Lecture 11

Weighted Graphs: Dijkstra and Bellman-Ford

NOTE: We may not get to Bellman-Ford!
We will spend more time on it next time.

Announcements

- The midterm is tomorrow. Good luck!
- Don't talk about it after you are done - we will tell you when it is ok to discuss the midterm.
- See Ed post for detailed midterm instructions and logistics.

Ed Heroes

- Krishna Chaitanya Bhatraju - 24 endorsed answers
- Jack Liu-14 endorsed answers
- Jack Hlavka - 8 endorsed answers
- Bonus citizenship points for the top 3 most endorsed students on Ed at end of the quarter.
- Can bump you up a grade if you are near a grade boundary!

Previous two lectures

- Graphs!
- DFS
- Topological Sorting
- Strongly Connected Components
- BFS
- Shortest Paths in unweighted graphs

Today

- What if the graphs are weighted?
- Part 1: Dijkstra!
- This will take most of today's class
- Part 2: Bellman-Ford!
- Real quick at the end if we have time!
- We'll come back to Bellman-Ford in more detail, so today is just a taste.

Just the graph

Shortest path from Gates to the Union?

Shortest path from Gates to the Union?

Shortest path problem

- What is the shortest path between u and v in a weighted graph?
- the cost of a path is the sum of the weights along that path
- The shortest path is the one with the minimum cost.

- The distance $d(u, v)$ between two vertices u and v is the cost of the the shortest path between u and v.
- For this lecture all graphs are directed, but to save on notation I'm just going to draw undirected edges.

Shortest paths

This is the shortest path from Gates to the Union.

It has cost 6.

20

Dish

Q: What's the shortest path from Packard to the Union?

Warm-up

- A sub-path of a shortest path is also a shortest path.
- Say this is a shortest path from s to t.
- Claim: this is a shortest path from s to x.
- Suppose not, this one is a shorter path from s to x.
- But then that gives an even shorter path from s to t !

Single-source shortest-path problem

- I want to know the shortest path from one vertex (Gates) to all other vertices.

Destination	Cost	To get there
Packard	1	Packard
CS161	2	Packard-CS161
Hospital	10	Hospital
Caltrain	17	Caltrain
Union	6	Packard-CS161-Union
Stadium	10	Stadium
Dish	23	Packard-Dish

(Not necessarily stored as a table - how this information is represented will depend on the applicatition)

Example

- "what is the shortest path from Palo Alto to [anywhere else]" using BART, Caltrain, lightrail, MUNI, bus, Amtrak, bike, walking, uber/lyft.
- Edge weights have something to do with time, money, hassle.

Example

- Network routing

- I send information over the internet, from my computer to to all over the world.
- Each path has a cost which depends on link length, traffic, other costs, etc..
- How should we send packets?

