Lecture 3
Hashing

Announcements

* Midterm approaching: Thu, Feb 16 (6pm —9pm)

* Midterm covers up to (and incl.) lecture 7. This
week’s lectures are not included.

Today: hashing

Outline ,

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.

* |like self-balancing binary trees

* The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magical.

Goal

* We want to store nodes with keys in a data

structure that supports fast
INSERT/DELETE/SEARCH.

* INSERT
. DELETEE

node with key “2”

* SEARCH | 52

data structure

HERE IT IS

Last time

* Self balancing trees:
* O(log(n)) deterministic INSERT/DELETE/SEARCH

Hprettysweet

oday:

 Hash tables: 6

* O(1) expected time INSERT/DELETE/SEARCH @

* Worse worst-case performance, but often great in practice.

H#evensweeterinpractice

eg, Python’s dict, Java’s HashSet /HashMap, C++'s unordered map
Hash tables are used for databases, caching, object representation, ...

This is called

One Way tO get O(:I.) tlme “direct addressing”
 Say all keys are in the set {1,2,3,4,5,6,7,8,9}.

R E E
3 5
e DELETE: Are we delegating to
hardware/memory?
What are the
. assumptions behind our
SEARCH model of computation?
s 5

3 is here.

\S\[/_Z/ Ol&f

UEIHUHIEIUU

7

That should look familiar S %

 Kind of like CountingSort from Lecture 6.

Smpblmfthkymy ome from a |
”U={1,2,, 10000000000}, it takes a lot

fp

uuutttbiiuubibbliiuutout

Jubbuuubububbbbubbuul
LUUULULUEUUUUUBU UUbUUUuUOL

Solution?
Put things in buckets based on one digit

INSERT:

2] 5] [] [(2] (] [1]

: UH Bl LI

It’s in this bucket somewhere...

go through until we find it.
Now SEARCH

17€Z

....this hasn’t made
Now SEARCH

our lives easier...

Hash tables

* That was an example of a hash table.
* not a very good one, though.

* We will be more clever (and less deterministic) about
our bucketing.

 This will result in fast (expected time)
INSERT/DELETE/SEARCH.

But first! Terminology.

e Uis a universe of size M.

* Mis really big.

e But only a few (at most n) elements of U are ever going

to show up.

* M is waaaayyyyyyy bigger than n.
* But we don’t know which ones will show up in advance.

od

All of the keys in the
universe live in this
o][e] o}

Universe U

Only n keys will ever show up.

Example: U is the set of all strings of at most
280 ascii characters. (128289 of them).

The only ones which | care about are those
which appear as trending hashtags on
twitter. #hashinghashtags

There are way fewer than 128280 of these.

Hash Functions

* A hash function h:U - {1, ...,n}

is a function that maps elements

of U to buckets 1, ..., n.

Example:

digit of x.

All of the keys in the
universe live in this
o][e] o}

Universe U

h(x) = least significant

For this lecture, we are assuming that
the number of things that show up is
the same as the number of buckets,
both are n.

This doesn’t have to be the case,
although we do want:

#buckets = O(#things which show up)

1 S— n buckets

Hash Tables (with chaining)

For demonstration
* Array of n buckets. purposes only!

This is a terrible hash
function! Don’t use this!

* Each bucket stores a linked list.
 We caninsert into a linked list in time O(1)
* To find something in the linked list takes time O(length(list)).

* A hash function h: U — {1, ...,n}.

* For example, h(x) = least significant digit of x.

INSERT: 1l >
2| —>122
DX E
31 1113 43 >
SEARCH 43: — - -
Scan through all the elements in
bucket h(43) = 3. 9 E_e
DELETE 43:

n buckets (say n=9)
Search for 43 and remove it.

Aside: Hash tables with open addressing

* The previous slide is about hash tables with chaining.

* There’s also something called “open addressing”

* You don’t need to know about it for this class.

>
S

=hEE

This is a “chain”

9

n=9 buckets

9

9

9
9

13
9- OU/7 Coy

13
>[a]
9

n=9 buckets

\end{Aside}

Hash Tables (with chaining)

For demonstration
* Array of n buckets. purposes only!

This is a terrible hash
function! Don’t use this!

* Each bucket stores a linked list.
 We caninsert into a linked list in time O(1)
* To find something in the linked list takes time O(length(list)).

* A hash function h: U — {1, ...,n}.

* For example, h(x) = least significant digit of x.

INSERT: 1l >
2| —>122
DX E
31 1113 43 >
SEARCH 43: — - -
Scan through all the elements in
bucket h(43) = 3. 9 E_e
DELETE 43:

n buckets (say n=9)
Search for 43 and remove it.

