CS 161 (Stanford, Winter 2023) Section 8

1 Max-Cut

In this question we'll try to come up with algorithms for the Max-Cut problem, which is just
like Min-Cut but with the opposite objective: we're given an undirected, unweighted graph
G = (V,E), and our goal is to find a partition of the vertices into subsets S,V \ S that
maximizes the number of edges going from S to V' \ S.

We've given two possible algorithms for the Max-Cut problem in 2.1 and 2.2. For each one,
give a short explanation of why it does or doesn't find the max-cut.

1.1 Modified Ford-Fulkerson

Assume that all edges have weight 1. Enumerate over all candidate pairs of (s, t). For each
pair find the minimum s-t flow, using the idea that a MinFlow corresponds to a MaxCut
(consider the MinCut = MaxFlow theorem we saw in class, just reversing min and max).

If the algorithm is correct, please provide an informal explanation. If the algorithm is incorrect,
please provide a counter-example and an explanation of why it is a counter-example.

1.2 Modified BFS

Initialize two empty sets S; and S,. Run BF S on the graph starting at a random node, adding
the start node to S;. Then at each step of BF S, add the current node to the opposite set as
its parent (the node it was discovered from). Terminate once all nodes have been discovered,
and return {51, S»} as the cut.

If the algorithm is correct, please provide an informal explanation. If the algorithm is incorrect,
provide a counter-example and an explanation of why it is a counter-example.

1.3 Greedy Algorithm

Next you will design a greedy algorithm that runs in time O(m+ n) on G, an undirected and
unweighted graph, and returns a cut of size at least 1/2 times the maximum cut.

Please provide an English description of your algorithm, an informal justification of correct-
ness, and a runtime analysis.

[Hint: You can always return a cut with at least 1/2 of all the edges in the graph.]

2 Task Selection

Suppose you have a set of k tasks ti,...,tx. There are certain tasks such that t; is a
prerequisite of t;. Each task ¢; also has an integer reward r;, which may be negative. Find an
optimal subset of tasks to complete to maximize your reward.

3 Max Flow Potpourri

How would you use a max flow algorithm to handle the following situations?

3.1

Suppose that instead of having a single source s and a single sink t, we have multiple sources
S ={s1,%,....,s¢} and multiple sinks T = {ty, t5, ..., t,}. How can you find the max flow in
the graph from sources to sinks?

3.2

Suppose that in addition to edges having max flow capacities, vertices also have a limit to
their capacity; that is, each vertex v; has capacity ¢;. How can you find the max flow from a
source s to sink t in this graph?

4 Expense Settling

You've gone on a trip with k friends, where friend / paid ¢; for the group’s expenses. The
expenses should be split equally amongst the friends. You would like to develop an algorithm
to ensure that everyone gets paid back fairly, but without going through one person (that is,
each person should either pay or receive money but not both).

5 Fear of Negativity

Do our graph algorithms work when the weights are negative? Let's answer that in this
problem. Assume that the graph is directed and that all edge weights are integers.

5.1 Negative Cycles

A “negative cycle” is a cycle where the sum of the edge weights is negative. Why can't we
compute shortest paths in a graph with negative cycles?

Please provide an informal explanation.

5.2 Negative Dijkstra

Even if a graph contains no negative cycles (but still contains negative edges) we might still
be in trouble. Please draw a graph G, which contains both positive and negative edges but
does not contain negative cycles, and specify some source s € V where Dijkstra(G, s)
does not correctly compute the shortest paths from s.

Please provide a graph G with no more than 4 vertices (including a source node s), and an
example of a shortest path from s that is not correctly computed using Dijkstra’s algorithm.

5.3 A Fix for Negative Dijkstra?

Consider the algorithm Negative-Dijkstra for computing shortest paths through graphs
with negative edge weights (but without negative cycles). This algorithm adds some number
to all of the edge weights to make them all non-negative, then runs Dijkstra on the resulting
graph, and argues that the shortest paths in the new graph are the same as the shortest paths
in the old graph.

Negative—Dijkstra(G, s):
minWeight = minimum edge weight in G
for e in E: # iterate through all edges in G
modifiedWeight(e) = w(e) — minWeight
modifiedG = G with weights modified\Weight
T = Dijkstra(modifiedG, s) # run Dijkstra with modifiedWeight to get a SSSP Tree
update T to use weights w that corresponds to graph G
return T

(Note that an “SSSP tree”, or a “single-source-shortest-path tree”, is analogous to a breadth-
first-search tree in that paths in the SSSP tree correspond to shortest paths in the graph.
Here we assume that Dijkstra’s algorithm has been modified to output such a tree.)

Prove or disprove: Negative-Dijkstra always computes single-source shortest paths correctly
in graphs with negative edge weights.

To prove the algorithm correct, show that for all u € V/, a shortest path from s to v in the
original graph lies in T. To disprove the algorithm, exhibit a graph with negative edges, but
no negative cycles, where Negative-Dijkstra outputs the wrong “shortest” paths, and explain
why the algorithm fails.

5.4 Negative Prim?

Since Prim's algorithm is very similar to Dijkstra, we want to now consider a similar algorithm
Negative-Prim for computing minimum spanning tree in graphs with negative edge weights.
Again, this algorithm adds some number to all of the edge weights to make them all non-
negative, then runs Prim’s algorithm on the resulting graph, and argues that the Minimum

Spanning Tree in the new graph are the same as the MST in the old graph. You can assume
that all the edge weights are unique integers.

Negative—Prim(G, s):
minWeight = minimum edge weight in G
for e in E: # iterate through all edges in G
modifiedWeight(e) = w(e) — minWeight
modifiedG = G with weights modifiedWeight
T = Prim(modifiedG, s) # run Prim’s algorithm starting from s
update T with edges that corresponds to graph G
return T

Please give either an informal explanation of why Negative-Prim computes the correct MST,
or a counter-example of an undirected graph with negative edge weights where Negative-Prim
does not output the correct minimum spanning tree, as well as an explanation of why it is a
valid counter-example.

	Max-Cut
	Modified Ford-Fulkerson
	Modified BFS
	Greedy Algorithm

	Task Selection
	Max Flow Potpourri
	
	

	Expense Settling
	Fear of Negativity
	Negative Cycles
	Negative Dijkstra
	A Fix for Negative Dijkstra?
	Negative Prim?

