Lecture 9

Graphs, BFS and DFS

Announcements!

* Homework 4 due today.

* No new homework this week: use the time to study
for the midterm!

 Midterm (Feb 16, 6pm — 9pm) covers up to (and incl.)
lecture 7. This week’s lectures are not included.

More detailed schedule on the website!

Roadmap

Divide and
conquer

Dynamic
Programming

Greedy Algs

Future!

Outline

e Part 0: Graphs and terminology

* Part 1: Depth-first search
* Application: topological sorting
* Application: in-order traversal of BSTs

e Part 2: Breadth-first search

* Application: shortest paths
e Application (if time): is a graph bipartite?

Part O: Graphs

o

\n.. @

.
.g
A
s

(circa 1999...it's a lot
bigger now...)

Graph of the internet

Graphs

Citation graph of
literary theory
academic papers

® Oavenon D vo84

& Roy A1

® Wrgerstan L Price rwestganon
7 Sraon S 1983 .

ks] PRSI

© Duser J 1000

© Borgaren W 1972
& Lo B 1oy
® Srowater Daire 177
¥ Borjperen Watter 1977
) & Ve G 190
@ Chors) o0
® Goodman Nebon 1378
® Goodwan N 1078
© Ciced Jadihivame 1 1978

@ Sais Dw 1000

LA AL

. Deom 197
@ Boon rasces 1975 LELL 3
@ Aory Acnans 19es® Ry 19T .l

- Swa,
Xowco § 192« by Do 80

¥ Soves O 0
“'“MOIN ® Guaman Fotx 1554

| Jamenco Fredc 1979 .
& Caguecn Jorry "8y isge O 1909 arvey O
N\ & - ¢ Gugo 200 @ Agaroen Gungo 1999

- @ relor-roasen Darel 1998

o Opron s 302 © Doy N Voo

® Derrca Jacouss 1974 oo N e
& Oorton Cotn 1980 B Oueresa MDA PEI24 1991 Jaagued ® Sconi C 19088
.mw ‘%-um ® Narcy ot
& Butemorss Suten 1500 . a 1990
B Fovcaut M Deciplre Pungh
® Oorrda Jacoues 1985
@ Oerrcta J 087

S Coved 5109
@ Caved Starkey 1980

- L J
Graphs ‘
1 L]
. {meehan, auction, price, ...}
o
y . L]
. . > -
Theoretical Computer) { "/ .
Science academic P W ‘ e V. <
- CAMY, |) M.Shapiraj. 4 ‘ ‘:
communities . S f-M.Yan akakis —*-. o Sva I
S .
L]

740 l'.,‘ \ /

.‘-"' ; . =y
(T YNaziraniZ A Kain ?

\
bt
.

{approxim, ...}

, 7 RKleinb
. »N.Aft"rl‘m%:(ilica

a .\ {approxim, mechan,‘auction, ...}
. X AKX \ Y N & Sap S
. ‘-A/U.Va‘irani /.
Tt Example from DBLP:

Communities within the co-authors of Christos H. Papadimitriou
8

S/

S

e

The Godfather Characters
Interaction Network

..

G 'a p h S jetblue flights

seattle
syracuse burlington
rochester g Doston
sacramento salt lake city buffalo =20 nyc/jfk
denver — K| 2
oakland —— .t\-\nydlga
sanjose | A= ' S deldulles
ontario - 35 Vegas — /,’ l}'r'}“‘.l\. \
- = = ' "l I‘l’I)\ "'.
long beach <% ’,./f‘.),., Ao
san diego \phoenix new orleans }dﬂndo ”‘f : (wmlpd‘:'-be?'l:h
o lampa "y nassau\
- e
T~ fortmyers L[] Stk
" fortlauderdale |
""""" v
santiago J/ | |
santo domingo l l
mn'n'nqunﬁt:

.)
= 2\
S T -
RN O BN
@ S G Jholsa g;\“ifm
> o?

