Lecture 13

More dynamic programming!

Longest Common Subsequences, Knapsack, and (if time) independent sets in trees.

Last time

• Not coding in an action movie.

Last time

- Dynamic programming is an algorithm design paradigm.
- Basic idea:
 - Identify optimal sub-structure
 - Optimum to the big problem is built out of optima of small sub-problems
 - Take advantage of **overlapping sub-problems**
 - Only solve each sub-problem once, then use it again and again
 - Keep track of the solutions to sub-problems in a table as you build to the final solution.

Today

- Examples of dynamic programming:
 - 1. Longest common subsequence
 - 2. Knapsack problem
 - Two versions!
 - 3. Independent sets in trees
 - If we have time...
 - (If not the slides will be there as a reference)
- Yet more examples of DP in CLRS!
 - Optimal order of matrix multiplications
 - Optimal binary search trees
 - Longest paths in DAGs, ...

The goal of this lecture

• For you to get really bored of dynamic programming

Longest Common Subsequence

DNA:

• How similar are these two species?

AGCCCTAAGGGCTACCTAGCTT

Longest Common Subsequence

• How similar are these two species?

• Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

Longest Common Subsequence

- Subsequence:
 - BDFH is a **subsequence** of ABCDEFGH
- If X and Y are sequences, a **common subsequence** is a sequence which is a subsequence of both.
 - BDFH is a common subsequence of ABCDEFGH and of ABDFGHI
- A longest common subsequence...
 - ... is a common subsequence that is longest.
 - The **longest common subsequence** of ABCDEFGH and ABDFGHI is ABDFGH.

We sometimes want to find these

• Applications in bioinformatics

- The unix command diff
- Merging in version control
 - svn, git, etc...

•	😑 😑 📷 anari — anari@nimbook	—
→	~ cat file1	
Α		
В		
С		
D		
E		
F		
G		
ιH		
-	~ cat file2	
A		
Б		
5		
G		
н		
Ĩ		
 →	∼ diff file1 file2	
3d2		
< C		
5d3		
< E		
8a7		
> I		
->	~	
_		

Recipe for applying Dynamic Programming

Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Step 1: Optimal substructure

Prefixes:

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let C[i,j] = length_of_LCS(X_i, Y_j)

Examples: C[2,3] = 2C[4,4] = 3

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Goal

• Write C[i,j] in terms of the solutions to smaller subproblems

C[i,j] = length_of_LCS(X_i, Y_j)

- Then C[i,j] = 1 + C[i-1,j-1].
 - because LCS(X_i,Y_j) = LCS(X_{i-1},Y_{j-1}) followed by A

- Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
 - either $LCS(X_i, Y_j) = LCS(X_{i-1}, Y_j)$ and \top is not involved,
 - or $LCS(X_i, Y_j) = LCS(X_i, Y_{j-1})$ and A is not involved,
 - (maybe both are not involved, that's covered by the "or").

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

LCS DP

- LCS(X, Y):
 - C[i,0] = C[0,j] = 0 for all i = 0,...,m, j=0,...n.
 - For i = 1,...,m and j = 1,...,n:
 - **If** X[i] = Y[j]:
 - C[i,j] = C[i-1,j-1] + 1
 - Else:
 - C[i,j] = max{ C[i,j-1], C[i-1,j] }
 - Return C[m,n]

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and}_{1i}, j > 0 \end{cases}$$

Example

Х

Y

 $C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

This 3 came from that 2 – we found a match!

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

Α

С

G

G

Α

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

0 0

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > \end{cases}$$

Example

Α

С

G

G

Α

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0 \end{cases}$$

Example

Α

С

G

G

Α

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

Example

Α

С

G

G

Α

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

- Once we've filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

This is the LCS!

 $C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0\\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$

Example

Α

С

G

G

Α

0	0	0	0	0
0	1	1	1	1
0	1	2	2	2
0	1	2	2	3
0	1	2	2	3
0	1	2	2	3

Finding an LCS

- Good exercise to write out pseudocode for what we just saw!
 - Or you can find it in lecture notes.
- Takes time O(mn) to fill the table
- Takes time O(n + m) on top of that to recover the LCS
 - We walk up and left in an n-by-m array
 - We can only do that for n + m steps.
- Altogether, we can find LCS(X,Y) in time O(mn).

