Lecture 12
Bellman-Ford, Floyd-Warshall, and Dynamic Programming!
Announcements

• Homework 5 due today
Today

- Bellman-Ford Algorithm
- Bellman-Ford is a special case of Dynamic Programming!
- What is dynamic programming?
 - Warm-up example: Fibonacci numbers
- Another example:
 - Floyd-Warshall Algorithm
Recall

• A weighted directed graph:

- Weights on edges represent costs.
- The cost of a path is the sum of the weights along that path.
- A shortest path from s to t is a directed path from s to t with the smallest cost.
- The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

This is a path from s to t of cost 22.

This is a path from s to t of cost 10. It is the shortest path from s to t.
Last time

• Dijkstra’s algorithm!
 • Solves the single-source shortest path problem in weighted graphs.
Dijkstra Drawbacks

• Needs **non-negative edge weights**.
• If the weights change, we need to re-run the whole thing.
Bellman-Ford algorithm

- (-) Slower than Dijkstra’s algorithm

- (+) Can handle negative edge weights.
 - Can be useful if you want to say that some edges are actively good to take, rather than costly.
 - Can be useful as a building block in other algorithms.

- (+) Allows for some flexibility if the weights change.
 - We’ll see what this means later
Aside: Negative Cycles

• A **negative cycle** is a cycle whose edge weights sum to a negative number.

• Shortest paths aren’t defined when there are negative cycles!

![Graph with labeled edges]

The shortest path from A to B has cost...negative infinity?
Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.
 • Can detect negative cycles!
 • Can be useful if you want to say that some edges are actively good to take, rather than costly.
 • Can be useful as a building block in other algorithms.

• (+) Allows for some flexibility if the weights change.
 • We’ll see what this means later
Bellman-Ford vs. Dijkstra

- **Dijkstra:**
 - Find the u with the smallest $d[u]$
 - Update u’s neighbors: $d[v] = \min(d[v], d[u] + w(u,v))$

- **Bellman-Ford:**
 - Don’t bother finding the u with the smallest $d[u]$
 - Everyone updates!
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For $i=0,...,n-2$:
 For v in V:
 $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$

where we are also taking the min over all u in v.inNeighbors
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For $i=0,...,n-2$:
 * For v in V:
 * $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$

where we are also taking the min over all u in v.inNeighbors
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^{(0)})</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(d^{(1)})</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>25</td>
</tr>
<tr>
<td>(d^{(2)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(3)})</td>
<td>25</td>
<td>22</td>
<td>25</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>(d^{(4)})</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

- For \(i=0,...,n-2\):
 - For \(v\) in \(V\):
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))\)
 where we are also taking the min over all \(u\) in \(v.\text{inNeighbors}\)
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^{(0)})</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(d^{(1)})</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>25</td>
</tr>
<tr>
<td>(d^{(2)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(3)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(4)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **For** \(i=0,\ldots,n-2\):
 - **For** \(v\) in \(V\):
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))\)
 where we are also taking the min over all \(u\) in \(v\).inNeighbors
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>

These are the final distances!

For $i=0,...,n-2$:
- For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , d^{(i)}[u] + w(u,v))$

where we are also taking the min over all u in v.inNeighbors
Interpretation of $d^{(i)}$

$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.
Why does Bellman-Ford work?

• Inductive hypothesis:
 • \(d^{(i)}[v]\) is equal to the cost of the shortest path between \(s\) and \(v\) with at most \(i\) edges.

• Conclusion:
 • \(d^{(n-1)}[v]\) is equal to the cost of the shortest path between \(s\) and \(v\) with at most \(n-1\) edges.

Do the base case and inductive step!
Aside: simple paths
Assume there is no negative cycle.

• Then there is a shortest path from s to t, and moreover there is a simple shortest path.

• A simple path in a graph with n vertices has at most n-1 edges in it.

• So there is a shortest path with at most n-1 edges.
Why does it work?

• Inductive hypothesis:
 • \(d^{(i)}[v]\) is equal to the cost of the shortest path between \(s\) and \(v\) with at most \(i\) edges.

