
Lecture 7
Binary Search Trees and Red-Black Trees

Announcements

• Homework 3 is due today.
• Homework 4 is out today. From HW4 onwards you

are allowed pair submissions (but solo is OK too).
• Midterm approaching: Thu, Feb 16 (6pm – 9pm)
• Midterm covers up to (and incl.) lecture 7 – today

Roadmap

Sorting

Graphs!Longest, Shortest, Max and Min…

Data

structures

Asymptotic
Analysis

Recurrences

Randomized
Algs

Dynamic
ProgrammingGreedy Algs

5 lectures 2 lectures

10 lectures

1 stclass

Divide and
conquer MIDTERM

1 lecture

The
Future!

More detailed schedule on the website!

We are here

But first!
• A brief wrap-up of divide and conquer.

Big problem

Smaller
problem

Smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Recurse!

Divide and
Conquer:

Recurse!

How do we design divide-and-
conquer algorithms?
• So far we’ve seen lots of examples.
• Karatsuba
• MergeSort
• Select
• QuickSort
• Polynomial Multiplication (HW1)
• Dog Safety (HW2)
• Lyric the Bee (HW3)
• Sorting Frogs (HW3)
• Sections: Maximum Sum Subarray, …

• Let’s take a minute to zoom out and look at some
general strategies.

One Strategy
1. Identify natural sub-problems
• Arrays of half the size
• Things smaller/larger than a pivot

2. Imagine you had the magical ability to solve
those natural sub-problems…what would you do?
• Just try it with all of the natural sub-problems you can

come up with! Anything look helpful?

3. Work out the details
• Write down pseudocode, etc.

One Strategy

1. Identify natural sub-problems
2. Imagine you had the magical ability to solve

those natural sub-problems…what would you do?
3. Work out the details

Think about how you could
arrive at MergeSort or

QuickSort via this strategy!

Other tips
• Small examples.

• If you have an idea but are having trouble working out the
details, try it on a small example by hand.

• Gee, that looks familiar…
• The more algorithms you see, the easier it will get to come

up with new algorithms!
• Bring in your analysis tools.

• E.g., if I’m doing divide-and-conquer with 2 subproblems of
size n/2 and I want an O(n logn) time algorithm, I know that I
can afford O(n) work combining my sub-problems.

• Iterate.
• Darn, that approach didn’t work! But, if I tweaked this aspect

of it, maybe it works better?
• Everyone approaches problem-solving differently…find

the way that works best for you.

No one recipe for algorithm design

• This can be frustrating on HW….
• Practice helps!
• The examples we see in Lecture and in HW are meant to

help you practice this skill.
• Sections are the BEST place to practice!

• There are even more algorithms in the book!
• Check out Algorithms Illuminated Chapter 3, or CLRS

Chapter 4, for even more examples of divide and conquer
algorithms.

Roadmap

Sorting

Graphs!Longest, Shortest, Max and Min…

Data

structures

Asymptotic
Analysis

Recurrences

Randomized
Algs

Dynamic
ProgrammingGreedy Algs

5 lectures 2 lectures

10 lectures

1 stclass

Divide and
conquer MIDTERM

1 lecture

The
Future!

More detailed schedule on the website!

We are here

Today
• Begin a brief foray into data structures!
• See CS 166 for more!

• Binary search trees
• You may remember these from CS 106B
• They are better when they’re balanced.

this will lead us to…

• Self-Balancing Binary Search Trees
• Red-Black trees.

Some data structures
for storing objects like (aka, nodes with keys)

• (Sorted) arrays:

• Linked lists:

• Some basic operations:
• INSERT, DELETE, SEARCH

82 473 1 5HEAD

42 871 3 5

5

Sorted Arrays

• O(n) INSERT/DELETE:
• First, find the relevant element (we’ll see how below), and

then move a bunch elements in the array:

• O(log(n)) SEARCH:

42 871 3 5

421 3

42 871 3 5
eg, Binary search to see if 3 is in A.

8754.5

eg, insert 4.5

(Not necessarily sorted)

Linked lists

• O(1) INSERT:

• O(n) SEARCH/DELETE:

45 827 3 1

45 827 3 1HEAD

6

45 827 3 1HEAD

eg, insert 6

eg, search for 1 (and then you could delete it by manipulating pointers).

Motivation for Binary Search Trees

Sorted Arrays Linked Lists Binary Search
Trees

Search O(log(n)) O(n) O(log(n))

Delete O(n) O(n) O(log(n))

Insert O(n) O(1) O(log(n))

TODAY!
(Balanced)

Binary tree terminology

42 8

7

1

3

5
This node is
the root

This is a node.
It has a key (7).

