Lecture 12

Bellman-Ford, Floyd-Warshall, and Dynamic Programming!

Announcements

- Homework 5 due today

Today

- Bellman-Ford Algorithm
- Bellman-Ford is a special case of Dynamic Programming!
- What is dynamic programming?
- Warm-up example: Fibonacci numbers
- Another example:
- Floyd-Warshall Algorithm
- Weights on edges

Recall

 represent costs.- The cost of a path is the
- A weighted directed graph:
 sum of the weights along that path.
- A shortest path from s to t is a directed path from s to t with the smallest cost.
- The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

This is a path from s to t of cost 10. It is the shortest path from s to t.

Last time

- Dijkstra's algorithm!
- Solves the single-source shortest path problem in weighted graphs.

Dijkstra Drawbacks

- Needs non-negative edge weights.
- If the weights change, we need to re-run the whole thing.

Bellman-Ford algorithm

- (-) Slower than Dijkstra's algorithm
- (+) Can handle negative edge weights.
- Can be useful if you want to say that some edges are actively good to take, rather than costly.
- Can be useful as a building block in other algorithms.
- (+) Allows for some flexibility if the weights change.
- We'll see what this means later

Aside: Negative Cycles

- A negative cycle is a cycle whose edge weights sum to a negative number.
- Shortest paths aren't defined when there are negative cycles!

The shortest path from A to B has cost...negative infinity?

Bellman-Ford algorithm

- (-) Slower than Dijkstra's algorithm
- (+) Can handle negative edge weights.
- Can detect negative cycles!
- Can be useful if you want to say that some edges are actively good to take, rather than costly.
- Can be useful as a building block in other algorithms.
- (+) Allows for some flexibility if the weights change.
- We'll see what this means later

Bellman-Ford vs. Dijkstra

- Dijkstra:
- Find the u with the smallest d[u]
- Update u's neighbors: $d[v]=\min (d[v], d[u]+w(u, v))$
- Bellman-Ford:
- Don't bother finding the u with the smallest d[u]
- Everyone updates!

Bellman-Ford

How far is a node from Gates?

Gates Packard CS161 Union Dish

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For v in V :
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+w(u, v)\right)$ where we are also taking the min over all u in v.inNeighbors

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For vin V:
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+w(u, v)\right)$ where we are also taking the min over all u in v.inNeighbors

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

$d^{(0)}$	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$\mathrm{d}^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$					
$d^{(4)}$					

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For vin V :
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+w(u, v)\right)$ where we are also taking the min over all u in v.inNeighbors

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

$d^{(0)}$	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$\mathrm{d}^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$	0	1	2	6	23
$\mathrm{d}^{(4)}$					

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For vin V :
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+w(u, v)\right)$ where we are also taking the min over all u in v.inNeighbors

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

$d^{(0)}$	0	∞	∞	∞	∞
$d^{(1)}$	0	1	∞	∞	25
$\mathrm{d}^{(2)}$	0	1	2	45	23
$d^{(3)}$	0	1	2	6	23
$\mathrm{d}^{(4)}$	0	1	2	6	23

These are the final distances!

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For vin V :
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+w(u, v)\right)$ where we are also taking the min over all u in v.inNeighbors

Interpretation of $d^{(i)}$

$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

Why does Bellman-Ford work?

- Inductive hypothesis:
- $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.
- Conclusion:
- $d^{(n-1)}[v]$ is equal to the cost of the shortest path between s and v with at most $n-1$ edges.

Do the base case and inductive step!

Aside: simple paths

Assume there is no negative cycle.

- Then there is a shortest path from s to t, and moreover there is a simple shortest path.

This cycle isn't helping. Just get rid of it.

- A simple path in a graph with n vertices has at most n -1 edges in it.

Can't add another edge without making a cycle!

"Simple" means that the path has no cycles in it.

- So there is a shortest path with at most n-1 edges

Why does it work?

- Inductive hypothesis:
- $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.
- Conclusion:
- $d^{(n-1)}[v]$ is equal to the cost of the shortest path between s and v with at most $n-1$ edges.
- If there are no negative cycles, $\mathrm{d}^{(n-1)}[\mathrm{v}]$ is equal to the cost of the shortest path.