What we want from a hash table

1. We want there to be not many buckets (say, n).
e This means we don’t use too much space

2. We want the items to be pretty spread-out in the buckets.
* This means it will be fast to SEARCH/INSERT/DELETE

vs. 1
2
13

13 >43 > 3
>[9]> :

n=9 buckets n=9 buckets

N
nnan
nnn

9

Worst-case analysis

* Goal: Design a function h: U — {1, ...,n} so that:

* No matter what n items of U a bad guy chooses, the
buckets will be balanced.

* Here, balanced means O(1) entries per bucket.

* If we had this, then we’d achieve our dream of O(1)
INSERT/DELETE/SEARCH

Can you come up with
such a function?

& -9

Think-Share Terrapins
1 min. think. (wait) 1 min. share

We really can’t beat the bad guy here.

 The universe U has M items

* They get hashed into n buckets
* At least one bucket has at least M/n items hashed to it.
* M is waayyyy bigger than n, so M/n is bigger than n.

* Bad guy chooses n of the items that landed in this
very full bucket.

= n buckets
These are all the things that

hash to the first bucket.

Universe U

Solution:
Randomness

Vg

What does
random mean

Th e ga Mme nere? Unitormy 2+ YOU, the algorithm, choose

random? a random hash function
h:U - {1, ..

Plucky the pedantic penguin

1. An adversary chooses any n items 0
Uq, Uy, ..., Uy € U, and any sequence @
of INSERT/DELETE/SEARCH

operations on those items.
3. HASHIT OUT ghashpuns

;

INSERT 13, INSERT 22, INSERT 43,
~ INSERT 92, INSERT 7, SEARCH 43, 2
DELETE 92, SEARCH 7, INSERT 92

nan
N
N

S
n
O
2
~

Example of a random
hash function

e That means that h(1) is a uniformly random number

between 1 and n.

h(2) is also a uniformly random number between 1 and n,
independent of h(1).

h(3) is also a uniformly random number between 1 and n,
independent of h(1), h(2).

h(M) is also a uniformly random number between 1 and
n, independent of h(1), h(2), ..., h(M-1).

.
@Té:

* Say that h: U — {1, ...,n}is a uniformly random
function.

s19¥oNnq U

Randomness helps

Intuitively: The bad guy can’t foil a hash
function that he doesn’t yet know.

NN g
Lucky the
Lackadaisical Lemur

Why not? What if there’s some strategy
that foils a random function with high
probability?

>

Plucky the Pedantic
Penguin

We’ll need to do some analysis...

What do we want?

It’s bad if lots of items land in u;’s bucket.
So we want not that.

>
n

We could replace “2”
. here with any constant; it
More prECISely would still be good. But

“2” will be convenient.

* We want:
* For all ways a bad guy could choose u,; u,, ..., uy,
to put into the hash table, and for all i € {1, ..., n},
E[number of items in u;'s bucket] < 2.

 |f that were the case:
* For each INSERT/DELETE/SEARCH operation

involving u;,
E[time of operation] = O(1)
Note that the expected

size of u;’s linked list is

not the same as the

expected {maximum size
of linked lists}. What is

n the latter?

This is what we wanted at
the beginning of lecture!

So we want:

e Foralli=1, ..., n,
E[number of items in u.’s bucket | < 2.

Aside

e Foralli=1, ..., n,

E[number of items in u, ‘s bucket] < 2.

VS
e Foralli=1,...,n:
E[number of items in bucketi] < 2
Suppose that:
I B
- this happens with
2 __9 — probability 1/n
| & T
— - B
__ 3l 4> ar‘ldthis hap.p-ens
n _9 E— etc. with probability 1/n
1 Then E[number of items in bucket i] = 1 for all i.

e But E[number of items in 43’s bucket] = n

This distinction came up on your
pre-lecture exercise!

* Solution to pre-lecture exercise:
* E[number of items in bucket 1] = n/6
* E[number of items that land in the same bucket as item 1] =n

So we want:

e Foralli=1, ..., n,
E[number of items in u.’s bucket | < 2.

h is uniformly random

Expected number of items in u;’s bucket?

. E[‘éﬁ(ua = h(u;)}

¢ — 1 + Zjil 1/71
° =1+ n_—l < A That’s what we wanted!
n

—

s12)ong u

&
£

u.

COLLISION!

A uniformly random hash function
leads to balanced buckets

* We just showed:

* For all ways a bad guy could choose u; u,, ..., u,, to
put into the hash table, and for all i € {1, ..., n},

E[number of items in u; ‘s bucket] < 2.
* Which implies:

* No matter what sequence of operations and items the
bad guy chooses,

E[time of INSERT/DELETE/SEARCH] = O(1)
* So, our solution is:

Pick a uniformly random hash function?