-

moses - traceroute -a www.ethz.ch - 103×19
Last login: Mon Feb 7 09:27:47 on ttys003
[moses@Mosess-MacBook-Pro ~ \% traceroute -a www.ethz.ch
traceroute to www.ethz.ch (129.132.19.216), 64 hops max, 52 byte packets
1 [AS0] 192.168.7.1 (192.168.7.1) 3.898 ms 2.066 ms 2.881 ms
[AS0] 192.168.0.1 (192.168.0.1) 2.897 ms 4.720 ms 3.108 ms
[AS0] 10.127.252.2 (10.127.252.2) $57.256 \mathrm{~ms} \quad 5.571 \mathrm{~ms} \quad 4.268 \mathrm{~ms}$
[AS32] he-rtr.stanford.edu (128.12.0.209) $4.039 \mathrm{~ms} \quad 11.471 \mathrm{~ms} 4.628 \mathrm{~ms}$
[AS6939] 100gigabitethernet5-1.core1.pao1.he.net (184.105.177.237) 4.648 ms [AS6939] 100ge9-2.core1.sjc2.he.net (72.52.92.157) $5.949 \mathrm{~ms} \quad 5.291 \mathrm{~ms} \quad 4.980 \mathrm{~ms}$ [AS6939] 100ge10-2.core1.nyc4.he.net (184.105.81.217) $69.007 \mathrm{~ms} \quad 66.575 \mathrm{~ms} 67$. [AS6939] 100ge7-1. core1.lon2.he.net (72.52.92.165) $268.329 \mathrm{~ms} \quad 191.401 \mathrm{~ms} 203$. [AS6939] port-channel2.core3.lon2.he.net (184.105.64.2) 205.515 ms 350.183 ms [AS6939] port-channel12.core2.ams1.he.net (72.52.92.214) $144.263 \mathrm{~ms} \quad 143.638 \mathrm{~ms}$ [AS1200] swice1-100ge-0-3-0-1.switch.ch (80.249.208.33) 161.119 ms 208.169 ms [AS559] swice4-b4.switch.ch (130.59.36.70) 219.228 ms 203.833 ms 204.402 ms [AS559] swibf1-b2.switch.ch (130.59.36.113) 184.671 ms 204.955 ms 204.671 ms [AS559] swiez3-b5.switch.ch (130.59.37.6) $205.079 \mathrm{~ms} \quad 164.116 \mathrm{~ms} 245.086 \mathrm{~ms}$ [AS559] rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) $204.296 \mathrm{~ms} \quad 164.770 \mathrm{~m}$ [AS559] rou-fw-rz-rz-gw.ethz.ch (192.33.92.169) $165.148 \mathrm{~ms} \quad 322.839 \mathrm{~ms} 204.627$

Dijkstra's algorithm

- Finds shortest paths from Gates to everywhere else.

Dijkstra
 intuition

YOINK!

Dijkstra intuition

A vertex is done when it's not on the ground anymore.

YOINK!

Dijkstra
 intuition

YOINK!

Dijkstra
intuition

YOINK!

Dijkstra
 intuition

YOINK!

Dijkstra intuition

Dijkstra intuition

This creates a tree!

The shortest paths are the lengths along this tree.

How do we actually implement this?

- Without string and gravity?

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Initialize $\mathrm{d}[\mathrm{v}]=\infty$ for all non-starting vertices v , and $\mathrm{d}[$ Gates $]=0$

- Pick the not-Sure node u with the smallest estimate d[u].

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for $\operatorname{dist}($ Gates, v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for $\operatorname{dist}($ Gates, v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates, v).

Current node u

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Packard has three neighbors. What happens when we update them? 1 min. think; 1 min. share

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for $\operatorname{dist}($ Gates, v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for $\operatorname{dist}($ Gates, v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for $\operatorname{dist}($ Gates, v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates, v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates, v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates, v).

Current node u

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates, v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

- After all nodes are sure, say that $d(G a t e s, v)=d[v]$ for all v

Dijkstra's algorithm

Dijkstra(G,s):

- Set all vertices to not-sure
- $d[v]=\infty$ for all v in V
- $\mathrm{d}[\mathrm{s}]=0$
- While there are not-sure nodes:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- For vin u.neighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight($u, v))$
- Mark u as sure.
- Now d(s, v) = d[v]

Lots of implementation details left un-explained. We'll get to that!

See IPython Notebook for code!

As usual

- Does it work?
- Yes.
- Is it fast?
- Depends on how you implement it.

Why does this work?

- Theorem:
- Suppose we run Dijkstra on $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, starting from s .
- At the end of the algorithm, the estimate $d[v]$ is the actual distance $d(s, v)$.
- Proof outline:
- Claim 1: For all v, d[v] $\geq \mathrm{d}(\mathrm{s}, \mathrm{v})$.
- Claim 2: When a vertex v is marked sure, $d[v]=d(s, v)$.
- Claims 1 and 2 imply the theorem. Claim 2
- When v is marked sure, $d[v]=d(s, v)$.