Bellman-Ford* algorithm

$G=(V, E)$ is a graph with n vertices and m edges.

Bellman-Ford*(G,s):

- Initialize arrays $\mathrm{d}^{(0)}, \ldots, \mathrm{d}^{(\mathrm{n}-1)}$ of length n
- $d^{(0)}[v]=\infty$ for all v in V
- $d^{(0)}[s]=0$
- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:

Here, Dijkstra picked a special vertex u and updated u's neighbors - Bellman-Ford will update all the vertices.

- For v in V :
- $d^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \min _{\mathrm{u} \text { in } \mathrm{v.inNbrs}}\left\{\mathrm{~d}^{(\mathrm{i})}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})\right\}\right)$
- Now, $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]$ for all v in V .
- (Assuming no negative cycles)
*Slightly different than some versions of Bellman-Ford...but this way is pedagogically convenient for today's lecture.

Note on implementation

- Don't actually keep all n arrays around.

- Just keep two at a time: "last round" and "this round"

Gates Packard CS161 Union Dish

Only need these two in order to compute $\mathrm{d}^{(4)}$

Bellman-Ford take-aways

- Running time is $\mathrm{O}(\mathrm{mn})$
- For each of n rounds, update m edges.
- Works fine with negative edges.
- Does not work with negative cycles.
- No algorithm can - shortest paths aren't defined if there are negative cycles.
- B-F can detect negative cycles!
- See skipped slides to see how, or think about it on your own!
- For your own information: by now we have faster (but complicated) algorithms with runtime $\simeq O\left(m \log (n)^{c}\right)$ as long as weights are not too large in magnitude!
[Bernstein-Nanongkai-Wulff-Nilsen'2022]
Technically, the weights need to be integers, and then the runtime scales
linearly with $\log (W)$ where W is the largest absolute value of the weights.

Bellman-Ford algorithm

Bellman-Ford*(G,s):

- $\mathrm{d}^{(0)}[\mathrm{v}]=U$ for all v , where U is a very large number
- $d^{(0)}[s]=0$
- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:
- For vin V:
- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \min _{\mathrm{u} \text { in } \text { v.inNeighbors }}\left\{\mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})\right\}\right)$
- If $d^{(n-1)}$! $=d^{(n)}$:
- Return NEGATIVE CYCLE :
- Otherwise, $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]$

Running time: O(mn)

Important thing about B-F

 for the rest of this lecture $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.Gates Packard CS161 Union Dish
$d^{(0)}$

0	∞	∞	∞	∞

$d^{(1)}$	0	1	∞	∞	25

$d^{(2)}$	0	1	2	45
	23			

$d^{(3)}$

0	1	2	6	23

$d^{(4)}$

0	1	2	6	23

Bellman-Ford is an example of... Dynamic Programming!

Today:

- Example of Dynamic programming:
- Fibonacci numbers.
- (And Bellman-Ford)
-What is dynamic programming, exactly?
- And why is it called "dynamic programming"?
- Another example: Floyd-Warshall algorithm
- An "all-pairs" shortest path algorithm

Pre-Lecture exercise:

How not to compute Fibonacci Numbers

- Definition:
- $F(n)=F(n-1)+F(n-2)$, with $F(1)=F(2)=1$.
- The first several are:
- 1
- 1
- 2
- 3
- 5
- 8
- $13,21,34,55,89,144, \ldots$
- Question:
- Given n, what is $F(n)$?

Candidate algorithm

- def Fibonacci(n):
- if $\mathrm{n}=0$, return 0
- if $n=1$, return 1
- return Fibonacci(n-1) + Fibonacci(n-2)

Running time?

- $T(n)=T(n-1)+T(n-2)+O(1)$
- $T(n) \geq T(n-1)+T(n-2)$ for $n \geq 2$
- So $T(n)$ grows at least as fast as the Fibonacci numbers themselves...
- This is EXPONENTIALLY QUICKLY! $T(n) \geq 2 T(n-2)$ implies $T(n) \geq \Omega\left(2^{n / 2}\right)$.