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Our approach actually isn't so bad

- If we are only interested in the length of the LCS we can do a bit better on space:
 - Since we go across the table one-row-at-a-time, we can only keep two rows if we want.
- If we want to recover the LCS, we need to keep the whole table.
- Can we do better than O(mn) time?
 - A bit better.
 - By a log factor or so.
 - But doing much better (polynomially better) is an open problem!

What have we learned?

- We can find LCS(X,Y) in time O(nm)
 - if |Y|=n, |X|=m
- We went through the steps of coming up with a dynamic programming algorithm.
 - We kept a 2-dimensional table, breaking down the problem by decrementing the length of X and Y.

Example 2: Knapsack Problem

• We have n items with weights and values:

- And we have a knapsack:
 - it can only carry so much weight:

Capacity: 10

- Unbounded Knapsack:
 - Suppose I have infinite copies of all items.
 - What's the most valuable way to fill the knapsack?

Total weight: 10 Total value: 42

- 0/1 Knapsack:
 - Suppose I have only one copy of each item.
 - What's the most valuable way to fill the knapsack?

Total weight: 9 Total value: 35
Some notation

Capacity: W

Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Optimal substructure

- Sub-problems:
 - Unbounded Knapsack with a smaller knapsack.
 - K[x] = value you can fit in a knapsack of capacity x

First solve the problem for small knapsacks

Then larger knapsacks

Then larger knapsacks 39

Optimal substructure

• Suppose this is an optimal solution for capacity x:

• Then this is optimal for capacity x - w_i:

Capacity x Value V

Optimal substructure

• Suppose this is an optimal solution for capacity x:

• Then this is optimal for capacity x - w_i:

Capacity x Value V

If I could do better than the second solution, then adding a turtle to that improvement would improve the first solution.

Capacity x – w_i Value V - v_i

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Recursive relationship

• Let K[x] be the optimal value for capacity x.

$$K[x] = max_i \{$$

The maximum is over all i so that $w_i \leq x$.

Optimal way to fill the smaller knapsack The value of item i.

$$K[x] = \max_{i} \{ K[x - w_{i}] + v_{i} \}$$

- (And K[x] = 0 if the maximum is empty).
 - That is, if there are no i so that $w_i \leq x$

- **Step 1:** Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Let's write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - **for** x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - return K[W]

Running time: O(nW)

Can we do better?

- Writing down W takes log(W) bits.
- Writing down all n weights takes at most nlog(W) bits.
- Input size: nlog(W).
 - Maybe we could have an algorithm that runs in time O(nlog(W)) instead of O(nW)?
 - Or even O(n¹⁰⁰⁰⁰⁰⁰ log¹⁰⁰⁰⁰⁰⁰(W))?
- Open problem!
 - (But probably the answer is **no**...otherwise P = NP)

- **Step 1:** Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Let's write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - **for** x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - return K[W]

Let's write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS[0] = Ø
 - **for** x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

Capacity: 4

Capacity: 4

- UnboundedKnapsack(W, n, weights, values): •
 - K[0] = 0•
 - $ITEMS[0] = \emptyset$
 - **for** x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x w_i] + v_i\}$
 - If K[x] was updated: •
 - ITEMS[x] = ITEMS[x w_i] U { item i }
 - return ITEMS[W]

- **Step 1:** Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

(Pass)

What have we learned?

- We can solve unbounded knapsack in time O(nW).
 - If there are n items and our knapsack has capacity W.
- We again went through the steps to create DP solution:
 - We kept a one-dimensional table, creating smaller problems by making the knapsack smaller.

- Unbounded Knapsack:
 - Suppose I have infinite copies of all of the items.
 - What's the most valuable way to fill the knapsack?

Total weight: 10 Total value: 42

- 0/1 Knapsack:
 - Suppose I have only one copy of each item.
 - What's the most valuable way to fill the knapsack?