These nodes
are leaves.

The left child of is3 2

The right child of is3 4

Both children of are NIL.
(I won’t usually draw them).

1

For today all keys are distinct.

Each node has two children.

NILNIL

Each node has a pointer to its
left child, right child, and parent.

The parent of is3 5

is a descendant of 2 5

The height of this tree is 3.
(Max length of path from the root
to a leaf).

Binary Search Trees

4

2

8 7
1

3
5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

From your pre-lecture exercise…

Binary Search Trees

4

2

8 7
1

3
5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

From your pre-lecture exercise…

Binary Search Trees

4
2

8

7
1

3 5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

From your pre-lecture exercise…

Binary Search Trees

42 8

7
1

3

5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

From your pre-lecture exercise…

Binary Search Trees

42 8

7

1

3

5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Q: Is this the only
binary search tree I
could possibly build
with these values?

A: No. I made
choices about

which nodes to
choose when. Any

choices would
have been fine.

From your pre-lecture exercise…

Aside: this should look familiar

4

2

8 7
1

3
5

kinda like QuickSort

Binary Search Trees

42 8

7

1

3

5

• A BST is a binary tree so that:
• Every LEFT descendant of a node has key less than that node.
• Every RIGHT descendant of a node has key larger than that node.

42 8

7

1

3

5

Binary Search Tree
NOT a Binary
Search Tree

Which of these is a BST?
1 minute Think-Pair-Share

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

NIL NIL

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

NIL NIL

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

2
NIL NIL

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

2
NIL NIL

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

2
NIL NIL

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

2 3

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

2 3 4

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

2 3 4

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

2 3 4 5

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

2 3 4 5 7

Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
• if x!= NIL:
• inOrderTraversal(x.left)
• print(x.key)
• inOrderTraversal(x.right)

42

73

5

2 3 4 5 7 Sorted!• Runs in time O(n).

Back to the goal

Fast SEARCH/INSERT/DELETE
Can we do these?

SEARCH in a Binary Search Tree
definition by example

42 8

7

1

3

5
EXAMPLE: Search for 4.

EXAMPLE: Search for 4.5
• It turns out it will be convenient

to return 4 in this case
• (that is, return the last node

before we went off the tree)!!!!

Ollie the over-achieving ostrich

Write pseudocode
(or actual code) to

implement this!
How long does this take?

O(length of longest path) = O(height)

INSERT in a Binary Search Tree

42 8

7

1

3

5
EXAMPLE: Insert 4.5

4.5

• INSERT(key):
• x = SEARCH(key)
• Insert a new node with

desired key at x…
!!!!

x = 4

You thought about this on
your pre-lecture exercise!

(See skipped slide for
pseudocode.)

DELETE in a Binary Search Tree

42 8

7

1

3

5
EXAMPLE: Delete 2

• DELETE(key):
• x = SEARCH(key)
• if x.key == key:
• ….delete x….

You thought about this in your pre-
lecture exercise too!

This is a bit more complicated…see
the skipped slides for some pictures
of the different cases.

x = 2

How long do these operations take?
• SEARCH is the big one.
• Everything else just calls SEARCH and then does some

small O(1)-time operation.

42 8

73
5

6

Time = O(height of tree)

Trees have depth
O(log(n)). Done!

Lucky the
lackadaisical lemur.

How long does search take?

Wait a
second…

Plucky the
Pedantic Penguin

Search might take time O(n).

4

2

8

7

3

5

6

• This is a valid binary search tree.

• The version with n nodes has
depth n, not O(log(n)).

What to do?

• Goal: Fast SEARCH/INSERT/DELETE
• All these things take time O(height)
• And the height might be big!!! L

• Idea 0:
• Keep track of how deep the tree is getting.
• If it gets too tall, re-do everything from scratch.

• At least Ω(n) every so often….

• Turns out that’s not a great idea. Instead we turn to…

Ollie the over-achieving ostrich

How often is “every so
often” in the worst case?
It’s actually pretty often!

Self-Balancing
Binary Search Trees

Idea 1: Rotations
• Maintain Binary Search Tree (BST) property, while

moving stuff around.

BA

CY

XYOINK!

That’s not
binary!! CLAIM:

this still has BST property.

No matter what lives underneath A,B,C,
this takes time O(1). (Why?)

BA

C

Y

X

B

A

C

Y

X

B fell
down.