Computing Fibonacci Numbers

See IPython notebook for lecture 12

What's going on?
Consider Fib(8)

That's a lot of repeated computation!

Maybe this would be better:


```
def fasterFibonacci(n):
    - F = [0, 1, None, None, ..., None ]
        - \\ F has length n + 1
    - for i = 2, ..., n:
    - F[i] = F[i-1] + F[i-2]
    - return F[n]
```

Much better running time!

This was an example of...

What is dynamic programming?

- It is an algorithm design paradigm
- like divide-and-conquer is an algorithm design paradigm.
- Usually, it is for solving optimization problems
- E.g., shortest path
- (Fibonacci numbers aren't an optimization problem, but they are a good example of DP anyway...)

Elements of dynamic programming

1. Optimal sub-structure:

- Big problems break up into sub-problems.
- Fibonacci: F(i) for $\mathrm{i} \leq \mathrm{n}$
- Bellman-Ford: Shortest paths with at most i edges for $\mathrm{i} \leq \mathrm{n}$
- The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
- Fibonacci:

$$
F(i+1)=F(i)+F(i-1)
$$

- Bellman-Ford:

$$
\mathrm{d}^{(i+1)}[v] \leftarrow \min \left\{\mathrm{d}^{(i)}[v], \min _{u}\left\{\mathrm{~d}^{(i)}[u]+\text { weight }(u, v)\right\}\right\}
$$

Elements of dynamic programming

2. Overlapping sub-problems:

- The sub-problems overlap.
- Fibonacci:
- Both $\mathrm{F}[i+1]$ and $\mathrm{F}[i+2]$ directly use $\mathrm{F}[i]$.
- And lots of different $F[i+x]$ indirectly use $F[i]$.
- Bellman-Ford:
- Many different entries of $d^{(i+1)}$ will directly use $d^{(i)}[v]$.
- And lots of different entries of $d^{(i+x)}$ will indirectly use $d^{(i)}[v]$.
- This means that we can save time by solving a sub-problem just once and storing the answer.

Elements of dynamic programming

- Optimal substructure.
- Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.
- Overlapping subproblems.
- The subproblems show up again and again
- Using these properties, we can design a dynamic programming algorithm:
- Keep a table of solutions to the smaller problems.
- Use the solutions in the table to solve bigger problems.
- At the end we can use information we collected along the way to find the solution to the whole thing.

Two ways to think about and/or implement DP algorithms

- Top down
- Bottom up

Liaison

Bottom up approach

 what we just saw.- For Fibonacci:
- Solve the small problems first - fill in $\mathrm{F}[0], \mathrm{F}[1]$

- Then bigger problems
- fill in F[2]
- ...
- Then bigger problems
- fill in $\mathrm{F}[\mathrm{n}-1]$
- Then finally solve the real problem.
- fill in F[n]

Bottom up approach

 what we just saw.- For Bellman-Ford:
- Solve the small problems first - fill in d ${ }^{(0)}$

- Then bigger problems
- fill in $\mathrm{d}^{(1)}$
- Then bigger problems
- fill in $\mathrm{d}^{(n-2)}$
- Then finally solve the real problem.
- fill in $\mathrm{d}^{(n-1)}$

Top down approach

- Think of it like a recursive algorithm.
- To solve the big problem:
- Recurse to solve smaller problems

- Those recurse to solve smaller problems - etc..
- The difference from divide and conquer:
- Keep track of what small problems you've already solved to prevent re-solving the same problem twice.
- Aka, "memo-ization"

Example of top-down Fibonacci

- define a global list $F=[0,1, N o n e, ~ N o n e, ~ . . ., ~ N o n e] ~$
- def Fibonacci(n):
- if $F[n]$! $=$ None:
- return $\mathrm{F}[\mathrm{n}]$
- else:
- $\mathrm{F}[\mathrm{n}]=$ Fibonacci $(\mathrm{n}-1)+$ Fibonacci $(\mathrm{n}-2)$
- return $F[n]$

Memo-ization:
Keeps track (in F) of the stuff you've already done.