Claim $1+$ def of algorithm

- $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ and never increases, so after v is sure, $\mathrm{d}[\mathrm{v}]$ stops changing.
- This implies that at any time after v is marked sure, $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$.
- All vertices are sure at the end, so all vertices end up with $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$.

Claim 1

$\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

Informally:

- Every time we update $\mathrm{d}[\mathrm{v}]$, we have a path in mind:

$$
\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+\text { edgeWeight }(\mathrm{u}, \mathrm{v}))
$$

Whatever path we had in mind before

The shortest path to u, and then the edge from u to v.

- $d[v]=$ length of the path we have in mind
\geq length of shortest path
$=\mathrm{d}(\mathrm{s}, \mathrm{v})$
Formally:
- We should prove this by induction.
- (See skipped slide or do it yourself)

Intuition for Claim 2

When a vertex u is marked sure, $d[u]=d(s, u)$

- The first path that lifts u off the ground is the shortest one.
- Let's prove it!
- Or at least see a proof outline.

Claim 2

When a vertex u is marked sure, $d[u]=d(s, u)$

- Inductive Hypothesis:
- When we mark the t^{\prime} th vertex v as sure, $\mathrm{d}[\mathrm{v}]=\operatorname{dist}(\mathrm{s}, \mathrm{v})$.
- Base case ($\mathrm{t}=1$):

- Inductive step:
- Assume by induction that every v already marked sure has $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$.
- Suppose that we are about to add u to the sure list.
- That is, we picked u in the first line here:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- Update all u's neighbors v:

$$
\text { - } \mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+\text { edgeWeight }(\mathrm{u}, \mathrm{v}))
$$

- Mark u as sure.
- Repeat
- Want to show that $\mathrm{d}[\mathrm{u}]=\mathrm{d}(\mathrm{s}, \mathrm{u})$.

Temporary definition:

Claim 2

v is "good" means that $d[v]=d(s, v)$

- Want to show that u is good.

The vertices in between are beige because they may or may not be sure.

Claim 2

Inductive step

Temporary definition:

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$
means good

means not good

"by way of contradiction"

- Want to show that u is good. BWOC, suppose u isn't good.
- Say z is the last good vertex before u (on shortest path to u).
- z^{\prime} is the vertex after z.
 are beige because they may or may not be sure.

True shortest path.

Temporary definition:

Claim 2

Inductive step

- Want to show that u is good. BWOC, suppose u isn't good.

$$
d[Z]=d(S, Z) \leq d(S, u) \leq d[u]
$$

Claim 2

Inductive step

Temporary definition:

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$

- Want to show that u is good. BWOC, suppose u isn't good.

$$
d[Z]=d(S, Z) \leq d(s, u) \leq d[u]
$$

- Since \mathbf{u} is not good, $d[z] \neq d[u]$.
- So $d[z]<d[u]$, so z is sure. We chose uso that d[u] was smallest of the unsure vertices.

Claim 2

Inductive step

Temporary definition:

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$

- Want to show that u is good. BWOC, suppose u isn't good.

$$
d[Z]=d(S, Z) \leq d(s, u) \leq d[u]
$$

- If $d[z]=d[u]$, then \mathbf{u} is good.
- So $d[z]<d[u]$, so z is sure.

Temporary definition:

Claim 2
 Inductive step

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$
means good
means not good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated z^{\prime} :
- $d\left[z^{\prime}\right] \leq d[z]+w\left(z, z^{\prime}\right)$ def of update

$$
d\left[z^{\prime}\right] \leftarrow \min \left\{d\left[z^{\prime}\right], d[z]+w\left(z, z^{\prime}\right)\right\}
$$

$=d(s, z)+w\left(z, z^{\prime}\right) \begin{aligned} & \text { By induction when } z \text { was added to } \\ & \text { the sure list it had d }(s, z)=d[z]\end{aligned}$
$\substack{\text { hatis is the value of } \\ \text { dill when was } \\ \text { marke }} d\left(s, z^{\prime}\right)$ sub-path of shortest paths are shortest paths

$$
\leq d\left[z^{\prime}\right] \text { Claim } 1
$$

So $d\left(s, z^{\prime}\right)=d\left[z^{\prime}\right]$ and so z^{\prime} is good.

