1 Hash tables

Hash tables with universal hash families guarantee an expected runtime of $O(1)$ for the INSERT SEARCH, and DELETE operations. What is the meaning of "expected"?
O It is an average over the choices of the algorithm who picks the hash function from the hash family. Correct
In order to conclude an expected runtime of O (1) for hash table operations, we assumed the following two happen in some specific order:

- The adversary picks elements x_{1}, \ldots, x_{n} for the hash table.
- The algorithm picks a hash function from the hash family.

In what order do these happen?
O Algorithm first, and then adversary.
O Adversary first, and then algorithm.
O It does not matter.

2 Bit lengths

Suppose that there is a toy box with N toys in it. You have a label printer that can print arbitrary strings of 0 s and 1 s. If you produce labels for the N toys in such a way that each toy gets a unique $0 \geq \Omega(\log N)$
$0 \geq \Omega(\log (1)$
$O \leq O(N)$
$0 \geq \Omega(N)$
Correct
As a remark, for any labeling scheme, the same lower bound of $\Omega(\log N)$ applies even to the average label length, not just the longest label length.
If you produce labels in a way that minimizes the longest label's length, what is this minimum?
$O \Theta(N)$
0 O(1)

- $\Theta(\log N)$

If our toy box consists of all functions from $\{0, \ldots, M-1\}$ to $\{0, \ldots, n-1\}$, what is the minimum longest label's length?
0 $\Theta(M n)$
O $\Theta(M \log n)$
$O \Theta(n \log M)$

3 Modular arithmetic

Suppose that $M>1000$ (the universe size) is a prime number. If we pick $a \in\{1, \ldots, M-1\}$ and $b \in\{0, \ldots, M-1\}$, independently and uniformly at random, what is $\mathbb{P}_{a, b}[a \times 12+b=34(\bmod M)$ and $a \times 56+b=78(\bmod M)]$?

O $\frac{1}{M(M-1)}$
O $\frac{1}{M}$
$0 \frac{1}{M^{2}}$
$\bigcirc 0^{\frac{1}{M}}$
Correct
How about $\mathbb{P}_{a, b}[a \times 12+b=34(\bmod M)$ and $a \times 56+b=34(\bmod M)]$?

O $\frac{1}{M(M-1)}$

- $\frac{1}{M}$
$0 \frac{1}{M^{2}}$
00

Correct
In fact for any pair of distinct elements x, y in the universe, $u=a \times x+b \bmod M$ and $v=a \times y+b$ In fact for any pair of distinct elements x, y in the universe,
$\bmod M$ are uniformly distributed amongst all distinct pairs.
How many elements of $\{0, \ldots, M-1\}$ are equal to 0 modulo n ?

- $\lceil M / n$

O $|M| n \mid+1$
Correct
In fact, for any i, the number of elements from $\{0, \ldots, M-1\}$ equal to i modulo n is $\leq\lceil M / n\rceil$. Let $u=0$; pick v uniformly at random from $\{0, \ldots, M-1\}-\{u\}=\{1, \ldots, M-1\}$. What is the chance that $v=u(\bmod n)$?
O $\frac{[M / n]-1}{n}$
$\bigcirc \frac{1}{M-1}$
O $\frac{n}{m-1}$
Correct
You can verify that the answer above is always $\leq 1 / n$. The same answer holds as an upper bound if we changed u from 0 to any other element in $\{0, \ldots, M-1\}$.

4 Hash family size
Suppose that we have a universe of size M, and our hash table size is n. If $n \geq M$, what is the minimum size of a universal hash family?

Correct
Suppose now that $M=n^{100}$ and we have a nonempty hash family H. Let h^{*} be one of the hash functions in H. Since $M>n, h^{*}$ must map at least two distinct elements x^{*}, y^{*} in the universe to the same bucket (by the pigeonhole principle). What can be said about

$$
\mathbb{P}_{h \sim H}\left[h\left(x^{*}\right)=h\left(y^{*}\right)\right] ?
$$

$\mathrm{O}=0$
$0 \geq 1 /|H|$
$0 \leq 1 / n$

This means that if H is universal, then

$$
1 / n \geq \mathbb{P}_{h \sim H}\left[h\left(x^{*}\right)=h\left(y^{*}\right)\right] \geq 1 /|H|,
$$

or in other words $|H| \geq n$. What can be said about the minimum longest $0 / 1$ label length for labeling
this hash family? this hash family?
$0 \geq \Omega(\log n)$

- Both of the above.

Correct
For the universal hash family from lecture, how many bits do we need to label the hash functions, if we minimize the longest label's length?
0 O ${ }^{(M)}$
O $\Theta(\log M)$
O O(1)
This shows the hash family from lecture can be labeled by the optimal number of bits $(\Theta(\log M)=$ $\Theta(\log n))$ when $M=n^{100}$.

