Big-Oh Notation

Review Session 1/12

In this class we will use...

- Big-Oh notation!
- Gives us a meaningful way to talk about the running time of an algorithm independent of programming language, computing platform, etc., without having to count all the operations.

Main idea:

Focus on how the runtime scales with n (the input size).

(Only pay attention to the largest function of n that appears.)

Number of operations	Asymptotic Running Time
$\frac{1}{10}+10 n^{2}$	$O\left(e^{n}\right)$
$n^{3}-2 n^{2}+7$	$O\left(n^{3}\right)$
$0.1 \sqrt{n}-10^{9} n^{0.05}$	$O(\sqrt{n})$
$11 \log (n)+1$	$O(\log (n))$

We say this algorithm is "asymptotically faster" than the others.

Example Runtime

The constant factor of
25 depends on the
computing platform..

As n gets large, the lower-order terms don't really matter
$=O\left(n^{2}\right)$
pronounced "big-oh of ..." or sometimes "oh of

Informal definition for $\mathrm{O}(\ldots)$

- Let $T(n), g(n)$ be functions of positive integers.
- Think of $T(n)$ as a runtime: positive and increasing in n .
- We say " $T(n)$ is $O(g(n))$ " if:
for large enough n,
$T(n)$ is at most some constant multiple of $g(n)$.

Here, "constant" means "some number that doesn't depend on n."

Example
 $2 n^{2}+10=O\left(n^{2}\right)$

for large enough n, $T(n)$ is at most some constant multiple of $g(n)$.

Formal definition of $\mathrm{O}(\ldots) \mathbb{}$

- Let $T(n), g(n)$ be functions of positive integers.
- Think of $T(n)$ as a runtime: positive and increasing in n.
- Formally,

$$
T(n)=O(g(n))
$$

Example

$2 n^{2}+10=O\left(n^{2}\right)$

$$
T(n)=O(g(n))
$$

$\exists c, n_{0}>0$ s.t. $\forall n \geq n_{0}$,

$$
T(n) \leq c \cdot g(n)
$$

Example

$$
T(n)=O(g(n))
$$

$\exists c, n_{0}>0$ s.t. $\forall n \geq n_{0}$,

$$
T(n) \leq c \cdot g(n)
$$

$$
\begin{aligned}
& 3 g(n)=3 n^{2} \\
& (c=3) \\
& T(n)=2 n^{2}+10 \\
& g(n)=n^{2}
\end{aligned}
$$

Example

$$
T(n)=O(g(n))
$$

$\exists c, n_{0}>0$ s.t. $\forall n \geq n_{0}$,

$$
T(n) \leq c \cdot g(n)
$$

$3 g(n)=3 n^{2} \quad$ Formally:
($c=3$)

- Choose c = 3
- Choose $\mathrm{n}_{0}=4$
$T(n)=2 n^{2}+10$ - Then:

$$
\begin{gathered}
\forall n \geq 4, \\
2 n^{2}+10 \leq 3 \cdot n^{2}
\end{gathered}
$$

$$
g(n)=n^{2}
$$

Same example
 $2 n^{2}+10=O\left(n^{2}\right)$

$$
T(n)=O(g(n))
$$

$\exists c, n_{0}>0$ s.t. $\forall n \geq n_{0}$,

$$
T(n) \leq c \cdot g(n)
$$

Formally:

- Choose c = 7

$$
T(n)=2 n^{2}+10 \cdot \text { Choose } n_{0}=2
$$

- Then:

$$
g(n)=n^{2}
$$

$$
\begin{gathered}
\forall n \geq 2, \\
2 n^{2}+10 \leq 7 \cdot n^{2}
\end{gathered}
$$

There is no "correct" choice of c and n_{0}
$\mathrm{O}(. .$.$) is an upper bound:$

$$
T(n)=O(g(n))
$$

$$
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}
$$ $n=O\left(n^{2}\right)$

$$
T(n) \leq c \cdot g(n)
$$

- Choose c=1
- Choose $n_{0}=1$
- Then

$$
\begin{gathered}
\forall n \geq 1 \\
n \leq n^{2}
\end{gathered}
$$

$\Omega(\ldots)$ means a lower bound

- We say " $T(n)$ is $\Omega(g(n))$ " if, for large enough n, $T(n)$ is at least as big as a constant multiple of $g(n)$.
- Formally,

$$
\begin{gathered}
T(n)=\Omega(g(n)) \\
\Leftrightarrow c, n_{0}>0 \text { s.t. } \forall n \geq n_{0} \\
c \cdot g(n) \leq T(n) \\
\text { Switched these!! }
\end{gathered}
$$

Example $n \log _{2}(n)=\Omega(3 n)$

$$
\begin{gathered}
T(n)=\Omega(g(n)) \\
\stackrel{\Longleftrightarrow}{\Leftrightarrow} \quad \begin{array}{c}
n_{0}>0 \text { s.t. } \forall n \geq n_{0} \\
c \cdot g(n) \leq T(n)
\end{array}, ~
\end{gathered}
$$

- Choose c $=1 / 3$
- Choose $\mathrm{n}_{0}=2$
- Then

$$
\forall n \geq 2 \text {, }
$$

$$
\frac{3 n}{3} \leq n \log _{2}(n)
$$

pronounced "big-theta of ..." or sometimes "theta of"

$\Theta(\ldots)$ means both!