Claim 2

Back to this slide

When a vertex u is marked sure, $d[u]=d(s, u)$

- Inductive Hypothesis:
- When we mark the t^{\prime} th vertex v as sure, $\mathrm{d}[\mathrm{v}]=\operatorname{dist}(\mathrm{s}, \mathrm{v})$.
- Base case:
- The first vertex marked sure is s , and $\mathrm{d}[\mathrm{s}]=\mathrm{d}(\mathrm{s}, \mathrm{s})=0$.
- Inductive step:
- Suppose that we are about to add u to the sure list.
- That is, we picked u in the first line here:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- Update all u's neighbors v:

$$
\cdot \mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+\text { edgeWeight }(\mathrm{u}, \mathrm{v}))
$$

- Mark u as sure.
- Repeat
- Assume by induction that every v already marked sure has $d[v]=d(s, v)$.
- Want to show that $\mathrm{d}[\mathrm{u}]=\mathrm{d}(\mathrm{s}, \mathrm{u})$.

Why does this work?

- Theorem:
- Run Dijkstra on $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ starting from s .
- At the end of the algorithm, the estimate $d[v]$ is the actual distance $d(s, v)$.
- Proof outline:
- Claim 1: For all v, d[v] $\geq \mathrm{d}(\mathrm{s}, \mathrm{v})$.
- Claim 2: When a vertex is marked sure, $d[v]=d(s, v)$.
- Claims 1 and 2 imply the theorem.

YOINK!

What have we learned?

- Dijkstra's algorithm finds shortest paths in weighted graphs with non-negative edge weights.
- Along the way, it constructs a nice tree.
- We could post this tree in Gates!
- Then people would know how to get places quickly.

As usual

- Does it work?
- Yes.
- Is it fast?
- Depends on how you implement it.

Running time?

Dijkstra(G,s):

- Set all vertices to not-sure
- $d[v]=\infty$ for all v in V
- $\mathrm{d}[\mathrm{s}]=0$
- While there are not-sure nodes:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- For v in u.neighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight($\mathrm{u}, \mathrm{v})$)
- Mark u as sure.
- Now dist(s, v) $=d[v]$
- n iterations (one per vertex)
- How long does one iteration take?

We need a data structure that:

Just the inner loop:

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum d[u]
- findMin ()
- Can remove that u
- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight(u,v))
- Mark u as sure.
- removeMin (u)
- Can update (decrease) d[v]
- updateKey (v,d)

Total running time is big-oh of:

$$
\begin{aligned}
& \left.\sum_{u \in V}(T \text { (findMin })+\left(\sum_{v \in u \text {.neighbors }} T(\text { updateKey })\right)+T(\text { removeMin })\right) \\
& =n(T(\text { findMin })+T(\text { removeMin }))+m T(\text { updateKey })
\end{aligned}
$$

If we use an array

- $\mathrm{T}($ find $M i n)=O(n)$
- T (removeMin) $=O(n)$
- $\mathrm{T}($ updateKey $)=\mathrm{O}(1)$
- Running time of Dijkstra

$$
\begin{aligned}
& =O(n(T(\text { findMin })+T(\text { removeMin }))+m T(\text { updateKey })) \\
& =O\left(n^{2}\right)+O(m) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

If we use a red-black tree

- $\mathrm{T}($ findMin) $=\mathrm{O}(\log (\mathrm{n}))$
- $T($ removeMin $)=O(\log (n))$
- $T($ updateKey $)=O(\log (n))$
- Running time of Dijkstra

$$
\begin{aligned}
& =O(n(T(\text { findMin })+T(\text { removeMin }))+m T(\text { updateKey })) \\
& =O(n \log (n))+O(\operatorname{mlog}(n)) \\
& =O((n+m) \log (n))
\end{aligned}
$$

Better than an array if the graph is sparse! aka if m is much smaller than n^{2}

Heaps support these operations

- findMin
- removeMin
- updateKey

- A heap is a tree-based data structure that has the property that every node has a smaller key than its children.
- Not covered in this class - see CS166
- But! We will use them.