• Conclusion:
 • \(d^{(n-1)}[v]\) is equal to the cost of the shortest path between \(s\) and \(v\) with at most \(n-1\) edges.
 • If there are no negative cycles, \(d^{(n-1)}[v]\) is equal to the cost of the shortest path.

Notice that negative edge weights are fine. Just not negative cycles.
Bellman-Ford* algorithm

Bellman-Ford*(G,s):

- Initialize arrays \(d^{(0)}, \ldots, d^{(n-1)}\) of length \(n\)
- \(d^{(0)}[v] = \infty\) for all \(v\) in \(V\)
- \(d^{(0)}[s] = 0\)
- For \(i=0,\ldots,n-2:\)
 - For \(v\) in \(V\):
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \text{ in } v.inNbrs} \{d^{(i)}[u] + w(u,v)\})\)
- Now, \(\text{dist}(s,v) = d^{(n-1)}[v]\) for all \(v\) in \(V\).
 - (Assuming no negative cycles)

*Slightly different than some versions of Bellman-Ford...but this way is pedagogically convenient for today's lecture.
Note on implementation

• Don’t actually keep all n arrays around.
• Just keep two at a time: “last round” and “this round”

We don’t even need two, just one array is fine. Why?

Only need these two in order to compute $d^{(4)}$
Bellman-Ford take-aways

- Running time is $O(mn)$
 - For each of n rounds, update m edges.
- Works fine with negative edges.
- Does not work with negative cycles.
 - No algorithm can – shortest paths aren’t defined if there are negative cycles.
- B-F can detect negative cycles!
 - See skipped slides to see how, or think about it on your own!
- For your own information: by now we have faster (but complicated) algorithms with runtime $\approx O(m \log(n)^c)$ as long as weights are not too large in magnitude!

[Bernstein-Nanongkai-Wulff-Nilsen’2022]

Technically, the weights need to be integers, and then the runtime scales linearly with $\log(W)$ where W is the largest absolute value of the weights.
Bellman-Ford algorithm

Bellman-Ford*(G,s):

- $d^{(0)}[v] = U$ for all v, where U is a very large number
- $d^{(0)}[s] = 0$
- For $i=0,...,n-1$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \in v.inNeighbors} \{d^{(i)}[u] + w(u,v)\})$
 - If $d^{(n-1)} \neq d^{(n)}$:
 - Return NEGATIVE CYCLE 😞
 - Otherwise, $dist(s,v) = d^{(n-1)}[v]$

Running time: $O(mn)$
Important thing about B-F for the rest of this lecture

d\(^{(i)}[v]\) is equal to the cost of the shortest path between s and v with at most i edges.

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^{(0)})</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>(d^{(1)})</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>(d^{(2)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(3)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(4)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>
Bellman-Ford is an example of...

Dynamic Programming!

Today:

- Example of Dynamic programming:
 - Fibonacci numbers.
 - (And Bellman-Ford)
- What is dynamic programming, exactly?
 - And why is it called “dynamic programming”?
- Another example: Floyd-Warshall algorithm
 - An “all-pairs” shortest path algorithm
Pre-Lecture exercise: How not to compute Fibonacci Numbers

• Definition:
 • \(F(n) = F(n-1) + F(n-2) \), with \(F(1) = F(2) = 1 \).
 • The first several are:
 • 1
 • 1
 • 2
 • 3
 • 5
 • 8
 • 13, 21, 34, 55, 89, 144,...

• Question:
 • Given \(n \), what is \(F(n) \)?
Candidate algorithm

- `def Fibonacci(n):
 • if n == 0, return 0
 • if n == 1, return 1
 • return Fibonacci(n-1) + Fibonacci(n-2)

Running time?
- \(T(n) = T(n-1) + T(n-2) + O(1) \)
- \(T(n) \geq T(n-1) + T(n-2) \) for \(n \geq 2 \)
- So \(T(n) \) grows at least as fast as the Fibonacci numbers themselves...
- This is **EXPONENTIALLY QUICKLY**!
 \(T(n) \geq 2T(n - 2) \) implies
 \(T(n) \geq \Omega(2^{n/2}) \).

