
Lecture 13
More dynamic programming!

Longest Common Subsequences, Knapsack, and
(if time) independent sets in trees.

1

Last time

• Not coding in an action movie.

Tom Cruise programs dynamically
in Mission Impossible 2

Last time

• Dynamic programming is an algorithm design
paradigm.
• Basic idea:
• Identify optimal sub-structure

• Optimum to the big problem is built out of optima of small
sub-problems

• Take advantage of overlapping sub-problems
• Only solve each sub-problem once, then use it again and again

• Keep track of the solutions to sub-problems in a table
as you build to the final solution.

3

Today

• Examples of dynamic programming:
1. Longest common subsequence
2. Knapsack problem

• Two versions!
3. Independent sets in trees

• If we have time…
• (If not the slides will be there as a reference)

• Yet more examples of DP in CLRS!
• Optimal order of matrix multiplications
• Optimal binary search trees
• Longest paths in DAGs, …

4

The goal of this lecture

• For you to get really bored of dynamic programming

5

Longest Common Subsequence

• How similar are these two species?

AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG
DNA: DNA:

6

Longest Common Subsequence

• How similar are these two species?

• Pretty similar, their DNA has a long common subsequence:

AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

AGCCTAAGCTTAGCTT

DNA: DNA:

7

Longest Common Subsequence

• Subsequence:
• BDFH is a subsequence of ABCDEFGH

• If X and Y are sequences, a common subsequence
is a sequence which is a subsequence of both.
• BDFH is a common subsequence of ABCDEFGH and of

ABDFGHI

• A longest common subsequence…
• …is a common subsequence that is longest.
• The longest common subsequence of ABCDEFGH and

ABDFGHI is ABDFGH.

8

We sometimes want to find these

• Applications in bioinformatics

• The unix command diff
• Merging in version control
• svn, git, etc…

9

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the length

of the longest common subsequence.
• Step 3: Use dynamic programming to find the

length of the longest common subsequence.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual LCS.
• Step 5: If needed, code this up like a reasonable

person.

10

Step 1: Optimal substructure

A C G G T

A C G C T T AY

X

Prefixes:

Notation: denote this prefix ACGC by Y4

• Our sub-problems will be finding LCS’s of prefixes to X and Y.
• Let C[i,j] = length_of_LCS(Xi, Yj)

11
C[2,3] = 2
C[4,4] = 3

Examples:

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the length

of the longest common subsequence.
• Step 3: Use dynamic programming to find the

length of the longest common subsequence.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual LCS.
• Step 5: If needed, code this up like a reasonable

person.

12

Goal
• Write C[i,j] in terms of the solutions to smaller sub-

problems

C[i,j] = length_of_LCS(Xi, Yj)

A C G G A

A C G C T T AYj

Xi

i

j

13

Two cases

A C G G A

A C G C T T AYj

Xi

• Our sub-problems will be finding
LCS’s of prefixes to X and Y.

• Let C[i,j] = length_of_LCS(Xi, Yj)Case 1: X[i] = Y[j]
i

j

These are
the same

• Then C[i,j] = 1 + C[i-1,j-1].
• because LCS(Xi,Yj) = LCS(Xi-1,Yj-1) followed by A

14

Two cases

A C G G T

A C G C T T AYj

Xi

• Our sub-problems will be finding
LCS’s of prefixes to X and Y.

• Let C[i,j] = length_of_LCS(Xi, Yj)Case 2: X[i] != Y[j]
i

j

These are
not the
same

• Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
• either LCS(Xi,Yj) = LCS(Xi-1,Yj) and is not involved,
• or LCS(Xi,Yj) = LCS(Xi,Yj-1) and is not involved,
• (maybe both are not involved, that’s covered by the “or”).

A

T

15

Recursive formulation
of the optimal solution

• 𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

A C G G A

A C G C T T AYj

Xi
A C G G T

A C G C T T AYj

Xi

Case 1 Case 2

A C G C T T AYj

X0

Case 0

16

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the length

of the longest common subsequence.
• Step 3: Use dynamic programming to find the

length of the longest common subsequence.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual LCS.
• Step 5: If needed, code this up like a reasonable

person.

