
Lecture 13
More dynamic programming!

Longest Common Subsequences, Knapsack, and 
(if time) independent sets in trees.
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Last time

• Not coding in an action movie.

Tom Cruise programs dynamically 
in Mission Impossible 2



Last time

• Dynamic programming is an algorithm design 
paradigm.
• Basic idea:
• Identify optimal sub-structure

• Optimum to the big problem is built out of optima of small 
sub-problems

• Take advantage of overlapping sub-problems
• Only solve each sub-problem once, then use it again and again

• Keep track of the solutions to sub-problems in a table 
as you build to the final solution.
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Today

• Examples of dynamic programming:
1. Longest common subsequence
2. Knapsack problem

• Two versions!
3. Independent sets in trees 

• If we have time…
• (If not the slides will be there as a reference)

• Yet more examples of DP in CLRS!
• Optimal order of matrix multiplications
• Optimal binary search trees
• Longest paths in DAGs, …
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The goal of this lecture

• For you to get really bored of dynamic programming
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Longest Common Subsequence

• How similar are these two species?

AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG
DNA: DNA:
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Longest Common Subsequence

• How similar are these two species?

• Pretty similar, their DNA has a long common subsequence:

AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

AGCCTAAGCTTAGCTT

DNA: DNA:
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Longest Common Subsequence

• Subsequence:
• BDFH is a subsequence of ABCDEFGH

• If X and Y are sequences, a common subsequence 
is a sequence which is a subsequence of both.
• BDFH is a common subsequence of ABCDEFGH and of 

ABDFGHI

• A longest common subsequence…
• …is a common subsequence that is longest.
• The longest common subsequence of ABCDEFGH and 

ABDFGHI is ABDFGH.
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We sometimes want to find these

• Applications in bioinformatics

• The unix command diff
• Merging in version control 
• svn, git, etc…
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the length 

of the longest common subsequence.
• Step 3: Use dynamic programming to find the 

length of the longest common subsequence.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual LCS.
• Step 5: If needed, code this up like a reasonable 

person.
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Step 1: Optimal substructure

A C G G T

A C G C T T AY

X

Prefixes:

Notation: denote this prefix ACGC by Y4

• Our sub-problems will be finding LCS’s of prefixes to X and Y.
• Let C[i,j] = length_of_LCS( Xi, Yj )

11
C[2,3] = 2
C[4,4] = 3

Examples:



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the length 

of the longest common subsequence.
• Step 3: Use dynamic programming to find the 

length of the longest common subsequence.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual LCS.
• Step 5: If needed, code this up like a reasonable 

person.
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Goal
• Write C[i,j] in terms of the solutions to smaller sub-

problems

C[i,j] = length_of_LCS( Xi, Yj )

A C G G A

A C G C T T AYj

Xi

i

j
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Two cases

A C G G A

A C G C T T AYj

Xi

• Our sub-problems will be finding 
LCS’s of prefixes to X and Y.

• Let C[i,j] = length_of_LCS( Xi, Yj )Case 1: X[i] = Y[j]
i

j

These are 
the same

• Then C[i,j] = 1 + C[i-1,j-1].
• because LCS(Xi,Yj) = LCS(Xi-1,Yj-1) followed by A
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Two cases

A C G G T

A C G C T T AYj

Xi

• Our sub-problems will be finding 
LCS’s of prefixes to X and Y.

• Let C[i,j] = length_of_LCS( Xi, Yj )Case 2: X[i] != Y[j]
i

j

These are 
not the 
same

• Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
• either LCS(Xi,Yj) = LCS(Xi-1,Yj) and       is not involved,
• or LCS(Xi,Yj) = LCS(Xi,Yj-1) and       is not involved,
• (maybe both are not involved, that’s covered by the “or”).