Many heap implementations

Nice chart on Wikipedia:

Operation	Binary $^{[7]}$	Leftist	Binomial $^{[7]}$	Fibonacci $^{[7][8]}$	Pairing $^{[9]}$	Brodal $^{[10][b]}$	Rank-pairing ${ }^{[12]}$	Strict Fibonacci ${ }^{[13]}$
find-min	$\Theta(1)$	$\Theta(1)$	$\Theta(\log n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
delete-min	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)^{[c]}$	$O(\log n)^{[c]}$	$O(\log n)$	$O(\log n)^{[c]}$	$O(\log n)$
insert	$O(\log n)$	$\Theta(\log n)$	$\Theta(1)^{[c]}$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
decrease-key	$\Theta(\log n)$	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)^{[c]}$	$O(\log n)^{[c][d]}$	$\Theta(1)$	$\Theta(1)^{[c]}$	$\Theta(1)$
merge	$\Theta(n)$	$\Theta(\log n)$	$O(\log n)^{[e]}$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

Say we use a Fibonacci Heap

- $T($ find $M i n)=O(1)$
- $\mathrm{T}($ removeMin) $=\mathrm{O}(\log (\mathrm{n}))$
- T(updateKey) $=\mathbf{O}$ (1)
- See CS166 for more!
- Running time of Dijkstra
= O(n(T(findMin) + T(removeMin)) + m T(updateKey))

$$
=\mathrm{O}(\mathrm{n} \log (\mathrm{n})+\mathrm{m}) \text { (amortized time) }
$$

*This means that any sequence of d removeMin calls takes time at most $O(d \log (n))$. But a few of the d may take longer than $O(\log (n))$ and some may take less time.

In practice

Shortest paths on a graph with n vertices and about 5 n edges

Dijkstra using a Python list to keep track of vertices has quadratic runtime.

Dijkstra using a heap looks a bit more linear (actually nlog(n))

BFS is really fast by comparison! But it doesn't work on weighted graplos.

Dijkstra is used in practice

- eg, OSPF (Open Shortest Path First), a routing protocol for IP networks, uses Dijkstra.

But there are some things it's not so good at.

Dijkstra Drawbacks

- Needs non-negative edge weights.
- If the weights change, we need to re-run the whole thing.
- in OSPF, a vertex broadcasts any changes to the network, and then every vertex re-runs Dijkstra's algorithm from scratch.

Bellman-Ford algorithm

- (-) Slower than Dijkstra's algorithm
- (+) Can handle negative edge weights.
- Can be useful if you want to say that some edges are actively good to take, rather than costly.
- Can be useful as a building block in other algorithms.
- (+) Allows for some flexibility if the weights change.
- We'll see what this means later

Today: intro to Bellman-Ford

- We'll see a definition by example.
- We'll come back to it next lecture with more rigor.
- Don't worry if it goes by quickly today.
- There are some skipped slides with pseudocode, but we'll see them again next lecture.
- Basic idea:
- Instead of picking the u with the smallest $d[u]$ to update, just update all of the u's simultaneously.

Bellman-Ford algorithm

Bellman-Ford(G,s):

- $d[v]=\infty$ for all v in V
- $\mathrm{d}[\mathrm{s}]=0$
- For $\mathrm{i}=0, . . ., \mathrm{n}-1$:

Instead of picking u cleverly, just update for all of the u's.

- For u in V:
- For v in u.neighbors:

$$
\cdot \mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+\text { edgeWeight }(\mathrm{u}, \mathrm{v}))
$$

Compare to Dijkstra:

- While there are not-sure nodes:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- For vin u.neighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight($\mathrm{u}, \mathrm{v}))$
- Mark u as sure.