| ———=

i‘
N (m) TES
O = R el e |l
S o) T
i *’6‘ [A L L %ﬁgA _-

N 2

e

Q 7 sy
75 *

—
Q
==

-‘
. =
@'

==
_

——

11

dpkg

(>=5.93-1)

Graphs

libbz2-1.0

e

— (>=1.154)

coreutils

(>=2.2.51-5)

(>=1.23)

PN S s

_____y| timeout

debian dependency (sub)graph

libselinuxl

(>=1:2.4.46-5)

[dpkg]

libattrl

(>=2.4.46-3)

install-info

libacll

multiarch-support

libacll-kerberosdkth

L Wi

(>= 5.1.1alpha+20110809)

12

Graphs

Immigration
flows

The bilateral flows between 196 countries are estimated from sequen- North The circular plot shows the estimates of directional flows between the
tiad stock tabies (see overieaf for details), They s com- ¥ A")er,'c.3 50 countries that send and/or receive at least 0.5% of the

parzble a10ss countries and capture the number ‘-\(_a workd's migrants in 2005-10. Tick marks indicate
of people who changed their country of P‘«\‘3 i gross migration (in -+ out) in 100,000’
residence between mid-2005 and 0\'_\0

mid-2010.

%
3- “01 \ W
> \
&
§ :\Q@M
b Phiippines 9 g
E'™ 8
" =: umhdi;s‘
W " Switzerland
i & b
"\ % I
-~ \ d
z i P
® : "p,,'"
Y

13

Potato trade

Graphs

World trade in fresh potatoes, flows over 0.1 m US$ average 2005-2009

Graphs -~

Soybeans

Water

Graphs

600

Diseases

L)

Graphical models

symptoms

A

4000

)

16

Graphs

What eats what in
the Atlantic ocean?

Neural connections
in the brain

k-core

Graphs

* There are a lot of graphs.

* We want to answer questions about them.
 Efficient routing?
 Community detection/clustering?

* From pre-lecture exercise:
* Computing Bacon numbers
* Signing up for classes without violating pre-req constraints

* How to distribute fish in tanks so that none of them will fight.

* This is what we’ll do for the next several lectures.

19

Undirected Graphs 2

* Has vertices and edges 0

* Vis the set of vertices

* Eisthe set of edges e

* Formally, a graph is G = (V,E)

G = (V,E)
* Example e

. V={1,2,3,4)
* E=1{{1,3},{2,4}, 3,4},{2,3} }

* The degree of vertex 4 is 2.
* There are 2 edges coming out
* Vertex 4’s neighbors are 2 and 3

20

Directed Graphs

* Has vertices and edges
* Vis the set of vertices

* Eis the set of DIRECTED edges

* Formally, a graph is G = (V,E)

* Example
* V={1,2,3,4}

A
7.

* E=1(1,3),(2,4), (3,4), (4,3), (3,2) }

The in-degree of vertex 4 is 2.

The out-degree of vertex 4 is 1.
Vertex 4’s incoming neighbors are 2,3
Vertex 4’s outgoing neighbor s 3.

How do we represent graphs?

e Option 1: adjacency matrix

v € C 1

How do we represent graphs?

e Option 1: adjacency matrix

v € C 1

O RO MR-
—_m O O
—_ O W

How do we represent graphs?

e Option 1: adjacency matrix

Destination
1 2 3

0 0 (1)

~|10 0 O
w 1 0
L0 0 1

92JN0S§

How do we represent graphs?

* Option 2: adjacency lists.

1 2 3

!

W

&)

4
i How would you /4
25

. dify this f
4’s neighbors are modiy Fhis To7
directed graphs?
2and 3

In either case

e \Vertices can store other information
e Attributes (name, IP address, ...)

* Helper info for algorithms that we will perform on the
graph

* Want to be able to do the following operations:
* Edge Membership: Is edge e in E?
* Neighbor Query: What are the neighbors of vertex v?

26

Trade-offs

Generally better for sparse
graphs (Where m « n?)