Memo-ization visualization

Collapse repeated nodes and don't do the same work

Memo-ization Visualization

 ctd
Collapse

 repeated nodes and don't do the same work twice!But otherwise treat it like the same old recursive algorithm.

- define a global list $F=[0,1, N o n e, ~ N o n e, ~ . . ., ~ N o n e]$
- def Fibonacci(n):
- if $F[n]$! $=$ None:
- return $F[n]$
- else:
- $F[n]=$ Fibonacci $(n-1)$ + Fibonacci $(n-2)$
- return $F[n]$

What have we learned?

- Dynamic programming:
- Paradigm in algorithm design.
- Uses optimal substructure
- Uses overlapping subproblems
- Can be implemented bottom-up or top-down.
- It's a fancy name for a pretty common-sense idea:

> Don't
> duplicate
> work if you
> don't have to!

Why "dynamic programming" ?

- Programming refers to finding the optimal "program."
- as in, a shortest route is a plan aka a program.
- Dynamic refers to the fact that it's multi-stage.
- But also it's just a fancy-sounding name.

Manipulating computer code in an action mévie?

Why "dynamic programming" ?

- Richard Bellman invented the name in the 1950's.
- At the time, he was working for the RAND Corporation, which was basically working for the Air Force, and government projects needed flashy names to get funded.
- From Bellman's autobiography:
- "It's impossible to use the word, dynamic, in the pejorative sense...I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Floyd-Warshall Algorithm Another example of DP

- This is an algorithm for All-Pairs Shortest Paths (APSP)
- That is, I want to know the shortest path from u to v for ALL pairs u, v of vertices in the graph.
- Not just from a special single source s.

Floyd-Warshall Algorithm Another example of DP

- This is an algorithm for All-Pairs Shortest Paths (APSP)
- That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
- Not just from a special single source s.
- Naïve solution (if we want to handle negative edge weights):
- For all s in G:
- Run Bellman-Ford on G starting at s.
- Time $O(n \cdot n m)=O\left(n^{2} m\right)$,
- may be as bad as n^{4} if $m=n^{2}$

Optimal substructure

Label the vertices $1,2, \ldots, n$
(We omit some edges in the picture below - meant to be a cartoon, not an example).

Sub-problem(k-1):
For all pairs, u, v, find the cost of the shortest
path from u to v, so that all the internal vertices on that path are in $\{1, \ldots, k-1\}$.

Let $D^{(k-1)}[u, v]$ be the solution to Sub-problem(k-1).

Optimal substructure

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}, D^{(1)}, \ldots, D^{(n)}$ iteratively and then we'll be done.
k+1
k+1

This is the shortest path from u to v through the blue set. It has cost $D^{(k-1)}[u, v]$

Optimal substructure

Label the vertices $1,2, \ldots, n$
(We omit some edges in the picture below - meant to be a cartoon, not an example).

Sub-problem(k-1):

For all pairs, u, v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in $\{1, \ldots, k-1\}$.

Let $D^{(k-1)}[u, v]$ be the solution to Sub-problem(k-1).

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}, D^{(1)}, \ldots, D^{(n)}$ iteratively and then we'll be done.

$$
k+1
$$

Question: How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

$D^{(k)}[u, v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

Case 1: we don't need vertex k.

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.Case 2: we need vertex k.

Case 2 continued

- Suppose there are no negative cycles.

Case 2: we need

 vertex k .- Then WLOG the shortest path from u to v through $\{1, \ldots, k\}$ is simple.
- If that path passes through k, it must look like this:
- This path is the shortest path from u to k through $\{1, . . ., k-1\}$.
- sub-paths of shortest paths are shortest paths
- Similarly for this path.

$$
D^{(k)}[u, v]=D^{(k-1)}[u, k]+D^{(k-1)}[k, v]_{56}
$$

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

Case 1: we don't need vertex k .
Case 2: we need vertex k .