17

LCS DP
• LCS(X, Y):
• C[i,0] = C[0,j] = 0 for all i = 0,…,m, j=0,…n.
• For i = 1,…,m and j = 1,…,n:
• If X[i] = Y[j]:
• C[i,j] = C[i-1,j-1] + 1

• Else:
• C[i,j] = max{ C[i,j-1], C[i-1,j] }

• Return C[m,n]

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

Running time: O(nm)

18

Example
A C G G A

A C T GY

X

A

C

G

G

A

A C T G

X

Y

0 0 0 0

0

0

0

0

0

0

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 019

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

So the LCM of X
and Y has length 3.

20

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the length

of the longest common subsequence.
• Step 3: Use dynamic programming to find the

length of the longest common subsequence.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual LCS.
• Step 5: If needed, code this up like a reasonable

person.

21

Example
A C G G A

A C T GY

X

A

C

G

G

A

A C T G

X

Y

0 0 0 0

0

0

0

0

0

0

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 022

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 023

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in,
we can work backwards.

24

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in,
we can work backwards.

That 3 must have come
from the 3 above it.

25

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in,
we can work backwards.

This 3 came from that 2 –
we found a match!

• Once we’ve filled this in,
we can work backwards.

• A diagonal jump means
that we found an element
of the LCS!

26

G

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in,
we can work backwards.

• A diagonal jump means
that we found an element
of the LCS!

G

That 2 may as well
have come from
this other 2.

27

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in,
we can work backwards.

• A diagonal jump means
that we found an element
of the LCS!

G

28

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in,
we can work backwards.

• A diagonal jump means
that we found an element
of the LCS!

GC

29

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T GY

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

𝐶 𝑖, 𝑗 = 	'
0	 if	 𝑖 = 0	or	𝑗 = 0

𝐶 𝑖 − 1, 𝑗 − 1 + 1	 if	𝑋 𝑖 = 𝑌 𝑗 	 and	𝑖, 𝑗 > 0
max 	𝐶 𝑖, 𝑗 − 1 , 𝐶 𝑖 − 1, 𝑗 	 if	𝑋 𝑖 ≠ 𝑌 𝑗 	 and	𝑖, 𝑗 > 0

• Once we’ve filled this in,
we can work backwards.

• A diagonal jump means
that we found an element
of the LCS!

GCA

This is the LCS!

30

Finding an LCS

• Good exercise to write out pseudocode for what we
just saw!
• Or you can find it in lecture notes.

• Takes time O(mn) to fill the table
• Takes time O(n + m) on top of that to recover the LCS
• We walk up and left in an n-by-m array
• We can only do that for n + m steps.

• Altogether, we can find LCS(X,Y) in time O(mn).

31

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the length

of the longest common subsequence.
• Step 3: Use dynamic programming to find the

length of the longest common subsequence.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual LCS.
• Step 5: If needed, code this up like a reasonable

person.

32

Our approach actually isn’t so bad

• If we are only interested in the length of the LCS we
can do a bit better on space:
• Since we go across the table one-row-at-a-time, we can only

keep two rows if we want.
• If we want to recover the LCS, we need to keep the

whole table.

• Can we do better than O(mn) time?
• A bit better.

• By a log factor or so.
• But doing much better (polynomially better) is an open

problem!

33

What have we learned?

• We can find LCS(X,Y) in time O(nm)
• if |Y|=n, |X|=m

• We went through the steps of coming up with a
dynamic programming algorithm.
• We kept a 2-dimensional table, breaking down the

problem by decrementing the length of X and Y.

34

Example 2: Knapsack Problem
• We have n items with weights and values:

• And we have a knapsack:
• it can only carry so much weight:

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

35

• Unbounded Knapsack:
• Suppose I have infinite copies of all items.
• What’s the most valuable way to fill the knapsack?

• 0/1 Knapsack:
• Suppose I have only one copy of each item.
• What’s the most valuable way to fill the knapsack?