See IPython notebook for lecture 12
What’s going on?
Consider Fib(8)

That’s a lot of repeated computation!
Maybe this would be better:

```python
def fasterFibonacci(n):
    F = [0, 1, None, None, ..., None]
    F has length n + 1
    for i = 2, ..., n:
        F[i] = F[i-1] + F[i-2]
    return F[n]
```

Much better running time!
This was an example of...

Dynamic programming!
What is *dynamic programming*?

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.
- Usually, it is for solving **optimization problems**
 - E.g., *shortest* path
 - (Fibonacci numbers aren’t an optimization problem, but they are a good example of DP anyway...)
Elements of dynamic programming

1. Optimal sub-structure:

- Big problems break up into sub-problems.
 - Fibonacci: $F(i)$ for $i \leq n$
 - Bellman-Ford: Shortest paths with at most i edges for $i \leq n$
- The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 - Fibonacci:
 \[
 F(i+1) = F(i) + F(i-1)
 \]
 - Bellman-Ford:
 \[
 d^{(i+1)}[v] \leftarrow \min \{ d^{(i)}[v], \min_u \{ d^{(i)}[u] + \text{weight}(u,v) \} \}
 \]
 Shortest path with at most i edges from s to v
 Shortest path with at most i edges from s to u.

Elements of dynamic programming

2. Overlapping sub-problems:

• The sub-problems overlap.

 • **Fibonacci:**

 • Both \(F[i+1]\) and \(F[i+2]\) directly use \(F[i]\).

 • And lots of different \(F[i+x]\) indirectly use \(F[i]\).

 • **Bellman-Ford:**

 • Many different entries of \(d^{(i+1)}\) will directly use \(d^{(i)}[v]\).

 • And lots of different entries of \(d^{(i+x)}\) will indirectly use \(d^{(i)}[v]\).

• This means that we can save time by solving a sub-problem just once and storing the answer.
Elements of dynamic programming

• Optimal substructure.
 • Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.

• Overlapping subproblems.
 • The subproblems show up again and again

• Using these properties, we can design a dynamic programming algorithm:
 • Keep a table of solutions to the smaller problems.
 • Use the solutions in the table to solve bigger problems.
 • At the end we can use information we collected along the way to find the solution to the whole thing.
Two ways to think about and/or implement DP algorithms

- Top down
- Bottom up
Bottom up approach
what we just saw.

• For Fibonacci:
 • Solve the small problems first
 • fill in F[0], F[1]
 • Then bigger problems
 • fill in F[2]
 • ...
• Then bigger problems
 • fill in F[n-1]
• Then finally solve the real problem.
 • fill in F[n]
Bottom up approach what we just saw.

• For Bellman-Ford:
 • Solve the small problems first
 • fill in $d^{(0)}$
 • Then bigger problems
 • fill in $d^{(1)}$
 • ...
 • Then bigger problems
 • fill in $d^{(n-2)}$
 • Then finally solve the real problem.
 • fill in $d^{(n-1)}$
Top down approach

• Think of it like a recursive algorithm.

• To solve the big problem:
 • Recurse to solve smaller problems
 • Those recurse to solve smaller problems
 • etc..

• The difference from divide and conquer:
 • Keep track of what small problems you’ve already solved to prevent re-solving the same problem twice.
 • Aka, “memo-ization”
Example of top-down Fibonacci

• define a global list \(F = [0,1,\text{None}, \text{None}, \ldots, \text{None}] \)

• \textbf{def} Fibonacci(n):
 • \textbf{if} \(F[n] \neq \text{None} \):
 • \textbf{return} \(F[n] \)
 • \textbf{else}:
 • \(F[n] = \text{Fibonacci}(n-1) + \text{Fibonacci}(n-2) \)
 • \textbf{return} \(F[n] \)

Memo-ization:
Keeps track (in \(F \)) of the stuff you’ve already done.
Memo-ization visualization

Collapse repeated nodes and don’t do the same work twice!
Memo-ization Visualization ctd

Collapse repeated nodes and don’t do the same work twice!