A

T
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Recursive formulation 
of the optimal solution

• 𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

A C G G A

A C G C T T AYj

Xi
A C G G T

A C G C T T AYj

Xi

Case 1 Case 2

A C G C T T AYj

X0

Case 0
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the length 

of the longest common subsequence.
• Step 3: Use dynamic programming to find the 

length of the longest common subsequence.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual LCS.
• Step 5: If needed, code this up like a reasonable 

person.
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LCS DP
• LCS(X, Y):
• C[i,0] = C[0,j] = 0 for all i = 0,…,m, j=0,…n.
• For i = 1,…,m and j = 1,…,n:
• If X[i] = Y[j]:
• C[i,j] = C[i-1,j-1]  + 1

• Else:
• C[i,j] = max{ C[i,j-1], C[i-1,j] }

• Return C[m,n]

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

Running time: O(nm)
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Example
A C G G A

A C T GY

X

A

C

G

G

A

A C T G

X

Y

0 0 0 0

0

0

0

0

0

0

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 019



0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

So the LCM of X 
and Y has length 3.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the length 

of the longest common subsequence.
• Step 3: Use dynamic programming to find the 

length of the longest common subsequence.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual LCS.
• Step 5: If needed, code this up like a reasonable 

person.
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Example
A C G G A

A C T GY

X

A

C

G

G

A

A C T G

X

Y

0 0 0 0

0

0

0

0

0

0

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 022



0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 023



0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in, 
we can work backwards.
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in, 
we can work backwards.

That 3 must have come 
from the 3 above it.
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in, 
we can work backwards.

This 3 came from that 2 – 
we found a match!

• Once we’ve filled this in, 
we can work backwards.

• A diagonal jump means 
that we found an element 
of the LCS!

26
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in, 
we can work backwards.

• A diagonal jump means 
that we found an element 
of the LCS!

G

That 2 may as well 
have come from 
this other 2.
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in, 
we can work backwards.

• A diagonal jump means 
that we found an element 
of the LCS!

G
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in, 
we can work backwards.

• A diagonal jump means 
that we found an element 
of the LCS!

GC
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0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in, 
we can work backwards.

• A diagonal jump means 
that we found an element 
of the LCS!

GCA

This is the LCS!
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Finding an LCS

• Good exercise to write out pseudocode for what we 
just saw!
• Or you can find it in lecture notes.

• Takes time O(mn) to fill the table
• Takes time O(n + m) on top of that to recover the LCS
• We walk up and left in an n-by-m array
• We can only do that for n + m steps.

• Altogether, we can find LCS(X,Y) in time O(mn).
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the length 

of the longest common subsequence.
• Step 3: Use dynamic programming to find the 

length of the longest common subsequence.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual LCS.
• Step 5: If needed, code this up like a reasonable 

person.

32



Our approach actually isn’t so bad

• If we are only interested in the length of the LCS we 
can do a bit better on space:
• Since we go across the table one-row-at-a-time, we can only 

keep two rows if we want.
• If we want to recover the LCS, we need to keep the 

whole table.

• Can we do better than O(mn) time?
• A bit better.

• By a log factor or so.
• But doing much better (polynomially better) is an open 

problem!
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What have we learned?

• We can find LCS(X,Y) in time O(nm) 
• if |Y|=n, |X|=m

• We went through the steps of coming up with a 
dynamic programming algorithm.
• We kept a 2-dimensional table, breaking down the 

problem by decrementing the length of X and Y.
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Example 2: Knapsack Problem
• We have n items with weights and values:

• And we have a knapsack: 
• it can only carry so much weight:

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

35



• Unbounded Knapsack:
• Suppose I have infinite copies of all items.
• What’s the most valuable way to fill the knapsack?

• 0/1 Knapsack:
• Suppose I have only one copy of each item.
• What’s the most valuable way to fill the knapsack? 

Weight:
Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 35

36



Some notation

Capacity: W

Weight:

Value:

w1
v1

Item:

w2 w3 wn

v2 v3 vn

…
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.
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Optimal substructure

• Sub-problems: 
• Unbounded Knapsack with a smaller knapsack.
• K[x] = value you can fit in a knapsack of capacity x

First solve the 
problem for 
small knapsacks

Then larger 
knapsacks

Then larger 
knapsacks 39



Optimal substructure
• Suppose this is an optimal solution for capacity x:

• Then this is optimal for capacity x - wi:
Capacity x
Value V

Weight wi
Value vi

Capacity x – wi
Value V - vi

Say that the 

optimal solution 

contains at least 

one copy of item i.

item i

Why?
1 minute think

(wait) 1 minute share

40



Optimal substructure
• Suppose this is an optimal solution for capacity x:

• Then this is optimal for capacity x - wi:
Capacity x
Value V

Weight wi
Value vi

Capacity x – wi
Value V - vi

If I could do better than the second solution, 
then adding a turtle to that improvement 
would improve the first solution.