Weight:
Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 35

36

Some notation

Capacity: W

Weight:

Value:

w1
v1

Item:

w2 w3 wn

v2 v3 vn

…

37

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

38

Optimal substructure

• Sub-problems:
• Unbounded Knapsack with a smaller knapsack.
• K[x] = value you can fit in a knapsack of capacity x

First solve the
problem for
small knapsacks

Then larger
knapsacks

Then larger
knapsacks 39

Optimal substructure
• Suppose this is an optimal solution for capacity x:

• Then this is optimal for capacity x - wi:
Capacity x
Value V

Weight wi
Value vi

Capacity x – wi
Value V - vi

Say that the

optimal solution

contains at least

one copy of item i.

item i

Why?
1 minute think

(wait) 1 minute share

40

Optimal substructure
• Suppose this is an optimal solution for capacity x:

• Then this is optimal for capacity x - wi:
Capacity x
Value V

Weight wi
Value vi

Capacity x – wi
Value V - vi

If I could do better than the second solution,
then adding a turtle to that improvement
would improve the first solution.

Say that the

optimal solution

contains at least

one copy of item i.

item i

41

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

42

• Let K[x] be the optimal value for capacity x.

K[x] = maxi { + }

K[x] = maxi { K[x – wi] + vi }

• (And K[x] = 0 if the maximum is empty).
• That is, if there are no i so that 𝑤𝑖 ≤ 𝑥

Recursive relationship

The maximum is over
all i so that 𝑤𝑖 ≤ 𝑥.

Optimal way to
fill the smaller
knapsack

The value of
item i.

43

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

44

Let’s write a bottom-up DP algorithm

• UnboundedKnapsack(W, n, weights, values):
• K[0] = 0
• for x = 1, …, W:
• K[x] = 0
• for i = 1, …, n:
• if 𝑤% ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤% + 𝑣%	}

• return K[W]

Running time: O(nW)

= maxi { K[x – wi] + vi }

K[x] = maxi { + }

45

Can we do better?

• Writing down W takes log(W) bits.
• Writing down all n weights takes at most nlog(W) bits.
• Input size: nlog(W).
• Maybe we could have an algorithm that runs in time

O(nlog(W)) instead of O(nW)?
• Or even O(n1000000 log1000000(W))?

• Open problem!
• (But probably the answer is no…otherwise P = NP)

46

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

47

Let’s write a bottom-up DP algorithm

• UnboundedKnapsack(W, n, weights, values):
• K[0] = 0
• for x = 1, …, W:
• K[x] = 0
• for i = 1, …, n:
• if 𝑤% ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤% + 𝑣%	}

• return K[W]

= maxi { K[x – wi] + vi }

K[x] = maxi { + }

48

Let’s write a bottom-up DP algorithm
• UnboundedKnapsack(W, n, weights, values):
• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:
• K[x] = 0
• for i = 1, …, n:
• if 𝑤% ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤% + 𝑣%	}
• If K[x] was updated:
• ITEMS[x] = ITEMS[x – wi] ∪ { item i }

• return ITEMS[W]

= maxi { K[x – wi] + vi }

K[x] = maxi { + }

49

Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

50

Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[1] = ITEMS[0] +

51

Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 2

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[2] = ITEMS[1] +

52

Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 4

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[2] = ITEMS[0] +

53

Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 4 5

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[3] = ITEMS[2] +

54

Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 4 6

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[3] = ITEMS[0] +

55

Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 4 6 7

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[4] = ITEMS[3] +

56

Example
• UnboundedKnapsack(W, n, weights, values):

• K[0] = 0
• ITEMS[0] = ∅
• for x = 1, …, W:

• K[x] = 0
• for i = 1, …, n:

• if 𝑤! ≤ 𝑥:
• 𝐾 𝑥 = max{	𝐾 𝑥 , 𝐾 𝑥	 − 𝑤! + 𝑣! 	}
• If K[x] was updated:

• ITEMS[x] = ITEMS[x – wi] ∪ { item i }
• return ITEMS[W]0 1 4 6 8

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[4] = ITEMS[2] +

57

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.
(Pass)

58

What have we learned?

• We can solve unbounded knapsack in time O(nW).
• If there are n items and our knapsack has capacity W.

• We again went through the steps to create DP
solution:
• We kept a one-dimensional table, creating smaller

problems by making the knapsack smaller.

59

• Unbounded Knapsack:
• Suppose I have infinite copies of all of the items.
• What’s the most valuable way to fill the knapsack?

• 0/1 Knapsack:
• Suppose I have only one copy of each item.
• What’s the most valuable way to fill the knapsack?