But otherwise treat it like the same old recursive algorithm.

- define a global list \(F = [0, 1, \text{None}, \text{None}, \ldots, \text{None}] \)
- def Fibonacci(n):
 - if \(F[n] \) != None:
 - return \(F[n] \)
 - else:
 - \(F[n] = \) Fibonacci(n-1) + Fibonacci(n-2)
 - return \(F[n] \)
What have we learned?

• **Dynamic programming:**
 • Paradigm in algorithm design.
 • Uses **optimal substructure**
 • Uses **overlapping subproblems**
 • Can be implemented **bottom-up** or **top-down**.
 • It’s a fancy name for a pretty common-sense idea:

 Don’t duplicate work if you don’t have to!
Why “dynamic programming”?

• **Programming** refers to finding the optimal “program.”
 • as in, a shortest route is a *plan* aka a *program*.
• **Dynamic** refers to the fact that it’s multi-stage.
• But also it’s just a fancy-sounding name.

Manipulating computer code in an action movie?
Why “dynamic programming”?

- Richard Bellman invented the name in the 1950’s.
- At the time, he was working for the RAND Corporation, which was basically working for the Air Force, and government projects needed flashy names to get funded.
- From Bellman’s autobiography:
 - “It’s impossible to use the word, dynamic, in the pejorative sense… I thought dynamic programming was a good name. It was something not even a Congressman could object to.”
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 • That is, I want to know the shortest path from u to v for **ALL pairs** u,v of vertices in the graph.
 • Not just from a special single source s.

<table>
<thead>
<tr>
<th>Source</th>
<th>s</th>
<th>u</th>
<th>v</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>t</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 • That is, I want to know the shortest path from \(u \) to \(v \) for **ALL pairs** \(u,v \) of vertices in the graph.
 • Not just from a special single source \(s \).

• **Naïve solution** (if we want to handle negative edge weights):
 • For all \(s \) in \(G \):
 • Run Bellman-Ford on \(G \) starting at \(s \).

 • Time \(O(n \cdot nm) = O(n^2m) \),
 • may be as bad as \(n^4 \) if \(m=n^2 \)

Can we do better?
Optimal substructure

Label the vertices 1, 2, ..., n
Optimal substructure

Sub-problem(k-1):
For all pairs, \(u,v\), find the cost of the shortest path from \(u\) to \(v\), so that all the internal vertices on that path are in \(\{1,\ldots,k-1\}\).

Let \(D^{(k-1)}[u,v]\) be the solution to Sub-problem(k-1).

Label the vertices 1,2,...,n (We omit some edges in the picture below – meant to be a cartoon, not an example).

Our DP algorithm will fill in the \(n\)-by-\(n\) arrays \(D^{(0)}, D^{(1)}, \ldots, D^{(n)}\) iteratively and then we’ll be done.

This is the shortest path from \(u\) to \(v\) through the blue set. It has cost \(D^{(k-1)}[u,v]\)
Optimal substructure

Sub-problem$(k-1)$:
For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in $\{1,...,k-1\}$.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem$(k-1)$.

Question: How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

This is the shortest path from u to v through the blue set. It has cost $D^{(k-1)}[u,v]$.

Let the vertices 1,2,...,n
(We omit some edges in the picture below – meant to be a cartoon, not an example).

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}$, $D^{(1)}$, ..., $D^{(n)}$ iteratively and then we’ll be done.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in \{1, ..., k\}.

![Diagram showing vertices 1, ..., k, with u, n, and v highlighted, and $k+1$ in the outermost ring.](image)
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in \{1, ..., k\}.

Case 1: we don’t need vertex k.