Say there are n vertices 8 8 } (1) é) I .
and m edges. 1 101 ¥ i
0O 1 1 O 9 a
@
Edge membership O(deg(v)) or
- fod i 1
Is e ={v,w}inE? O() O(deg(w))

Neighbor query
Give me a list of v’s
neighbors.

O(n)

O(deg(v))

Space requirements

O(n?)

See Lecture 9 Python notebook for an actual

implementation!

O(n + m)

We'’ll assume this
representation 2f7or
the rest of the class

Part 1: Depth-first search

How do we explore a graph?

At each node, you can get a list of neighbors,
and choose to go there if you want.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

O Been there, haven’t
explored all the
paths out.

. Been there, have
explored all the
paths out.

30

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

31

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

32

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

33

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

' Been there, haven’t
explored all the
paths out.

' Been there, have
explored all the
paths out.

34

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

35

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

36

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

' Been there, haven’t
explored all the
paths out.

' Been there, have
explored all the
paths out.

37

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

38

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

39

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

' Been there, haven’t
explored all the
paths out.

' Been there, have
explored all the
paths out.

40

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

41

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

42

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

43

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

44

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

‘ Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with pseudocode

* Each vertex keeps track of whether it is:
* Unvisited ()

* In progress ()
* Alldone @

* Each vertex will also keep track of:

e The time we . Sl

e The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what we are about to go

through. This way has more bookkeeping — the bookkeeping will be useful later!
46

Depth First Search

currentTime = 0 * DFS(w, currentTime):
e w.startTime = currentTime
currentTime +=1
Mark w as in progress
for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
* currentTime +=1
w.finishTime = currentTime
Mark w as all done
return currentTime

47

Depth First Search

currentTime = 1 * DFS(w, currentTime):
e w.startTime = currentTime
currentTime +=1
Mark w as in progress
for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
* currentTime +=1
w.finishTime = currentTime
Mark w as all done
return currentTime

48

Depth First Search

currentTime = 1 * DFS(w, currentTime):
e w.startTime = currentTime
currentTime +=1
Mark w as in progress
for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
* currentTime +=1
w.finishTime = currentTime
Mark w as all done
return currentTime

Start:0

49

Depth First Search

currentTime =2

Start:0

Start: 1

O unvisited
O in progress
. all done

* DFS(w, currentTime):

e w.startTime = currentTime
currentTime +=1
Mark w as in progress
for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
* currentTime +=1
w.finishTime = currentTime
Mark w as all done
return currentTime

50

Depth First Search

currentTime = 20 * DFS(w, currentTime):
* w.startTime = currentTime
currentTime +=1
Mark w as in progress
for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
Start: 1 * currentTime +=1
w.finishTime = currentTime

@ unvisited Mark w as all done
return currentTime

Start:0

5
©
=
@)
oQ
=
()
wn
w
([

Takes until
currentTime = 20 . all done 51

Depth First Search

currentTime =21 * DFS(w, currentTime):
* w.startTime = currentTime
currentTime +=1
* Mark w as in progress
for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
Start: 1 * currentTime +=1
w.finishTime = currentTime

() unvisited Mark w as all done
O in progress return currentTime

. all done 52

Start:0

Takes uhtil
currentTime = 20

Depth First Search

currentTime = 21 * DFS(w, currentTime):

* w.startTime = currentTime
currentTime +=1

* Mark w as in progress

for vin w.neighbors:

e ifvis
Start:0 _
* currentTime
W = DFS(v, currentTime)
Start: 1 * currentTime +=1

End: 21

w.finishTime = currentTime
() unvisited Mark w as all done
O in progress return currentTime

. all done 53

Takes until
currentTime = 20

Depth First Search

currentTime = 22

Start:0

Start: 1
End: 21

O unvisited
O in progress
. all done

Takes until
currentTime = 20

* DFS(w, currentTime):

* w.startTime = currentTime
* currentTime +=1
* Mark w as in progress
* for vin w.neighbors:
e ifvis
* currentTime

= DFS(v, currentTime)

e currentTime +=1

Mark w as all done
e return currentTime

w.finishTime = currentTime

54

This is not the only way to write DFS!