Weight:
Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 35

60

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

61

Optimal substructure: try 1

• Sub-problems:
• Unbounded Knapsack with a smaller knapsack.

First solve the
problem for
small knapsacks

Then larger
knapsacks

Then larger
knapsacks 62

This won’t quite work…

• We are only allowed one copy of each item.
• The sub-problem needs to “know” what items

we’ve used and what we haven’t.

I can’t use
any turtles…

63

Optimal substructure: try 2
• Sub-problems:
• 0/1 Knapsack with fewer items.

First solve the
problem with
few items

Then yet
more
items

Then more
items

We’ll still increase the size of the knapsacks.

(We’ll keep a two-dimensional table).
64

Our sub-problems:

• Indexed by x and j

Capacity xFirst j items

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 65

Relationship between sub-problems

• Want to write K[x,j] in terms of smaller sub-problems.

First j items Capacity x

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 66

Two cases

• Case 1: Optimal solution for j items does not use item j.
• Case 2: Optimal solution for j items does use item j.

item j

First j items Capacity x

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 67

Two cases
• Case 1: Optimal solution for j items does not use item j.

Capacity x
Value V
Use only the first j items

item j

First j items

What lower-indexed problem
should we solve to solve this

problem?
1 min think; (wait) 1 min share

68

Two cases
• Case 1: Optimal solution for j items does not use item j.

• Then this is an optimal solution for j-1 items:

Capacity x
Value V
Use only the first j items

Capacity x
Value V
Use only the first j-1 items.

item j

First j items

First j-1 items 69

Two cases
• Case 2: Optimal solution for j items uses item j.

Capacity x
Value V
Use only the first j items

Weight wj
Value vj

item j

First j items

What lower-indexed problem
should we solve to solve this

problem?
1 min think; (wait) 1 min share

70

Two cases
• Case 2: Optimal solution for j items uses item j.

• Then this is an optimal solution for j-1 items and a
smaller knapsack:

Capacity x
Value V
Use only the first j items

Weight wj
Value vj

Capacity x – wj
Value V – vj

Use only the first j-1 items.

item j

First j items

First j-1 items 71

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

72

Recursive relationship

• Let K[x,j] be the optimal value for:
• capacity x,
• with j items.

K[x,j] = max{ K[x, j-1] , K[x – wj, j-1] + vj }

• (And K[x,0] = 0 and K[0,j] = 0).

Case 1 Case 2

73

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

74

Bottom-up DP algorithm

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:
• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:
• K[x,j] = max{ K[x,j], K[x – wj, j-1] + vj }

• return K[W,n]

Case 1

Case 2

Running time O(nW)75

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 76

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 0

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 77

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 78

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0 1

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 79

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 80

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 0

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 81

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 82

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 83

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 4

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 84

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 85

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 0

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 86

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 87

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 1

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 88

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 89

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 5

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 90

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 6

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

current
entry

relevant
previous entry 91

0 0 0 0

Weight:
Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 6

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if wj ≤ x:

• K[x,j] = max{ K[x,j],
 K[x – wj, j-1] + vj }

• return K[W,n]

So the optimal solution is to
put one watermelon in your
knapsack!

current
entry

relevant
previous entry 92

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person. You do this one!
(We did it on the slide in the previous
example, just not in the pseudocode!)93

What have we learned?

• We can solve 0/1 knapsack in time O(nW).
• If there are n items and our knapsack has capacity W.

• We again went through the steps to create DP
solution:
• We kept a two-dimensional table, creating smaller

problems by restricting the set of allowable items.

94

Question
• How did we know which substructure to use in

which variant of knapsack?

vs.

This one made sense for
unbounded knapsack

because it doesn’t have
any memory of what

items have been used.

In 0/1 knapsack, we
can only use each item
once, so it makes sense
to leave out one item

at a time.

Operational Answer: try some stuff, see what works!

Answer in retrospect:

95

Example 3: Independent Set
if we still have time

2

2

3

5

1

2

1

• Given a graph with
weights on the
vertices…

• What is the
independent set with
the largest weight?

An independent set
is a set of vertices
so that no pair has
an edge between
them.