$D^{(k)}[u,v] = D^{(k-1)}[u,v]$
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

Case 2: we need vertex k.
Case 2 continued

- Suppose there are no negative cycles.
 - Then WLOG the shortest path from u to v through \{1,\ldots,k\} is simple.

- If that path passes through k, it must look like this:

- This path is the shortest path from u to k through \{1,\ldots,k-1\}.
 - sub-paths of shortest paths are shortest paths

- Similarly for this path.

\[
D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]
\]
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

Case 1: we don’t need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$

Case 2: we need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]$$
How can we find \(D^{(k)}[u,v] \) using \(D^{(k-1)} \)?

- \(D^{(k)}[u,v] = \min \{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \} \)

Case 1: Cost of shortest path through \(\{1,\ldots,k-1\} \)

Case 2: Cost of shortest path from \(u \) to \(k \) and then from \(k \) to \(v \) through \(\{1,\ldots,k-1\} \)

- **Optimal substructure:**
 - We can solve the big problem using solutions to smaller problems.

- **Overlapping subproblems:**
 - \(D^{(k-1)}[k,v] \) can be used to help compute \(D^{(k)}[u,v] \) for lots of different \(u \)’s.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

- $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

Case 1: Cost of shortest path through \{1, ..., k-1\}

Case 2: Cost of shortest path from u to k and then from k to v through \{1, ..., k-1\}

- Using our *Dynamic programming* paradigm, this immediately gives us an algorithm!
Floyd-Warshall algorithm

• Initialize n-by-n arrays $D^{(k)}$ for $k = 0, \ldots, n$
 • $D^{(k)}[u,u] = 0$ for all u, for all k
 • $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 • $D^{(0)}[u,v] = \text{weight}(u,v)$ for all (u,v) in E.

• For $k = 1, \ldots, n$:
 • For pairs u,v in V^2:
 • $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

• Return $D^{(n)}$

This is a bottom-up Dynamic programming algorithm.
We’ve basically just shown

• Theorem:

 If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix $D^{(n)}$ so that:

 $$D^{(n)}[u,v] = \text{distance between } u \text{ and } v \text{ in } G.$$

• Running time: $O(n^3)$

 • Better than running Bellman-Ford n times!

• Storage:

 • Need to store two n-by-n arrays, and the original graph.

 As with Bellman-Ford, we don’t really need to store all n of the $D^{(k)}$.

Work out the details of a proof!

We don’t even need two, just one array is fine. Why?
What if there are negative cycles?

• Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
 • “Negative cycle” means that there’s some v so that there is a path from v to v that has cost < 0.
 • Aka, $D^{(n)}[v,v] < 0$.

• Algorithm:
 • Run Floyd-Warshall as before.
 • If there is some v so that $D^{(n)}[v,v] < 0$:
 • return negative cycle.
What have we learned?

• The Floyd-Warshall algorithm is another example of *dynamic programming*.

• It computes All Pairs Shortest Paths in a directed weighted graph in time $O(n^3)$.
Can we do better than $O(n^3)$?
Nothing on this slide is required knowledge for this class

- There is an algorithm that runs in time $O(n^3/\log^{100}(n))$.
 - [Williams, “Faster APSP via Circuit Complexity”, STOC 2014]
- If you can come up with an algorithm for All-Pairs-Shortest-Path that runs in time $O(n^{2.99})$, that would be a really big deal.
 - Let me know if you can!
 - See [Abboud, Vassilevska-Williams, “Popular conjectures imply strong lower bounds for dynamic problems”, FOCS 2014] for some evidence that this is a very difficult problem!
Recap

• Two shortest-path algorithms:
 • Bellman-Ford for single-source shortest path
 • Floyd-Warshall for all-pairs shortest path

• Dynamic programming!
 • This is a fancy name for:
 • Break up an optimization problem into smaller problems
 • The optimal solutions to the sub-problems should be sub-solutions to the original problem.
 • Build the optimal solution iteratively by filling in a table of sub-solutions.
 • Take advantage of overlapping sub-problems!
Next time

• More examples of *dynamic programming*!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.

• No pre-lecture exercise for next time