What’s wrong with this plan?

e Hint: How would you implement (and store) a
uniformly random function h: U - {1, ...,n}?

* If hiis a uniformly random function:

e That means that h(1) is a uniformly
random number between 1 and n.
‘ * h(2) is also a uniformly random number

between 1 and n, independent of h(1).

Think-Share Terrapins * h(3)is also a uniformly random number
1 minute think between 1 and n, independent of h(1),
(wait) 1 minute share h(2).

* h(n) is also a uniformly random number
between 1 and n, independent of h(1),
h(2), ..., h(n-1).

A uniformly random hash function
IS ot a good idea.

* [n order to store/evaluate a uniformly random hash
function, we’d use a lookup table:

—m e Each value of h(x) takes

AAAAAA log(n) bits to store.
AR 5 e Storing M such values
AAAAAC 3 ' '
All of the M requires Mlog(n) bits.
things in the — AAAAAD 3 . .
universe * In contrast, direct addressing
(initializing a bucket for every
77777V 7

item in the universe) requires
222222 . only M bits.

Another way to say this

* There are lots of hash functions.
* There are nM of them.

* Writing down a random one of them takes log(n™)
bits, which is M log(n).

Solution

* Pick from a smaller set of functions.

A cleverly chosen subset
of functions. We call such
a subset a hash family.

We need only log[H| bits
to store an element of H.

Outline

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
* |like self-balancing binary trees

* The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magic.

Hash families

* A hash family is a collection of hash functions.

“All of the hash functions” is
an example of a hash family.

This is still a terrible ideal!

Exa m p ‘ e : Don’t use this example!
. For pedagogical purposes only!
a smaller hash family

 H ={ function which returns the least sig. digit,
function which returns the most sig. digit }
* Pick hin H at random.

* Store just one bit
to remember
which we picked.

Th e ga me 2. You, the algorithm, chooses a random hash
h, = Most significant digit ~ function h: U — {0, ..., 9}. Choose it
h, = Least_significant_digit randomly from H.

H = {ho, hy} 0@

| picked h,

1. Anadversary (who knows H) chooses any n
items uq, u,, ..., u, € U, and any sequence
of INSERT/DELETE/SEARCH operations on
those items.

HASH IT OUT ghashpuns

wlEEER

INSERT 19, INSERT 22, INSERT 42, |
INSERT 92, INSERT O, SEARCH 42, 1

, DELETE 92, SEARCH O, INSERT 92 o |
=

This is not a very good hash family

* H ={ function which returns least sig. digit,
function which returns most sig. digit }

* On the previous slide, the adversary could have
been a lot more adversarial...

Th e ga me 2. You, the algorithm, chooses a random hash
h, = Most significant digit ~ function h: U — {0, ..., 9}. Choose it
h, = Least_significant_digit randomly from H.

H = {ho, hy} Q@

| picked h,

1. Anadversary (who knows H) chooses any n
items uq, u,, ..., u, € U, and any sequence
of INSERT/DELETE/SEARCH operations on
those items.

3. HASH IT OUT gnashpuns

=

)

Outline

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
* |like self-balancing binary trees

* The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magic.

How to pick the hash family?

* Definitely not like in that example.
* Let’s go back to that computation from earlier....

)

Expected number of items in u.’s bucket?

. E[m(u‘) — h(uﬂ>

e =1+ 54 P{hu) = h(w))
. =1+ Z]# 1/7’l \

was that this is 1/n

|
s19)oNnq U

COLLISION!

Strategy

* Pick a small hash family H, so that when | choose h
randomly from H,

. In English: fix any
fOI’ all ul, u] E U Wlth U,l ;t u], two elements of U.

The probability

1
PhEH{ h(ul) — h(u])} < E that they collide

under a random h
in His small.

* A hash family H that satisfies this is
called a universal hash family.

So the whole scheme will be

Choose h randomly 6

from a universal hash
family H

We can store h using

log|H| bits.
Probably
— these
> >
= buckets will
— % be pretty
o ot balanced.

Universe U

Universal hash family

* H is a universal hash family if, when h is chosen
uniformly at random from H,

forall u;,u; € U withu; # u;,

1
Prenf h(w) = h(u;)} < -

* Pick a small hash family H, so that when |
choose h randomly from H,

Exa m p‘e forallu;, u; € U withu; # u;,

1
Pren{ h(w) = h(w;)} < -

* H = the set of all functions h: U - {1, ...,n}

* We saw this earlier — it corresponds to picking a
uniformly random hash function.

e Unfortunately, this H is really really large.