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

- $D^{(k)}[u, v]=\min \left\{D^{(k-1)}[u, v], D^{(k-1)}[u, k]+D^{(k-1)}[k, v]\right\}$

Case 1: Cost of
shortest path
through $\{1, \ldots, \mathrm{k}-1\}$

Case 2: Cost of shortest path from u to k and then from k to v through $\{1, \ldots, \mathrm{k}-1\}$

- Optimal substructure:
- We can solve the big problem using solutions to smaller problems.
- Overlapping sub-problems:
- $D^{(k-1)}[k, v]$ can be used to help compute $D^{(k)}[u, v]$ for lots of different u's.

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

- $D^{(k)}[u, v]=\min \left\{D^{(k-1)}[u, v], D^{(k-1)}[u, k]+D^{(k-1)}[k, v]\right\}$

Case 1: Cost of
shortest path
through $\{1, \ldots, \mathrm{k}-1\}$

Case 2: Cost of shortest path from u to k and then from k to v through $\{1, . . ., k-1\}$

- Using our Dynamic programming paradigm, this immediately gives us an algorithm!

Floyd-Warshall algorithm

- Initialize n-by-n arrays $D^{(k)}$ for $k=0, \ldots, n$
- $D^{(k)}[u, u]=0$ for all u, for all k
- $D^{(k)}[u, v]=\infty$ for all $u \neq v$, for all k
- $D^{(0)}[u, v]=$ weight (u, v) for all (u,v) in E.
- For $k=1, \ldots, n$:

The base case
checks out: the only path through zero other vertices are edges directly
from u to v.

- For pairs u, v in V^{2} :
- $D^{(k)}[u, v]=\min \left\{D^{(k-1)}[u, v], D^{(k-1)}[u, k]+D^{(k-1)}[k, v]\right\}$
- Return $D^{(n)}$

This is a bottom-up ©ymamic programming algorithm.

We've basically just shown

- Theorem:

If there are no negative cycles in a weighted directed graph G , then the Floyd-Warshall algorithm, running on G , returns a matrix $D^{(n)}$ so that:

$$
D^{(n)}[u, v]=\text { distance between } u \text { and } v \text { in } G \text {. }
$$

- Running time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Better than running Bellman-Ford n times!

Work out the

- Storage:
- Need to store two n-by-n arrays, and the original graph.

What if there are negative cycles?

- Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
- "Negative cycle" means that there's some v so that there is a path from v to v that has cost <0.
- Aka, $D^{(n)}[\mathrm{v}, \mathrm{v}]<0$.
- Algorithm:
- Run Floyd-Warshall as before.
- If there is some v so that $D^{(n)}[v, v]<0$:
- return negative cycle.

What have we learned?

- The Floyd-Warshall algorithm is another example of dynamic programming.
- It computes All Pairs Shortest Paths in a directed weighted graph in time $O\left(n^{3}\right)$.

Can we do better than $O\left(n^{3}\right)$?

Nothing on this slide is required knowledge for this class

- There is an algorithm that runs in time $O\left(\mathrm{n}^{3} / \log ^{100}(\mathrm{n})\right)$.
- [Williams, "Faster APSP via Circuit Complexity", STOC 2014]
- If you can come up with an algorithm for All-Pairs-Shortest-Path that runs in time $O\left(\mathrm{n}^{2.99}\right)$, that would be a really big deal.
- Let me know if you can!
- See [Abboud, Vassilevska-Williams, "Popular conjectures imply strong lower bounds for dynamic problems", FOCS 2014] for some evidence that this is a very difficult problem!

Recap

- Two shortest-path algorithms:
- Bellman-Ford for single-source shortest path
- Floyd-Warshall for all-pairs shortest path
- Dynamic programming!
- This is a fancy name for:
- Break up an optimization problem into smaller problems
- The optimal solutions to the sub-problems should be subsolutions to the original problem.
- Build the optimal solution iteratively by filling in a table of sub-solutions.
- Take advantage of overlapping sub-problems!

Next time

- More examples of dynamic programming!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.

- No pre-lecture exercise for next time