Note: A, B, C, X, Y are
variable names, not the
contents of the nodes.

This seems helpful

4

2

8

7

3

6

5

YOINK!

42 8

73

6

5

Strategy?

• Whenever something seems unbalanced, do
rotations until it’s okay again.

Lucky the Lackadaisical Lemur

Even for Lucky this is pretty vague.
What do we mean by “seems

unbalanced”? What’s “okay”?

Idea 2: have some proxy for balance

• Maintaining perfect balance is too hard.
• Instead, come up with some proxy for balance:
• If the tree satisfies [SOME PROPERTY], then it’s pretty

balanced.
• We can maintain [SOME PROPERTY] using rotations.

There are actually several
ways to do this, but today
we’ll see…

• A Binary Search Tree that balances itself!
• No more time-consuming by-hand balancing!
• Be the envy of your friends and neighbors

with the time-saving…

Red-Black tree!

42 8

73

5

6
Maintain balance by stipulating that
black nodes are balanced, and that
there aren’t too many red nodes.

It’s just good sense!

Red-Black Trees

Red-Black Trees
obey the following rules (which are a proxy for balance)

• Every node is colored red or black.
• The root node is a black node.
• NIL children count as black nodes.
• Children of a red node are black nodes.
• For all nodes x:
• all paths from x to NIL’s have the same

number of black nodes on them.

42 8

73

5

6
NIL NIL NIL NIL NIL NIL NIL NIL

I’m not going to draw the NIL
children in the future, but they
are treated as black nodes.

Examples(?) • Every node is colored red or black.

• The root node is a black node.

• NIL children count as black nodes.
• Children of a red node are black nodes.

• For all nodes x:
• all paths from x to NIL’s have the same

number of black nodes on them.

Yes!
No! No! No!

Which of these
are red-black trees?

(NIL nodes not drawn)
1 minute think
1 minute share

Why these rules???????

• This is pretty balanced.
• The black nodes are balanced
• The red nodes are “spread out”

so they don’t mess things up
too much.

• We can maintain this property
as we insert/delete nodes, by
using rotations.

42 8

73

5

6

9

This is the really clever idea!
This Red-Black structure is a proxy for balance.

It’s just a smidge weaker than perfect balance, but we can actually maintain it!

This is “pretty balanced”
• To see why, intuitively, let’s try to build a

Red-Black Tree that’s unbalanced.

Lucky the
lackadaisical
lemur

Let’s build some intuition!

One path can be at most twice
as long another if we pad it
with red nodes.

Conjecture:
the height of a red-black tree
with n nodes is at most 2 log(n)

Other internal

nodes need to go

here!

Note, this is just a
conjecture to build
intuition! We’ll prove a
rigorous statement on
the next slide.

The height of a RB-tree with n non-NIL nodes
is at most 2log(𝑛 + 1)
• Define b(x) to be the number of black

nodes in any path from x to NIL.
• (excluding x, including NIL).

• Claim:
• There are at least 2b(x) – 1 non-NIL

nodes in the subtree underneath x.
(Including x).

• [Proof by induction – on board if time]

Then:
𝑛 ≥ 2! "##$ − 1
≥ 2%&'(%$/* − 1

Rearranging:
𝑛 + 1 ≥ 2%&'(%$/* ⇒ ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 2log(𝑛 + 1)

x

y

using the Claim

b(root) >= height/2 because of RBTree rules.

z

NIL

Claim: at least 2b(x) – 1 nodes in this
WHOLE subtree (of any color).

This is great!

• SEARCH in an RBTree is immediately O(log(n)), since
the depth of an RBTree is O(log(n)).

• What about INSERT/DELETE?
• Turns out, you can INSERT and DELETE items from an

RBTree in time O(log(n)), while maintaining the RBTree
property.
• That’s why this is a good property!

INSERT/DELETE

• I expect we are out of time…
• There are some slides which you can check out to see how

to do INSERT/DELETE in RBTrees if you are curious.
• See CLRS Ch 13. for even more details.

• You are not responsible for the details of
INSERT/DELETE for RBTrees for this class.
• You should know what the “proxy for balance” property is

and why it ensures approximate balance.
• You should know that this property can be efficiently

maintained, but you do not need to know the details of how.

INSERT: Many cases

73

6

73

6

73

6

• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings of
the existing tree, and there are 9 more cases for all of
the various symmetries of these 3 cases.

INSERT: Case 1
• Make a new red node.
• Insert it as you would normally.

73

6
Example: insert 0

0

What if it looks like this?