* Pick a small hash family H, so that when |
choose h randomly from H,

NOn—examp‘e forallu;, u; € U withu; # uj,

Pren{ h(w) = h(y)} < %

* hy = Most_significant_digit
* h, = Least_significant_digit
* H={hg, hy{}

NOT a universal hash family:

P {h(101) = h(111)} = 1 > %

A small universal hash family??

* Here’s one: How do you pick the
prime number p that’s

not too larger than M?

* Picka primep = M.
* Define

fap(x) =ax+b modp

hap(x) = fap(x) modn
e Define:
H={hgp(x) :a€f{l,..,p—1},b€{0,..,p—1}}

e Claim:
H is a universal hash family.

Say what?

e Example: M =p=5,n=3

* To draw h from H:
* Pickarandomain{i,... 4}, bin{0,...,4}
* As per the definition:
* f01(x) =2x+1 mod5
* hy1(x) = f21(x) mod 3

f21(3) | —
fo1 (1) ’ 1
f2,1 (x) d3
/ f2,1(4) W 3
U= This step just f2,1(2) This step is the one N |
scrambles stuff up. where two different.

No collisions here! elements might collide.

h takes O(log M) bits to store
O

* Just need to store two numbers:
e aisin{l,...,p-1}
* bisin{0,...,p-1}
e So about 2log(p) bits
e By our choice of p (close to M), that’s O(log(M)) bits.

* Also, given a and b, h is fast to evaluate!
* |t takes time O(1) to compute h(x).

* Compare: direct addressing was M bits!
* Twitter example: 2log(M) =2*280 log(128) = 3920 vs M = 128280

Why does this work?

* This is actually a little complicated.
* See |lecture note if you are curious.
* You are NOT RESPONSIBLE for the proof in this class.

* But you should know that a universal hash family of size
O(M?) exists.

Try to prove that this is a
universal hash family!

But let’s check that it does work

* Check out the Python notebook for lecture 8

Number of pairs of (x,y).
(Out of (220) = 19900 pairs)

12000 A

10000 A

8000 -

6000 -

4000 -

2000 A

M=200, n=10

Nl universal hash family

not good hash family

0.0

01 02 03

04

0.5

0.6

07 08 09 10

Empirical probability of collision out of 100 trials

So the whole scheme will be

-

¥

Choose a and b at random
and form the function h,),

We can store h in space
O(log(M)) since we just need
to store a and b.

Probably
— these

> >
= buckets will
ha,b — o be pretty

_— D
ot balanced.

> -
Universe U

Outline

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.

* |like self-balancing binary trees

* The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magic.

Recap 4

Want O(1)
INSERT/DELETE/SEARCH

* We are interested in putting nodes with keys into a
data structure that supports fast
INSERT/DELETE/SEARCH.

* INSERT

* DELETE E
* SEARCH

data structure
HERE IT IS

We studied 2

this game

1. An adversary chooses any n items
Uq, Uy, ..., Uy € U, and any sequence
of L INSERT/DELETE/SEARCH
operations on those items.

)@ @]E]]

INSERT 13, INSERT 22, INSERT 43,
~ INSERT 92, INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7, INSERT 92

S
n

You, the algorithm, choose

a random hash function
h:U - {1, ..

HASH IT OUT
1__ 43
2| -

Uniformly random h was good

* If we choose h uniformly at random,
for all ui,uj € U with Ui =+ Uj,

1
Prenf{ h(w)) = h(w)} < ~
* That was enough to ensure that all

INSERT/DELETE/SEARCH operations took O(1)
time in expectation, even on adversarial inputs.

Uniformly random h was bad

* If we actually want to implement this, we have to
store the hash function h.

* That takes a lot of space!

* We may as well have just
initialized a bucket for every
single item in U.

* Instead, we chose a function
randomly from a smaller set.

Universal Hash Families

H is a universal hash family if:

* If we choose h uniformly at random in H,
for all U, uj € U withu; # uj,

1
Pren{ h(w;) = h(w)} < ~

This was all we needed to make
sure that the buckets were
balanced in expectation!

* We gave an example of a really small universal hash
family, of size O(M?)

* That means we need only O(log M) bits to store it.

)

Hashing a universe of size M into n
buckets, where at most n of the
items in M ever show up.

Conclusion:

* We can build a hash table that supports
INSERT/DELETE/SEARCH in O(1) expected time

e Requires O(n log(M)) bits of space.
* O(n) buckets
* O(n) items with log(M) bits per item
* O(log(M)) to store the hash function

That’s it for data structures
(for now)

Achievement unlocked

Data Structure: RBTrees and Hash Tables

Now we can use these going forward!

Next Time

* Graph algorithms!

Ime

Before Next T

lecture exercise for Lecture 9
* Intro to graphs

* Pre