Total weight: 9 Total value: 35

Step 1: Identify optimal substructure.

- **Step 2:** Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Optimal substructure: try 1

- Sub-problems:
 - Unbounded Knapsack with a smaller knapsack.

First solve the problem for small knapsacks

Then larger knapsacks Then larger knapsacks

This won't quite work...

- We are only allowed **one copy of each item**.
- The sub-problem needs to "know" what items we've used and what we haven't.

Optimal substructure: try 2

- Sub-problems:
 - 0/1 Knapsack with fewer items.

We'll still increase the size of the knapsacks.

Our sub-problems:

• Indexed by x and j

First j items

Capacity x

K[x,j] = optimal solution for a knapsack of size x using only the first j items.

Relationship between sub-problems

• Want to write K[x,j] in terms of smaller sub-problems.

First j items

Capacity x

K[x,j] = optimal solution for a knapsack of size x using only the first j items.

Two cases

- **Case 1**: Optimal solution for j items does not use item j.
- Case 2: Optimal solution for j items does use item j.

First j items

Capacity x

K[x,j] = optimal solution for a knapsack of size x using only the first j items.

• **Case 1**: Optimal solution for j items does not use item j.

Capacity x Value V Use only the first j items

What lower-indexed problem should we solve to solve this problem? 1 min think; (wait) 1 min share

69

• **Case 1**: Optimal solution for j items does not use item j.

First j items

• Then this is an optimal solution for j-1 items:

• Case 2: Optimal solution for j items uses item j.

What lower-indexed problem should we solve to solve this problem? 1 min think; (wait) 1 min share

item j

• Case 2: Optimal solution for j items uses item j.

First j items

Use only the first j items • Then this is an optimal solution for j-1 items and a smaller knapsack:

Capacity x – w_i Value $V - v_i$ Use only the first j-11items.

- Step 1: Identify optimal substructure.
- Step 1: Identify Optimal Substructure.
 Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.
Recursive relationship

- Let K[x,j] be the optimal value for:
 - capacity x,
 - with j items.

 $K[x,j] = max\{K[x, j-1], K[x - w_{j,} j-1] + v_{j}\}$ Case 1 Case 2

• (And K[x,0] = 0 and K[0,j] = 0).

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Bottom-up DP algorithm

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - for x = 1,...,W:
 - for j = 1,...,n: Case 1
 - K[x,j] = K[x, j-1]

• if
$$w_j \le x$$
: Case 2

- $K[x,j] = max\{K[x,j], K[x w_j, j-1] + v_j\}$
- return K[W,n]

Running time O(nW)

current

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - **for** x = 1,...,W:
 - for j = 1,...,n:
 K[x,j] = K[x, j-1]
 if w_j ≤ x:
 - $K[x,j] = max\{K[x,j],$
 - $K[x w_j, j-1] + v_j \}$
 - return K[W,n]

relevant

current

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n •
 - **for** x = 1,...,W:
 - **for** j = 1,...,n: • K[x,j] = K[x, j-1] • if $w_i \leq x$:
 - K[x,j] = max{ K[x,j],
 - $K[x w_{j}, j-1] + v_{j}$
 - return K[W,n] •

current

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - **for** x = 1,...,W:
 - for j = 1,...,n: • K[x,j] = K[x, j-1]• if $w_j \le x$: • $K[x,j] = max\{K[x,j], K[x - w_j, j-1] + v_j\}$
 - return K[W,n]

current

entry

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - **for** x = 1,...,W:

•

- for j = 1,...,n: • K[x,j] = K[x, j-1]• if $w_j \le x$: • $K[x,j] = max\{K[x,j], K[x - w_j, j-1] + v_j\}$
- return K[W,n]

current

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - **for** x = 1,...,W:
 - for j = 1,...,n:
 K[x,j] = K[x, j-1]
 if w_j ≤ x:
 - $K[x,j] = \max\{K[x,j],$
 - $K[x w_j, j-1] + v_j \}$
 - return K[W,n]

current

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - **for** x = 1,...,W:
 - for j = 1,...,n: • K[x,j] = K[x, j-1]• if $w_j \le x$: • $K[x,j] = max\{K[x,j], K[x - w_j, j-1] + v_j\}$
 - return K[W,n]

current

entry

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - **for** x = 1,...,W:
 - for j = 1,...,n:

 K[x,j] = K[x, j-1]
 if w_j ≤ x:

 K[x,j] = max{ K[x,j],

 $K[x - w_{j}, j-1] + v_{j}$

• return K[W,n]

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W•
 - K[0,i] = 0 for all i = 0,...,n •
 - **for** x = 1,...,W:
 - **for** j = 1,...,n: • K[x,j] = K[x, j-1] • if $w_i \leq x$: K[x,j] = max{ K[x,j],
 - $K[x w_{j}, j-1] + v_{j}$
 - return K[W,n] •

entry

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n •
 - **for** x = 1,...,W:
 - **for** j = 1,...,n: • K[x,j] = K[x, j-1] • if $w_i \leq x$: K[x,j] = max{ K[x,j],

 $K[x - w_{j}, j-1] + v_{j}$

return K[W,n]

•

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W•
 - K[0,i] = 0 for all i = 0,...,n •
 - **for** x = 1,...,W:
 - **for** j = 1,...,n: • K[x,j] = K[x, j-1] • if $w_i \leq x$: K[x,j] = max{ K[x,j],
 - $K[x w_{j}, j-1] + v_{j}$
 - return K[W,n] •

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W•
 - K[0,i] = 0 for all i = 0,...,n •
 - **for** x = 1,...,W:
 - **for** j = 1,...,n: • K[x,j] = K[x, j-1] • if $w_i \leq x$: K[x,j] = max{ K[x,j],
 - $K[x w_{j}, j-1] + v_{j}$
 - return K[W,n] •

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W•
 - K[0,i] = 0 for all i = 0,...,n •
 - **for** x = 1,...,W:
 - **for** j = 1,...,n: • K[x,j] = K[x, j-1] • if $w_i \leq x$: K[x,j] = max{ K[x,j], $K[x - w_{j}, j-1] + v_{j}$
 - return K[W,n] •

current

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - **for** x = 1,...,W:
 - for j = 1,...,n: • K[x,j] = K[x, j-1]• if $w_j \le x$: • $K[x,j] = max\{K[x,j], K[x - w_j, j-1] + v_j\}$
 - return K[W,n]

current

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - **for** x = 1,...,W:
 - for j = 1,...,n:

 K[x,j] = K[x, j-1]
 if w_j ≤ x:

 K[x,j] = max{ K[x,j],
 - $K[x w_j, j-1] + v_j$
 - return K[W,n]

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W•
 - K[0,i] = 0 for all i = 0,...,n •
 - **for** x = 1,...,W: •
 - **for** j = 1,...,n: • K[x,j] = K[x, j-1] • if $w_i \leq x$: K[x,j] = max{ K[x,j],
 - $K[x w_{j}, j-1] + v_{j}$
 - return K[W,n] •

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - **for** x = 1,...,W:
 - for j = 1,...,n: • K[x,j] = K[x, j-1]• if $w_j \le x$: • $K[x,j] = max\{K[x,j], K[x - w_j, j-1] + v_j\}$
 - return K[W,n]

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,...,W
 - K[0,i] = 0 for all i = 0,...,n
 - **for** x = 1,...,W:
 - for j = 1,...,n: • K[x,j] = K[x, j-1]• if $w_j \le x$: • $K[x,j] = max\{K[x,j], k$
 - $K[x w_j, j-1] + v_j$
 - return K[W,n]

So the optimal solution is to put one watermelon in your knapsack!

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person. You do this one!

(We did it on the slide in the previous example, just not in the pseudocode!)⁹³

What have we learned?

- We can solve 0/1 knapsack in time O(nW).
 - If there are n items and our knapsack has capacity W.
- We again went through the steps to create DP solution:
 - We kept a two-dimensional table, creating smaller problems by restricting the set of allowable items.

Question

 How did we know which substructure to use in which variant of knapsack?