 See the lecture notes for an iterative version (using
stacks)! If your graph is large and stack overflow a
concern, use this version.

 (Or figure out how to do it yourself!)

DFS finds all the nodes reachable
from the starting point

In an undirected graph, this is
called a connected component.

4«

One application of DFS: finding
connected components.

56

To explore the whole graph

* Do it repeatedly!

start

57

Why is it called depth-first?

* We are implicitly building a tree:

Call this the
“DFS tree” :

Running time

To explore just the connected component we started in

* We look at each edge at most twice.
* Once from each of its endpoints

* And basically, we don’t do anything else.
* So...

O(m)

59

Running time

To explore just the connected component we started in

* Assume we are using the linked-list format for G.
e Say C=(V’, E’) is a connected component.

* We visit each vertex in V’ exactly once.
* Here, “visit” means “call DFS on”

* At each vertex w, we:
* Do some book-keeping: O(1)

* Loop over w’s neighbors and check if they are visited (and

then potentially make a recursive call): O(1) per neighbor or
O(deg(w)) total.

* Total time:
* 2wey'(0(deg(w)) +0(1))
* = 0(|E,| +b In a connected graph,
° — 0(|E’|) V'] < |E’| + 1.

60

Running time

To explore the whole graph

* Explore the connected components one-by-one.

* This takes time O(n + m)

 Same computation as before:
Lwer(0(deg(w)) +0(1)) = O(|E| + [V]) = O(n + m)

" o ©® ©® 0 ©
e © & o ©

Here m=0 but it still takes time
O(n) to explore the graph.

e

Here the running time is
O(m) like before

You check:

DFS works fine on directed graphs too!

Only walk to C, not to B.

Siggi the studious stork
62

Pre-lecture exercise

* How can you sign up for classes so that you never
violate the pre-req requirements?

* More practically, how can you install packages
without violating dependency requirements?

Application of DFS: topological sorting

* Find an ordering of vertices so that all of the
dependency requirements are met.

* Aka, if vcomes before w in the ordering, there is not an
edge from w to v.

multiarch-
support

Suppose the dependency graph has no cycles:
it is a Directed Acyclic Graph (DAG) 64

Can’t always eyeball it.

oo, | e | R |t

L integratan

[
S TIAPNOT | 2 TS IRAPINOT |24 S INAPINOT

s | S |

Apaire OF

65

What do you notice about the

I_et ,S d O D FS finish times? Any ideas for how

we should do topological sort?
1 minute think
(wait) 1 minute share

PN

start:9

finish:lO

start:7

finish:8 multiarch
-support
0 e start:3

finish:4
A

start:0
finish:11
start:2
start:1 finish:5

finish:6 -

Suppose the underlying
graph has no cycles

Finish times seem useful

Claim: In general, we’ll always have:

(2 ——(e

finish: [larger] finish: [smaller]

To understand why, let’s go back to that DFS tree.

67

(check this .
statement

A more general statement Lo

(this holds even if there are cycles)

 |fvisadescendant of win this tree: = \

w.start wv.start v.finish w.finish
timeline I I I I

e |fwisadescendant of vin this tree:

v.start w.start w.finish v.finish

— 1 1 1 1

* If neither are descendants of each other:_,.-":

v.start v.finish w.start w.finish

— 1 1 1 1

(or the other way around)

(A8

Then B.finishTime < A.finishTime
Suppose the underlying

graph has no cycles g B \
e Case 1: B is a descendant of A in the

DFS tree.

So to prove this —

e Then -
B.startTime A.finishTime

A.startTime I B.finishTime I

e aka, B.finishTime < A.finishTime.

(A8

Then B.finishTime < A.finishTime
Suppose the underlying

. graph hf’;\s no cycles g Kl \
* Case 2: Bisa NOT descendant of A in the

DFS tree.
* Notice that A can’t be a descendant of B in the DFS
tree or else there’d be a cycle; so it looks like this —
 Then we must have explored B before A.