For pedagogical reasons which we will see next lecture

- We are actually going to change this to be less smart.
- Keep n arrays: $d^{(0)}, d^{(1)}, \ldots, d^{(n-1)}$

Bellman-Ford*(G,s):

- $d^{(i)}[v]=\infty$ for all v in V, for all $i=0, \ldots, n-1$
- $d^{(0)}[s]=0$
- For $\mathrm{i}=0, . . ., \mathrm{n}-2$:

Slightly different than the original

- For u in V : Bellman-Ford algorithm, but the analysis is basically the same.
- For v in u.neighbors:
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u]+\right.$ edgeWeight $\left.(u, v)\right)$
- Then $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]$

Start with the same graph, no

Bellman-Ford

How far is a node from Gates?

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V:
- For v in u.neighbors:
- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(i)}[\mathrm{v}], \mathrm{d}^{(i+1)}[\mathrm{v}], \mathrm{d}^{(i)}[\mathrm{u}]+\right.$ edgeWeight $\left.(\mathrm{u}, \mathrm{v})\right)$

Start with the same graph, no

Bellman-Ford

How far is a node from Gates?

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V:
- For vin u.neighbors:
- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(i)}[\mathrm{v}], \mathrm{d}^{(i+1)}[\mathrm{v}], \mathrm{d}^{(i)}[\mathrm{u}]+\right.$ edgeWeight $\left.(\mathrm{u}, \mathrm{v})\right)$

Start with the same graph, no

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

	Gates Packard CS161 Union Dish				
$d^{(0)}$	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$\mathrm{d}^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$					
$d^{(4)}$					

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V:
- For vin u.neighbors:
- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(i)}[\mathrm{v}], \mathrm{d}^{(i+1)}[\mathrm{v}], \mathrm{d}^{(i)}[\mathrm{u}]+\right.$ edgeWeight $\left.(\mathrm{u}, \mathrm{v})\right)$

Start with the same graph, no

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

	Gates Packard CS161 Union Dish				
$d^{(0)}$	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$d^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$	0	1	2	6	23
$\mathrm{d}^{(4)}$					

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V:
- For vin u.neighbors:
- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(i)}[\mathrm{v}], \mathrm{d}^{(i+1)}[\mathrm{v}], \mathrm{d}^{(i)}[\mathrm{u}]+\right.$ edgeWeight $\left.(\mathrm{u}, \mathrm{v})\right)$

Start with the same graph, no

Bellman-Ford

How far is a node from Gates? negative weights.

Gates Packard CS161 Union Dish

$d^{(0)}$	Gates Packard CS161 Union Dish				
	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$\mathrm{d}^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$	0	1	2	6	23
$d^{(4)}$	0	1	2	6	23

These are the final distances!

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V:
- For vin u.neighbors:
- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(i)}[\mathrm{v}], \mathrm{d}^{(i+1)}[\mathrm{v}], \mathrm{d}^{(i)}[\mathrm{u}]+\right.$ edgeWeight $\left.(\mathrm{u}, \mathrm{v})\right)$

As usual

- Does it work?
- Yes
- Idea to the right.
- (See hidden slides for details)
- Is it fast?
- Not really...

A simple path is a path with no cycles.

Gates Packard CS161 Union Dish

$d^{(0)}$	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$d^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$	0	1	2	6	23
$\mathrm{d}^{(4)}$	0	1	2	6	23

Idea: proof by induction. Inductive Hypothesis:
$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

Conclusion:

$d^{(n-1)}[v]$ is equal to the cost of the shortest simple path between s and v. (Since all simple paths have at most n -1 edges).

Pros and cons of Bellman-Ford

- Running time: $\mathrm{O}(\mathrm{mn})$ running time
- For each of n steps we update m edges
- Slower than Dijkstra
- However, it's also more flexible in a few ways.
- Can handle negative edges
- If we constantly do these iterations, any changes in the network will eventually propagate through.

Wait a second...

- What is the shortest path from Gates to the Union?

Wait a second...

