1 Conditions for Shortest Path Algorithms

Suppose that we want to find the shortest path between two nodes in the following graph. Which algorithm can we use?

O BFS
O Bellman-Ford
O All of the above
O BFS and Dijkstra
O Dijkstra and Bellman-Ford
Correct
We have a graph with negative edge weights. Can we use Dijkstra to find shortest paths? O Yes
O No
Correct
We have an undirected graph with positive edge weights. Can we use Dijkstra to find shortest paths? O Yes
O No

Correct
We have a directed graph with positive edge weights. Can we use Dijkstra to find shortest paths? O Yes
O No

Correct

2 Dijkstra Forensics

Suppose we run Dijkstra on some graph with nodes A, B, C, D, E, F that has nonnegative (≥ 0) edge weights, starting form the node A. in the midale of the algorthm our computer crashes. We look
through the memory dump, and see that the state of d looked as follows when the crash happened:

$$
d[A]=0, d[B]=5, d[C]=4, d[D]=15, d[E]=2, d[F]=20 .
$$

Additionally from the memory dump we see that the current node when the crash happened was node
What is the minimum possible length of the shortest path from node A to node B.
\square
Correct

What is the minimum possible length of the shortest path from node A to node E ?

Correct
What is the marimum possible length of the shortest p th from node A to

Correct
What is the minimum possible length of the shortest path from node A to node F ?

Correct
What is the maximum possible length of the shortest path from node A to node F ?
\qquad
Correct
If we run the Dijkstra algorithm on the graph of U.S. streets/roads/highways/etc., starting from the Stanford Oval, which of the following locations will become the current node first?
O Times Square in New York
O The Hollywood Sign
O The ordering might differ in each run of Dijkstra.

3 Runtime

Suppose that we implement Dijkstra with a red-black tree. What is the asymptotically smallest upper Suppose that we implement Djkstra with a red-black tree. What is the asymptotically
bound on runtime in terms of n (the number of nodes) and m (the number of edges).
O O($n \log n+m)$
$O O((n+m) \log n)$
○ $O(n+m)$
Correct
What if we implement Dijkstra with a Fibonacci heap? What is the asymptotically smallest upper What if we implement Divstra with a Fibonacci heap? What is the asymptotically
bound on runtime in terms of n (the number of nodes) and m (the number of edges).
O $O(n \log n+m)$
○ $O(n+m)$
Suppose that we have a heap data structure that does not support updating the keys (many standard mplementations of heaps in various programming languages do not support the update key operation) Our data structure keeps a collection of items, each of form (key, object), where keys are numbers,
and object can be anything (we will store vertices as our objects). Our data structure supports two and object can be anything (we will store vertices as our objects). Our data structure supports two operations.

- Insert a new (key, object) into the collection.
- Remove the item with the lowest key currently in the collection and return the key and object
for it. for it.
We run a modification of Dijkstra with the following pseudo-code
$d \leftarrow$ array indexed with vertices and filled with ∞
$\mathrm{H} \leftarrow$ empty heap
Insert (0 , starting node) into H
while H is not empty do
Remove (key, vertex) fron
if key < dlvertex] then
${ }^{d}$ dvertex] \leftarrow key
for all neighbors w of vertex dol
Q Insert (d[virertex] + weight (vertex, w), w) into H.
What is the asymptotically smallest upper bound on the runtime of the above code assuming that both the insert and remove operations on H take $O\left(\log (\right.$ size of $H)$) time? Assume that $n-1 \leq m \leq n^{2}$ (in particular $\log m=\Theta(\log n))$.
$O O(n \log n+m)$
O $O(m \log n)$
○ $O(n+m)$

