significant digits.

• Need to show: if IH holds for k=i-1, then it holds for k=i.
• Suppose that after the i-1’st iteration, the array is sorted by 

the first i-1 least-significant digits.
• Need to show that after the i’th iteration, the array is sorted 

by the first i least-significant digits.

1 2 3 4 5 6 7 8 90

050 021 101 002 013 234 345

050021013101 234
002

345

101 002 013 021 234 345 050

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.

EX
AM

PL
E:

 i=
2
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RadixSort is correct

• Inductive hypothesis:  
• After the k’th iteration, the array is sorted by the first k 

least-significant digits.
• Base case: 
• “Sorted by 0 least-significant digits” means not sorted, 

so the IH holds for k=0.
• Inductive step:
• TO DO

• Conclusion:
• The inductive hypothesis holds for all k, so after the last 

iteration, the array is sorted by all the digits.  Hence, it’s 
sorted!
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What is the running time?

• Suppose we are sorting n d-digit numbers (in base 10).

1. How many iterations are there?

2. How long does each iteration take?

3. What is the total running time? Think-Share Terrapins

021 345 013 101 050 234 001
e.g., n=7, d=3:

for RadixSorting
numbers base-10.
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What is the running time?

• Suppose we are sorting n d-digit numbers (in base 10).

1. How many iterations are there?
• d iterations

2. How long does each iteration take?
• Time to initialize 10 buckets, plus time to put n numbers in 

10 buckets.  O(n).

3. What is the total running time?
• O(nd)

Think-Share Terrapins

021 345 013 101 050 234 001
e.g., n=7, d=3:

for RadixSorting
numbers base-10.
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This doesn’t seem so great

• To sort n integers, each of which is in {1,2,…,n}…
• d = log!" 𝑛 + 1
• For example: 

• n = 1234
• log!" 1234 + 1 = 4

• More explanation on next (skipped) slide.

• Time = 𝑂 𝑛𝑑 = 𝑂 𝑛 log 𝑛 .
• Same as MergeSort!
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Can we do better?

• RadixSort base 10 doesn’t seem to be such a good 
idea…
• But what if we change the base? (Let’s say base r)
• We will see there’s a trade-off:
• Bigger r means more buckets
• Bigger r means fewer digits
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Example: base 100

21 345 13 101 50 234 1

Original array:
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Example: base 100

0021 0345 0013 0101 0050 0234 0001

Original array:

00 01 02 34 999850

100 buckets:

………

0101 0001 0013 0021 0234 0345 0050

0101

0001

00500234
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Example: base 100

00 01 02 03 999850

0001

0013

0234

100 buckets:

……
0101

0101 0001 0013 0021 0234 0345 0050

0021

0050

0345

0001 0013 0021 0050 0101 0234 0345
Sorted!50



Example: base 100

0101 0001 0013 0021 0234 0345 0050

0001 0013 0021 0050 0101 0234 0345

0021 0345 0013 0101 0050 0234 0001

Base 100:
• d=2, so only 2 iterations.
• 100 buckets

Base 10:
• d=3, so 3 iterations.
• 10 buckets

vs.

Bigger base means more buckets but fewer iterations.

Original array

Sorted array
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General running time of RadixSort
• Say we want to sort: 

• n integers, 
• maximum size M, 
• in base r.

• Number of iterations of RadixSort:
• Same as number of digits, base r, of an integer x of max size M.
• That is d = log! 𝑀 + 1

• Time per iteration:
• Initialize r buckets, put n items into them
• 𝑂(𝑛 + 𝑟) total time.

• Total time:
• 𝑂 𝑑 ⋅ 𝑛 + 𝑟 = 𝑂 log! 𝑀 + 1 ⋅ 𝑛 + 𝑟

Convince yourself that 
this is the right formula 
for d.
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Trade-offs
• Given n, M, how should we choose r?
• Looks like there’s some sweet spot:

IPython Notebook for Lecture 6

Running time: 𝑂 log! 𝑀 + 1 ⋅ 𝑛 + 𝑟
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A reasonable choice: r=n

Ollie the over-achieving ostrich

Choosing r = n is pretty good.  What choice of r optimizes the 
asymptotic running time?  What if I also care about space?

• Running time:

𝑂 log! 𝑀 + 1 ⋅ 𝑛 + 𝑟

• Choose n=r:
𝑂 𝑛 ⋅ log" 𝑀 + 1

Intuition: balance n and r here.
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Running time of RadixSort with r=n

• To sort n integers of size at most M, time is
𝑂 𝑛 ⋅ log, 𝑀 + 1

• So the running time (in terms of n) depends on how big 
M is in terms of n:
• If 𝑀 ≤ 𝑛, for some constant c, then this is O(n).

• If 𝑀 = 2-, then this is 𝑂 -!

./0(-)

• The number of buckets needed is r=n.
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What have we learned?

• RadixSort can sort n integers of size at most n100 in 
time O(n), and needs enough space to store O(n) 
integers. 
• If your integers have size much much bigger than n 

(like 2n), maybe you shouldn’t use RadixSort.
• It matters how we pick the base.

You can put any 
constant here 
instead of 100.
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Recap
• How difficult sorting is depends on the model of 

computation.
• How reasonable a model of computation is is up for debate.

• Comparison-based sorting model
• This includes MergeSort, QuickSort, InsertionSort
• Any algorithm in this model must use at least Ω(n log(n)) 

operations. L
• But it can handle arbitrary comparable objects. J

• If we are sorting small integers (or other reasonable data):
• CountingSort and RadixSort
• Both run in time O(n) J
• Might take more space and/or be slower if integers get too big L
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Next time

• Binary search trees!  
• Balanced binary search trees!

• Pre-lecture exercise for Lecture 7
• Remember binary search trees?

Before next time
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