Say that the 

optimal solution 

contains at least 

one copy of item i.

item i

41



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.

42



• Let K[x] be the optimal value for capacity x.

K[x] = maxi { + }

K[x] = maxi { K[x – wi] + vi }

• (And K[x] = 0 if the maximum is empty).
• That is, if there are no i so that 𝑤𝑖 ≤ 𝑥

Recursive relationship

The maximum is over 
all i so that 𝑤𝑖 ≤ 𝑥.

Optimal way to 
fill the smaller 
knapsack

The value of 
item i.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.

44



Let’s write a bottom-up DP algorithm

• UnboundedKnapsack(W, n, weights, values):
• K[0] = 0
• for x = 1, …, W:
• K[x] = 0
• for i = 1, …, n:
• if 𝑤% ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤% + 𝑣%	}

• return K[W]

Running time: O(nW)

= maxi { K[x – wi] + vi }

K[x] = maxi { + }

45



Can we do better?

• Writing down W takes log(W) bits.
• Writing down all n weights takes at most nlog(W) bits.
• Input size: nlog(W).
• Maybe we could have an algorithm that runs in time 

O(nlog(W)) instead of O(nW)?  
• Or even O( n1000000 log1000000(W) )?

• Open problem!
• (But probably the answer is no…otherwise P = NP)

46



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.

47



Let’s write a bottom-up DP algorithm

• UnboundedKnapsack(W, n, weights, values):
• K[0] = 0
• for x = 1, …, W:
• K[x] = 0
• for i = 1, …, n:
• if 𝑤% ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤% + 𝑣%	}

• return K[W]

= maxi { K[x – wi] + vi }

K[x] = maxi { + }

48



Let’s write a bottom-up DP algorithm
• UnboundedKnapsack(W, n, weights, values):
• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:
• K[x] = 0
• for i = 1, …, n:
• if 𝑤% ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤% + 𝑣%	}
• If K[x] was updated:
• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]

= maxi { K[x – wi] + vi }

K[x] = maxi { + }

49



Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4
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Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[1] = ITEMS[0] + 
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Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 2

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[2] = ITEMS[1] + 
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Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 4

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[2] = ITEMS[0] + 
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Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 4 5

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[3] = ITEMS[2] + 
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Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 4 6

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[3] = ITEMS[0] + 
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Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 4 6 7

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[4] = ITEMS[3] + 
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Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 4 6 8

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[4] = ITEMS[2] + 
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.
(Pass)

58



What have we learned?

• We can solve unbounded knapsack in time O(nW).
• If there are n items and our knapsack has capacity W.

• We again went through the steps to create DP 
solution:
• We kept a one-dimensional table, creating smaller 

problems by making the knapsack smaller.

59



• Unbounded Knapsack:
• Suppose I have infinite copies of all of the items.
• What’s the most valuable way to fill the knapsack?

• 0/1 Knapsack:
• Suppose I have only one copy of each item.
• What’s the most valuable way to fill the knapsack? 

Weight:
Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 35

60



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.

61



Optimal substructure: try 1

• Sub-problems: 
• Unbounded Knapsack with a smaller knapsack.

First solve the 
problem for 
small knapsacks

Then larger 
knapsacks

Then larger 
knapsacks 62



This won’t quite work…

• We are only allowed one copy of each item.
• The sub-problem needs to “know” what items 

we’ve used and what we haven’t.

I can’t use 
any turtles…

63



Optimal substructure: try 2
• Sub-problems:
• 0/1 Knapsack with fewer items.

First solve the 
problem with 
few items

Then yet 
more 
items

Then more 
items

We’ll still increase the size of the knapsacks.