* Otherwise we would have gotten to B from A, and B .
would have been a descendant of A in the DFS tree.

e Then

So to prove this —

B.finishTime A finishTime

B.startTime l A.startTime I

* aka, B.finishTime < A.finishTime.

g

Theorem

* If we run DFS on a directed acyclic graph,

(A8

Then B.finishTime < A.finishTime

71

Back to "(A>(B)

. . Then B.finishTime < A.finishTime
topological sorting

* In what order should | install packages?

* In reverse order of finishing time in DFS!
start:3
finish:4

multiarch-
support

start:9
finish:10

start:7
finish:8

start:2
finish:5

start:0
start:1 finish:11

finish:6

Suppose the dependency graph has no cycles:
it is a Directed Acyclic Graph (DAG) 72

Topological Sorting (on a DAG)

* Do DFS -
* When you mark a vertex as all done, + coreutils
put it at the beginning of the list. ’ Eégb i
[] l Z
* libselinuxl
* multiarch support
tart:9 start:3
start:
finish:4
finish:10 In1s
start:7 multiarch-

finish:8 support

start:2
finish:5

start:0
finish:11

start:1
finish:6

73

For implementation,
see Python notebook

In [69]: print(G)

CS161Graph with:

Vertices:

dkpg,coreutils,multiarch_support,libselinuxl,libbz2,tar,

Edges:

(dkpg,multiarch_support) (dkpg,coreutils) (dkpg,tar) (dkpg,libbz2
) (coreutils,libbz2) (coreutils,libselinuxl) (libselinuxl,multiarch_suppo
rt) (libbz2,libselinuxl)

In [71]): |V topoSort(G)
for v in V:
print(v)

dkpg

tar

coreutils

libbz2
libselinuxl
multiarch_support

74

What did we just learn?

* DFS can help you solve the topological sorting
problem

* That’s the fancy name for the problem of finding an
ordering that respects all the dependencies

* Thinking about the DFS tree is helpful.

75

This example skipped in

Exa M p ‘ e: class — here for reference.

O Unvisited
O In progress

. All done

Start:0

76

This example skipped in
Exa M p ‘ e class — here for reference.

O Unvisited
O In progress

. All done

Start:0

77

This example skipped in

Exa M p | e class — here for reference.

O Unvisited
‘ In progress

‘ All done

Start:0

Start:1

Start:2 78

This example skipped in
Exa M p | e class — here for reference.

Start:3

Q Unvisited
' In progress

' All done

Start:0

Start:1

Start:2 79

This example skipped in
Exa M p | e class — here for reference.

Start:3
Leave:4

O Unvisited
‘ In progress

‘ All done

Start:0

Start:1

Start:2 80

Example

Start:3
Leave:4

Start:0

Start:1

Start:2
Leave:5

This example skipped in
class — here for reference.

O Unvisited
‘ In progress

‘ All done

81

Example

Start:3
Leave:4

Start:0

Start:1
Leave: 6

Start:2
Leave:5

This example skipped in
class — here for reference.

O Unvisited
‘ In progress

‘ All done

82

This example skipped in
Exa M p ‘ e class — here for reference.

Start:3
Leave:4

O Unvisited
‘ In progress

‘ All done

Start:0
Leave: 7

Start:1
Leave: 6 Do them in this order:

83

Start:2
Leave:5

Another use of DFS
that we’ve already seen

* In-order enumeration of binary search trees

Do DFS and print a node’s
label when you are done with
the left child and before you

begin the right child.

84

Part 2: breadth-first search

How do we explore a graph?