- What is the shortest path from Gates to the Union?

Negative edge weights?

- What is the shortest path from Gates to the Union?
- Shortest paths aren't defined if there are negative cycles!

Bellman-Ford and

 negative edge weights- B-F works with negative edge weights...as long as there are no negative cycles.
- A negative cycle is a path with the same start and end vertex whose cost is negative.
- However, B-F can detect negative cycles.

Back to the correctness

- Does it work?
- Yes
- Idea to the right.

If there are negative cycles, then non-simple paths matter! So the proof breaks for negative cycles.

Gates Packard CS161 Union Dish

$d^{(0)}$	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$\mathrm{d}^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$	0	1	2	6	23
$\mathrm{d}^{(4)}$	0	1	2	6	23

Idea: proof by induction. Inductive Hypothesis:
$\mathrm{d}^{(\mathrm{i}}[\mathrm{v}]$ is equal to the cost of the shortest path between s and v with at most i edges.
Conclusion:
$d^{(n-1)}[v]$ is equal to the cost of the shortest simple path between s and v. (Since all simple paths have at most $\mathrm{n}-1$ edges).

B-F with negative cycles

Gates Packard CS161 Union Dish

$d^{(2)}$	0	-5	2	7
	-3			

$d^{(3)}$

-4	-5	-4	6	-3

This is not looking good!

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V:
- For v in u.neighbors:

- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \mathrm{d}^{(\mathrm{i}+1)}[\mathrm{v}], \mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\right.$ edgeWeight $\left.(\mathrm{u}, \mathrm{v})\right)$

B-F with negative cycles

Gates Packard CS161 Union Dish

$\mathrm{d}^{(0)}$| 0 | ∞ | ∞ | ∞ | ∞ |
| :--- | :--- | :--- | :--- | :--- |

$d^{(1)}$	0	1	∞	∞

$d^{(2)}$	0	-5	2	7
	-3			

$d^{(3)}$	-4	-5	-4	6

	$d^{(4)}$	-4	-5	-4	6

But we can tell that it's not looking good:

	$d^{(5)}$	-4	-9	-4	3
	-7				

- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:

Some stuff changed!

- For u in V:
- For v in u.neighbors:

$$
\text { - } \mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \mathrm{d}^{(\mathrm{i}+1)}[\mathrm{v}], \mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\text { edgeWeight }(\mathrm{u}, \mathrm{v})\right)
$$

How Bellman-Ford deals with negative cycles

- If there are no negative cycles:
- Everything works as it should.
- The algorithm stabilizes after n-1 rounds.
- Note: Negative edges are okay!!
- If there are negative cycles:
- Not everything works as it should...
- it couldn't possibly work, since shortest paths aren't well-defined if there are negative cycles.
- The d[v] values will keep changing.
- Solution:
- Go one round more and see if things change.
- If so, return NEGATIVE CYCLE :
- (Pseudocode on skipped slide)

Summary

It's okay if that went by fast, we'll come back to Bellman-Ford

- The Bellman-Ford algorithm:
- Finds shortest paths in weighted graphs with negative edge weights
- runs in time $O(n m)$ on a graph G with n vertices and m edges.
- If there are no negative cycles in G :
- the BF algorithm terminates with $\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$.
- If there are negative cycles in G :
- the BF algorithm returns negative cycle.

Recap: shortest paths

- BFS:
- (+) $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- (-) only unweighted graphs
- Dijkstra's algorithm:
- (+) weighted graphs
- (+) O(nlog(n) + m) if you implement it right.
- (-) no negative edge weights
- (-) very "centralized" (need to keep track of all the vertices to know which to update).
- The Bellman-Ford algorithm:
- (+) weighted graphs, even with negative weights
- (+) can be done in a distributed fashion, every vertex using only information from its neighbors.
- (-) O(nm)

Next Time

- Dynamic Programming!!!

Before next time

- Pre-lecture exercise for Lecture 12
- Remember the Fibonacci numbers from HW1?