(We’ll keep a two-dimensional table).
64



Our sub-problems:

• Indexed by x and j

Capacity xFirst j items

K[x,j] = optimal solution for a knapsack of 
size x using only the first j items. 65



Relationship between sub-problems

• Want to write K[x,j] in terms of smaller sub-problems.

First j items Capacity x

K[x,j] = optimal solution for a knapsack of 
size x using only the first j items. 66



Two cases

• Case 1:  Optimal solution for j items does not use item j.
• Case 2:  Optimal solution for j items does use item j.

item j

First j items Capacity x

K[x,j] = optimal solution for a knapsack of 
size x using only the first j items. 67



Two cases
• Case 1:  Optimal solution for j items does not use item j.

Capacity x
Value V
Use only the first j items

item j

First j items

What lower-indexed problem 
should we solve to solve this 

problem?
1 min think; (wait) 1 min share
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Two cases
• Case 1:  Optimal solution for j items does not use item j.

• Then this is an optimal solution for j-1 items:

Capacity x
Value V
Use only the first j items

Capacity x 
Value V
Use only the first j-1 items.

item j

First j items

First j-1 items 69



Two cases
• Case 2:  Optimal solution for j items uses item j.

Capacity x
Value V
Use only the first j items

Weight wj
Value vj

item j

First j items

What lower-indexed problem 
should we solve to solve this 

problem?
1 min think; (wait) 1 min share
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Two cases
• Case 2:  Optimal solution for j items uses item j.

• Then this is an optimal solution for j-1 items and a 
smaller knapsack:

Capacity x
Value V
Use only the first j items

Weight wj
Value vj

Capacity x – wj
Value V – vj

Use only the first j-1 items.

item j

First j items

First j-1 items 71



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.

72



Recursive relationship

• Let K[x,j] be the optimal value for: 
• capacity x, 
• with j items.

K[x,j] = max{ K[x, j-1] , K[x – wj, j-1] + vj }

• (And K[x,0] = 0 and K[0,j] = 0).

Case 1 Case 2

73



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.

74



Bottom-up DP algorithm

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:
• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:
• K[x,j] = max{ K[x,j], K[x – wj, j-1] + vj }

• return K[W,n]

Case 1

Case 2

Running time O(nW)75



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 76



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 0

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 77



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 78



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0 1

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 79



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 80



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 0

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 81



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 82



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 83



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 4

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 84



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 85



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 0

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 86



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 87



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 1

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 88



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 89



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 5

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 90



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 6

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

current 
entry

relevant 
previous entry 91



0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 6

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],   
           K[x – wj, j-1] + vj }

• return K[W,n]

So the optimal solution is to 
put one watermelon in your 
knapsack!

current 
entry

relevant 
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person. You do this one!
(We did it on the slide in the previous 
example, just not in the pseudocode!)93



What have we learned?

• We can solve 0/1 knapsack in time O(nW).
• If there are n items and our knapsack has capacity W.

• We again went through the steps to create DP 
solution:
• We kept a two-dimensional table, creating smaller 

problems by restricting the set of allowable items.
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Question
• How did we know which substructure to use in 

which variant of knapsack?

vs.

This one made sense for 
unbounded knapsack 

because it doesn’t have 
any memory of what 

items have been used.

In 0/1 knapsack, we 
can only use each item 
once, so it makes sense 
to leave out one item 

at a time.

Operational Answer: try some stuff, see what works!

Answer in retrospect:
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Example 3: Independent Set
if we still have time

2

2

3

5

1

2

1

• Given a graph with 
weights on the 
vertices…

• What is the 
independent set with 
the largest weight?

An independent set 
is a set of vertices 
so that no pair has 
an edge between 
them.

5

1

2

1
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Actually, this problem is NP-complete.
So, we are unlikely to find an efficient algorithm.

• But if we also assume that the graph is a tree…

5 2

1

3

3

2

2

5

5

353

2

2

5

5

3

Problem: 
    find a maximal independent set in a tree (with vertex weights).