If we can fly

5

Breadth-First Search

Exploring the world with a bird’s-eye view

O Not been there yet

® :
4) . Can reach there in
zero steps
. Can reach there in

one step
start

O Can reach there in
two steps

. Can reach there in
three steps

87

Breadth-First Search

Exploring the world with a bird’s-eye view

O Not been there yet

® :
4) . Can reach there in
zero steps
. Can reach there in

one step
start

O Can reach there in
two steps

. Can reach there in
three steps

88

Breadth-First Search

Exploring the world with a bird’s-eye view

start

O Not been there yet

. Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

. Can reach there in
three steps

89

Breadth-First Search

Exploring the world with a bird’s-eye view

start

O Not been there yet

‘ Can reach there in
zero steps

‘ Can reach there in
one step

‘ Can reach there in
two steps

‘ Can reach there in
three steps

90

Breadth-First Search

Exploring the world with a bird’s-eye view

start

Q Not been there yet

' Can reach there in
zero steps

' Can reach there in
one step

' Can reach there in
two steps

' Can reach there in
three steps

Same disclaimer as for DFS: you may have seen other ways to implement this,

this will be convenient for us.
Breadth-First Search
Exploring the world with pseudocode

e Set L =[] fori=1,...,n L; is the set of nodes
we can reachin i

* L, = [w], where w is the start node
steps from w

 Mark w as visited
* Fori=0, ..., n-1:
* ForuinL;:
* For each v which is a neighbor of u: O_
 If visn’t yet visited: O

* mark v as visited, and putitin L, Lo
o

%) 1

Go through all the nodes ® L,
in L, and add their @

unvisited neighbors to L., 5w L3

BFS also finds all the nodes
reachable from the starting point

It is also a good way to find all
the connected components.

Running time and
extension to directed graphs

* To explore the whole graph, explore the connected

components one-by-one.
e Same argument as DFS: BFS running time is O(n + m)

* Like DFS, BFS also works fine on directed graphs.
Verify these!

Siggi the StudioussStork

Why is it called breadth-first?

* We are implicitly building a tree:

* First we go as broadly as we can.

95

Pre-lecture exercise

e What Samuel L. Jackson’s Bacon number?

C .
\x’ég’\ "
Samuel L.
Jackson

, T "
Kevin ‘A
Bacon . ¢
Ariana Richards

(Answer: 2)

An example with distance 3

Tilda — " \\ g Oliver Sacks It is really hard to find

people with Bacon
97
number 3!

Swinton

Application of BFS: shortest path

* How long is the shortest path between w and v?

98

Application of BFS: shortest path

* How long is the shortest path between w and v?

O Not been there yet

. Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

4 Can reach there in
Q three steps
It’s three!

99

To find the distance between w
and al Other Ve rtlces V The distance between two

vertices is the number of edges in
the shortest path between them.

* Do a BFS starting at w

* Forall vin L

* The shortest path between w and v
has length i. Lo

e A shortest path between w and v is
given by the path in the BFS tree. |_1

* |f we never found v, the distance
is infinite.

Modify the BFS pseudocode
to return shortest paths!
Prove that this indeed
returns shortest paths!

Gauss hasno ML
Bacon number \

Call this the
“BFStree”

What have we |learned?

* The BFS tree is useful for computing distances
between pairs of vertices.

* We can find the shortest path between u and v in
time O(m).

Another application of BFS (if
time)

* Testing bipartite-ness

Pre-lecture exercise: fish

* You have a bunch of fish and two fish tanks.

* Some pairs of fish will fight if put in the same tank.
* Model this as a graph: connected fish will fight.

e Can you put the fish in the two tanks so that there is no fighting?

Bipartite graphs

* A bipartite graph looks like this:

AN

\

{

Can color the vertices red
and orange so that there
are no edges between any
same-colored vertices

Example:

@ areintank A

© areintank B
@—O if the fish fight

Example:

@® are students

© are classes

@—0 if the studentis
enrolled in the:class

s this graph bipartite?

‘4,
~ X

Ny
4L
SN
/" X\

How about this one?

How about this one?

This one?

Application of BFS:
Testing Bipartiteness

* Color the levels of the BFS tree in
alternating colors.

* If you never color two connected
nodes the same color, then it is
bipartite.