- We say " $T(n)$ is $\Theta(g(n))$ " iff both:

$$
\begin{gathered}
T(n)=O(g(n)) \\
\text { and }
\end{gathered}
$$

$$
T(n)=\Omega(g(n))
$$

Non-Example:
 n^{2} is not $\mathrm{O}(n)$

$$
\begin{aligned}
T(n) & =O(g(n)) \\
& = \\
\exists c, n_{0}>0 & \text { s.t. } \forall n \geq n_{0}, \\
T(n) & \leq c \cdot g(n)
\end{aligned}
$$

- Proof by contradiction:
- Suppose that $n^{2}=O(n)$.
- Then there is some positive c and n_{0} so that:

$$
\forall n \geq n_{0}, \quad n^{2} \leq c \cdot n
$$

- Divide both sides by n :

$$
\forall n \geq n_{0}, \quad n \leq c
$$

- That's not true!!! What about, say, $n_{0}+c+1$?
- Then $n \geq n_{0}$, but, $n>c$
- Contradiction!

Take-away from examples

- To prove $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$, you have to come up with c and n_{0} so that the definition is satisfied.
- To prove $T(n)$ is NOT $O(g(n))$, one way is proof by contradiction:
- Suppose (to get a contradiction) that someone gives you a c and an n_{0} so that the definition is satisfied.
- Show that this someone must by lying to you by deriving a contradiction.

Practice

- $f(n)=n$ and $g(n)=n^{2}-n$

$$
f(n)=\ldots g(n)
$$

- $f(n)=2^{n}$ and $g(n)=n^{2}$

$$
f(n)=\ldots \quad g(n)
$$

- $f(n)=8 n$ and $g(n)=n \log n$

$$
f(n)=\ldots \quad g(n)
$$

Practice

- $f(n)=n$ and $g(n)=n^{2}-n$

$$
f(n)=O(g(n)) \quad n \text { grows slower than } \mathrm{n}^{2}
$$

- $f(n)=2^{n}$ and $g(n)=n^{2}$

$$
f(n)=\Omega(g(n)) \quad \begin{aligned}
& \text { polynomial functions are slower than } \\
& \text { exponential functions }
\end{aligned}
$$

Practice

- $f(n)=8 n$ and $g(n)=n \log n$

$$
\begin{aligned}
& f(n)=O(g(n)) \\
& c>0, n^{c}=O\left(n^{c} \log n\right) \\
& \text { with } c=1, f(n)=O(g(n))
\end{aligned}
$$

$\lim _{n \rightarrow \infty} 8 n / n \log n$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} 8 / \log n \\
& =0
\end{aligned}
$$

State order of growth in Θ notation

- $f(n)=50$
- $f(n)=n+\ldots+3+2+1$
- $f(n)=(g(n))^{2}$ where $g(n)=\sqrt{ } n+5$

State order of growth in Θ notation

- $\mathrm{f}(\mathrm{n})=50$

$$
f(n)=\Theta(1)
$$

- $f(n)=n+\ldots+3+2+1$

$$
f(n)=n(n+1) / 2=\left(n^{2}+n\right) / 2=\Theta\left(n^{2}\right)
$$

- $f(n)=(g(n))^{2}$ where $g(n)=\sqrt{ } n+5$
$f(n)=(\sqrt{ } n+5)^{2}=n+10 \sqrt{ } n+25=\Theta(n)$

Summary of Definitions

$f(n)=O(g(n))$ if there exists a $c>0$ where after large enough $\mathrm{n}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} * \mathrm{~g}(\mathrm{n})$

Asymptotically f grows as most as much as g $f(n)=\Omega(g(n))$ if $g(n)=O(f(n))$

Asymptotically, f grows at least as much as g

$$
f(n)=\Theta(g(n)) \text { if } f(n)=O(g(n)) \text { and } g(n)=O(f(n))
$$

Asymptotically, f and g grow the same

Important Takeaways

- If $d>c, n^{c}=0\left(n^{d}\right)$ but $n^{c} \neq \Omega\left(n^{d}\right)$
- Asymptotic notation only cares about the highest growing terms: e.g. $n^{2}+n=\Omega\left(n^{2}\right)$
- Asymptotic notation does not care about leading constants: e.g. 50n = $\Theta(n)$
- Any exponential with base > 1 grows more than any polynomial
- The base of the exponential matters: e.g. $3^{n}=$ $O\left(4^{n}\right)$ but $3^{n} \neq \Omega\left(4^{n}\right)$

Any questions?