A tree is a 
connected 

graph with no 
cycles.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution
• Step 3: Use dynamic programming to find the value 

of the optimal solution
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.
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Optimal substructure
• Subtrees are a natural candidate.
• There are two cases:

1. The root of this tree is not in a 
maximal independent set.

2. Or it is.
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Case 1: 
the root is not in a maximal independent set

• Use the optimal solution 
from these smaller problems.
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Case 2: 
the root is in an maximal independent set

• Then its children can’t be.
• Below that, use the optimal 

solution from these smaller 
subproblems.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.
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Recursive formulation: try 1

• Let A[u] be the weight of a maximal independent set 
in the tree rooted at u.

• 𝐴 𝑢 =

	 max)
∑<∈>.children𝐴[𝑣]

	
weight 𝑢 +	∑<∈>.grandchildren𝐴[𝑣]

When we implement this, how do 
we keep track of this term?
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Recursive formulation: try 2
Keep two arrays!

• Let A[u] be the weight of a maximal independent set 
in the tree rooted at u.
• Let B[u] = ∑<∈>.children𝐴[𝑣]

• 𝐴 𝑢 = max)
∑<∈>.children𝐴[𝑣]

	
weight 𝑢 +	∑<∈>.children𝐵[𝑣]
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.
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A top-down DP algorithm
• MIS_subtree(u):
• if u is a leaf:

• A[u] = weight(u)
• B[u] = 0

• else:
• for v in u.children:

• MIS_subtree(v)
• 𝐴 𝑢 = max{	∑"∈$.children𝐴[𝑣] , weight 𝑢 +	∑"∈$.children𝐵[𝑣] }
• B 𝑢 = ∑"∈$.children𝐴[𝑣]

• MIS(T):
• MIS_subtree(T.root)
• return A[T.root]

Initialize global arrays A, B 

that we will use in all of 
the recursive calls.

Running time?
• We visit each vertex once, and for 

every vertex we do O(1) work:
• Make a recursive call 
• Participate in summations of 

parent node
• Running time is O(|V|) 106



Why is this different from divide-and-conquer?
That’s always worked for us with tree problems before…

• MIS_subtree(u):
• if u is a leaf:

• return weight(u)
• else:

• return max{	∑"∈$.childrenMIS_subtree(𝑣) ,

        weight 𝑢 +	∑4∈6.grandchildrenMIS_subtree(𝑣) }

• MIS(T):
• return MIS_subtree(T.root)

This is exactly the same pseudocode, 
except we’ve ditched the table and 

are just calling MIS_subtree(v) 
instead of looking up A[v] or B[v].
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Why is this different from divide-and-conquer?
That’s always worked for us with tree problems before…

How often would we ask 
about the subtree rooted 
here?

Once for this node 
and once for this one.

But we then ask 
about this node 
twice, here and here.

This will blow up exponentially 
without using dynamic 
programming to take advantage 
of overlapping subproblems. 108



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.
You do this one!
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What have we learned?

• We can find maximal independent sets in trees in 
time O(|V|) using dynamic programming!

• For this example, it was natural to implement our 
DP algorithm in a top-down way.
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Recap

• Today we saw examples of how to come up with 
dynamic programming algorithms.
• Longest Common Subsequence
• Knapsack two ways
• (If time) maximal independent set in trees.

• There is a recipe for dynamic programming 
algorithms.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of 

the optimal solution.
• Step 3: Use dynamic programming to find the value 

of the optimal solution.
• Step 4: If needed, keep track of some additional 

info so that the algorithm from Step 3 can find the 
actual solution.
• Step 5: If needed, code this up like a reasonable 

person.
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Recap

• Today we saw examples of how to come up with 
dynamic programming algorithms.
• Longest Common Subsequence
• Knapsack two ways
• (If time) maximal independent set in trees.

• There is a recipe for dynamic programming 
algorithms.
• Sometimes coming up with the right substructure 

takes some creativity
• Practice on homework! J
• For even more practice check out additional 

examples/practice problems in CLRS, 
Algorithms Illuminated or section!
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Next time

• Greedy algorithms!

• Pre-lecture exercise: Greed is good!

Before next time
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