Answer in retrospect:

This one made sense for unbounded knapsack because it doesn't have any memory of what items have been used.

VS.

In 0/1 knapsack, we can only use each item once, so it makes sense to leave out one item at a time.

Operational Answer: try some stuff, see what works!

Example 3: Independent Set if we still have time

the largest weight?

Actually, this problem is NP-complete. So, we are unlikely to find an efficient algorithm.

• But if we also assume that the graph is a tree...

Problem:

find a maximal independent set in a tree (with vertex weights)?

Recipe for applying Dynamic Programming

Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the value of the optimal solution
- Step 3: Use dynamic programming to find the value of the optimal solution
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Optimal substructure

- Subtrees are a natural candidate.
- There are **two cases**:
 - 1. The root of this tree is **not** in a maximal independent set.
 - 2. Or it is.

Case 1: the root is **not** in a maximal independent set

• Use the optimal solution from these smaller problems. 100

Case 2:

the root is in an maximal independent set

- Then its children can't be.
- Below that, use the optimal solution from these smaller subproblems.

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Recursive formulation: try 1

 Let A[u] be the weight of a maximal independent set in the tree rooted at u.

•
$$A[u] = \sum_{v \in u. children} A[v]$$

max $\begin{cases} \sum_{v \in u. children} A[v] \\ weight(u) + \sum_{v \in u. grandchildren} A[v] \end{cases}$
When we implement this, how do
we keep track of this term?

Recursive formulation: try 2 Keep two arrays!

- Let A[u] be the weight of a maximal independent set in the tree rooted at u.
- Let $B[u] = \sum_{v \in u.children} A[v]$

$$A[u] = \max \begin{cases} \sum_{v \in u. \text{children}} A[v] \\ \text{weight}(u) + \sum_{v \in u. \text{children}} B[v] \end{cases}$$

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

A top-down DP algorithm

- MIS_subtree(u):
 - if u is a leaf:
 - A[u] = weight(u)
 - B[u] = 0
 - else:
 - **for** v in u.children:
 - MIS_subtree(v)
 - $A[u] = \max\{\sum_{v \in u.children} A[v], weight(u) + \sum_{v \in u.children} B[v]\}$
 - $B[u] = \sum_{v \in u. \text{children}} A[v]$
- MIS(T):
 - MIS_subtree(T.root)
 - return A[T.root]

Running time?

- We visit each vertex once, and for every vertex we do O(1) work:
 - Make a recursive call
 - Participate in summations of parent node
- Running time is O(|V|)

Initialize global arrays A, B that we will use in all of the recursive calls.

Why is this different from divide-and-conquer?

That's always worked for us with tree problems before...

- MIS_subtree(u):
 - if u is a leaf:
 - return weight(u)
 - else:

This is exactly the same pseudocode, except we've ditched the table and are just calling MIS_subtree(v) instead of looking up A[v] or B[v].

• return max{ $\sum_{v \in u.children} MIS_subtree(v)$,

weight(u) + $\sum_{v \in u.grandchildren} MIS_subtree(v)$ }

- MIS(T):
 - return MIS_subtree(T.root)

Why is this different from divide-and-conquer?

That's always worked for us with tree problems before...

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

What have we learned?

- We can find maximal independent sets in trees in time O(|V|) using dynamic programming!
- For this example, it was natural to implement our DP algorithm in a top-down way.

Recap

- Today we saw examples of how to come up with dynamic programming algorithms.
 - Longest Common Subsequence
 - Knapsack two ways
 - (If time) maximal independent set in trees.
- There is a **recipe** for dynamic programming algorithms.

Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Recap

- Today we saw examples of how to come up with dynamic programming algorithms.
 - Longest Common Subsequence
 - Knapsack two ways
 - (If time) maximal independent set in trees.
- There is a **recipe** for dynamic programming algorithms.
- Sometimes coming up with the right substructure takes some creativity
 - Practice on homework! 😳
 - For even more practice check out additional examples/practice problems in CLRS, Algorithms Illuminated or section!

Next time

Greedy algorithms!

Before next time

• Pre-lecture exercise: Greed is good!