73

6

INSERT: Many cases

73

6

73

6

73

6

• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings
of the existing tree, and there are 9 more cases for all
of the various symmetries of these 3 cases.

• Make a new red node.
• Insert it as you would normally.
• Fix things up if needed.

73

6
Example: insert 0

0

No!

What if it looks like this?

73

6

INSERT: Case 2

• Make a new red node.
• Insert it as you would normally.
• Fix things up if needed.

73

6
Example: insert 0

Can’t we just insert 0 as
a black node?

0
No!

What if it looks like this?

73

6

INSERT: Case 2

We need a bit more context

73

6

Example: insert 0
What if it looks like this?

73

6

-1

We need a bit more context

73

6

Example: insert 0

0

What if it looks like this?

73

6

• Add 0 as a red node.

-1

We need a bit more context

73

6

Example: insert 0

0

What if it looks like this?

73

6

Flip
colors!

• Add 0 as a red node.
• Claim: RB-Tree

properties still hold.

-1

But what if that was red?

73

6

Example: insert 0

0

What if it looks like this?

73

6

-1

More context…

73

6

Example: insert 0

0

What if it looks like this?

73

6

-1

-3

More context…

6

Example: insert 0
What if it looks like this?

73

6

-1

-3

Now we’re basically
inserting 6 into some

smaller tree. Recurse!

This one!

73

6

-1

-3

Want to
insert 0
here.

-4

-2

Example, part I

73

6

0

-1

-3

-4

-2

Example, part I

73

6

0

-1

-3

Flip colors!

-4

-2

Example, part I

73

6

0

-1

-3

-4

-2

Example, part I

Want to
insert 6 here.

Need to know how
to insert into trees
that look like this…

INSERT: Many cases

73

6

73

6

73

6

• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings
of the existing tree, and there are 9 more cases for all
of the various symmetries of these 3 cases.

That’s this
case!

• Make a new red node.
• Insert it as you would normally.
• Fix things up if needed.

73

6
Example: Insert 0.
• Maybe with a

subtree below it.

0

What if it looks like this?

73

6

INSERT: Case 3

Recall Rotations
• Maintain Binary Search Tree (BST) property, while

moving stuff around.

BA

CY

XYOINK!

That’s not
binary!! CLAIM:

this still has BST property.

BA

C

Y

X

B

A

C

Y

X

Inserting into a Red-Black Tree
• Make a new red node.
• Insert it as you would normally.
• Fix things up if needed.

73

6

0

What if it looks like this?

73

6

YOINK!
3

60

7

Argue that this is a
good thing to do!

Example, part 2

73

6

0

-1

-3

-4

-2

Want to
insert 6 here.

Example, part 2

73

6

0

-1

-3

-4

-2
73

6

0

-1

-3

-4 -2

YOINK!
YOINK!

Example, part 2

73

6

0

-1

-3

-4 -2

YOINK!

73

6

0

-1

-3

-4 -2

Example, part 2 TA-DA!

Many cases

73

6

73

6

73

6

• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings
of the existing tree, and there are 9 more cases for all
of the various symmetries of these 3 cases.

Deleting from a Red-Black tree

Fun exercise!

Ollie the over-achieving ostrich

That’s a lot of cases!

• You are not responsible for the nitty-gritty details
of Red-Black Trees. (For this class)
• Though implementing them is a great exercise!

• You should know:
• What are the properties of an RB tree?
• And (more important) why does that guarantee that

they are balanced?

What have we learned?
• Red-Black Trees always have height at most 2log(n+1).
• As with general Binary Search Trees, all operations are

O(height)
• So all operations with RBTrees are O(log(n)).

Conclusion: The best of both worlds

Sorted Arrays Linked Lists Binary Search
Trees*

Search O(log(n)) O(n) O(log(n))

Delete O(n) O(n) O(log(n))

Insert O(n) O(1) O(log(n))

Today
• Begin a brief foray into data structures!
• See CS 166 for more!

• Binary search trees
• You may remember these from CS 106B
• They are better when they’re balanced.

this will lead us to…

• Self-Balancing Binary Search Trees
• Red-Black trees.

Recap

Recap

• Balanced binary trees are the best of both worlds!
• But we need to keep them balanced.
• Red-Black Trees do that for us.
• We get O(log(n))-time INSERT/DELETE/SEARCH
• Clever idea: have a proxy for balance

42 8

73

5

6

Next time

• Hashing!

Before next time
• Pre-lecture exercise for Lecture 8
•More probability yay!