5

1

2

1

96

Actually, this problem is NP-complete.
So, we are unlikely to find an efficient algorithm.

• But if we also assume that the graph is a tree…

5 2

1

3

3

2

2

5

5

353

2

2

5

5

3

Problem:
 find a maximal independent set in a tree (with vertex weights).

A tree is a
connected

graph with no
cycles.

97

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution
• Step 3: Use dynamic programming to find the value

of the optimal solution
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

98

Optimal substructure
• Subtrees are a natural candidate.
• There are two cases:

1. The root of this tree is not in a
maximal independent set.

2. Or it is.

99

Case 1:
the root is not in a maximal independent set

• Use the optimal solution
from these smaller problems.

100

Case 2:
the root is in an maximal independent set

• Then its children can’t be.
• Below that, use the optimal

solution from these smaller
subproblems.

101

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

102

Recursive formulation: try 1

• Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

• 𝐴 𝑢 =

	 max)
∑<∈>.children𝐴[𝑣]

	
weight 𝑢 +	∑<∈>.grandchildren𝐴[𝑣]

When we implement this, how do
we keep track of this term?

103

Recursive formulation: try 2
Keep two arrays!

• Let A[u] be the weight of a maximal independent set
in the tree rooted at u.
• Let B[u] = ∑<∈>.children𝐴[𝑣]

• 𝐴 𝑢 = max)
∑<∈>.children𝐴[𝑣]

	
weight 𝑢 +	∑<∈>.children𝐵[𝑣]

104

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

105

A top-down DP algorithm
• MIS_subtree(u):
• if u is a leaf:

• A[u] = weight(u)
• B[u] = 0

• else:
• for v in u.children:

• MIS_subtree(v)
• 𝐴 𝑢 = max{	∑"∈$.children𝐴[𝑣] , weight 𝑢 +	∑"∈$.children𝐵[𝑣] }
• B 𝑢 = ∑"∈$.children𝐴[𝑣]

• MIS(T):
• MIS_subtree(T.root)
• return A[T.root]

Initialize global arrays A, B

that we will use in all of
the recursive calls.

Running time?
• We visit each vertex once, and for

every vertex we do O(1) work:
• Make a recursive call
• Participate in summations of

parent node
• Running time is O(|V|) 106

Why is this different from divide-and-conquer?
That’s always worked for us with tree problems before…

• MIS_subtree(u):
• if u is a leaf:

• return weight(u)
• else:

• return max{	∑"∈$.childrenMIS_subtree(𝑣) ,

 weight 𝑢 +	∑4∈6.grandchildrenMIS_subtree(𝑣) }

• MIS(T):
• return MIS_subtree(T.root)

This is exactly the same pseudocode,
except we’ve ditched the table and

are just calling MIS_subtree(v)
instead of looking up A[v] or B[v].

107

Why is this different from divide-and-conquer?
That’s always worked for us with tree problems before…

How often would we ask
about the subtree rooted
here?

Once for this node
and once for this one.

But we then ask
about this node
twice, here and here.

This will blow up exponentially
without using dynamic
programming to take advantage
of overlapping subproblems. 108

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.
You do this one!

109

What have we learned?

• We can find maximal independent sets in trees in
time O(|V|) using dynamic programming!

• For this example, it was natural to implement our
DP algorithm in a top-down way.

110

Recap

• Today we saw examples of how to come up with
dynamic programming algorithms.
• Longest Common Subsequence
• Knapsack two ways
• (If time) maximal independent set in trees.

• There is a recipe for dynamic programming
algorithms.

111

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation for the value of

the optimal solution.
• Step 3: Use dynamic programming to find the value

of the optimal solution.
• Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.
• Step 5: If needed, code this up like a reasonable

person.

112

Recap

• Today we saw examples of how to come up with
dynamic programming algorithms.
• Longest Common Subsequence
• Knapsack two ways
• (If time) maximal independent set in trees.

• There is a recipe for dynamic programming
algorithms.
• Sometimes coming up with the right substructure

takes some creativity
• Practice on homework! J
• For even more practice check out additional

examples/practice problems in CLRS,
Algorithms Illuminated or section!

113

Next time

• Greedy algorithms!

• Pre-lecture exercise: Greed is good!

Before next time

114