* Otherwise, it’s not.

Does DFS work
here too?

Breadth-First Search

For testing bipartite-ness

O Not been there yet

®
A) O Can reach there in
zero steps
. Can reach there in

one step
start

O Can reach there in
two steps

. Can reach there in
three steps

111

Breadth-First Search

For testing bipartite-ness

O Not been there yet

®
A) O Can reach there in
zero steps
. Can reach there in

one step
start

O Can reach there in
two steps

. Can reach there in
three steps

112

Breadth-First Search

For testing bipartite-ness

start

O Not been there yet

O Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

. Can reach there in
three steps

113

Breadth-First Search

For testing bipartite-ness

start

Q Not been there yet

' Can reach there in
zero steps

' Can reach there in
one step

' Can reach there in
two steps

' Can reach there in
three steps

114

Breadth-First Search

For testing bipartite-ness

start

Q Not been there yet

' Can reach there in
zero steps

' Can reach there in
one step

' Can reach there in
two steps

' Can reach there in
three steps

115

Breadth-First Search

For testing bipartite-ness

O Not been there yet

®
é) O Can reach there in
zero steps
. Can reach there in

one step
start

Q Can reach there in
two steps

. Can reach there in
three steps

116

Breadth-First Search

For testing bipartite-ness

O Not been there yet

®
é) O Can reach there in
zero steps
. Can reach there in

one step
start

Q Can reach there in
two steps

. Can reach there in
three steps

117

Breadth-First Search

For testing bipartite-ness

start

O Not been there yet

‘ Can reach there in
zero steps

‘ Can reach there in
one step

‘ Can reach there in
two steps

‘ Can reach there in
three steps

118

Breadth-First Search

For testing bipartite-ness

start

Q Not been there yet

' Can reach there in
zero steps

' Can reach there in
one step

' Can reach there in
two steps

' Can reach there in
three steps

119

Breadth-First Search

For testing bipartite-ness

Q Not been there yet

‘ Can reach there in
zero steps

‘ Can reach there in
one step

‘ Can reach there in
two steps

‘ Can reach there in
three steps

120

Hang on now.

e Just because this coloring doesn’t
work, why does that mean that
there is no coloring that works?

| can come up
with plenty of bad
colorings on this
legitimately
bipartite graph...

Plucky the

pedantic penguin
121

Make this proof
sketch formal!

Some proof required

Ollie the over-achieving ostrich

* If BFS colors two neighbors the same color, then it’s
found a cycle of odd length in the graph.

There must

= pe an even
number of

start
these edges

This one extra
makes it odd 122

Make this proof
sketch formal!

Some proof required

Ollie the over-achieving ostrich

* If BFS colors two neighbors the same color, then it’s
found a cycle of odd length in the graph.

* But you can never color an odd cycle with two colors
so that no two neighbors have the same color.
e [Fun exercise!]

e So you can’t legitimately color
the whole graph either.
* Thus it’s not bipartite. O

O

123

What have we |learned?

BFS can be used to detect
bipartite-ness in time O(n + m).

@

124

Outline

e Part 0: Graphs and terminology

* Part 1: Depth-first search
* Application: topological sorting
* Application: in-order traversal of BSTs

e Part 2: Breadth-first search
* Application: shortest paths

e Application (if time): is a graph bipartite? l

Recap

125

Recap

* Depth-first search
e Useful for topological sorting
* Also in-order traversals of BSTs

* Breadth-first search
e Useful for finding shortest paths
* Also for testing bipartiteness

* Both DFS, BFS:

e Useful for exploring graphs, finding connected
components, etc

126

Still open (next few lectures)

* We can now find components in undirected graphs...

* What if we want to find strongly connected components
in directed graphs?

* How can we find shortest paths in weighted graphs?

* What is Samuel L. Jackson’s Erdos number?
e (Or, what if | want everyone’s everyone-else number?)

127

Next Time

 Strongly Connected Components

Next Time

* Pre-lecture exercise: Strongly Connected What-Now?

