Lecture 14

Greedy algorithms!

Announcements

- Homework 6 due today
- Homework 7 out later today
- EthiCS lecture this Friday Mar 1, 10:30am

Announcements

- FAQ: What's the best way to prepare for the final?
- Practice problems!
- If Section/HW aren't enough for you, there are plenty in Algorithms Illuminated and in CLRS (which is available for free via the Stanford library).
- We'll also be posting practice finals.
- When you are reading the book or (re)watching lectures or section, try to guess what comes next.
- If we state a lemma, close the book or pause the video, and try to prove the lemma.
- If we've seen the intuition for an algorithm, try to write down pseudocode.
- Try the HW on your own before collaborating.

Roadmap

Next two lectures

- Greedy algorithms!

Greedy algorithms

- Make choices one-at-a-time.
- Never look back.
- Hope for the best.

Today

- One example of a greedy algorithm that does not work:
- Knapsack again -
- Three examples of greedy algorithms that do work:
- Activity Selection
- Job Scheduling
- Huffman Coding (if time)

You saw these on your pre-lecture exercise!

Non-example

- Unbounded Knapsack.

Capacity: 10

Weight
Value:
6
20

4

335

- Unbounded Knapsack:
- Suppose I have infinite copies of all items.
- What's the most valuable way to fill the knapsack?

- "Greedy" algorithm for unbounded knapsack:
- Tacos have the best Value/Weight ratio!
- Keep grabbing tacos!

Example where greedy works

 Activity selectionCS 161 Class

Math 51 Class
Sleep
CS 161
Section
You can only do one activity at a time, and you want to maximize the number of activities that you do.

What to choose?

CS110
Class

Combinatorics Seminar

Theory Lunch

Social activity

Activity selection

- Input:
- Activities $a_{1}, a_{2}, \ldots, a_{n}$
- Start times $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$
- Finish times $f_{1}, f_{2}, \ldots, f_{n}$

- Output:
- A way to maximize the number of activities you can do today.

In what order should you greedily add activities?

Greedy Algorithm

- Pick activity you can add with the smallest finish time.
- Repeat.

Greedy Algorithm

- Pick activity you can add with the smallest finish time.
- Repeat.

Greedy Algorithm

- Pick activity you can add with the smallest finish time.
- Repeat.

Greedy Algorithm

- Pick activity you can add with the smallest finish time.
- Repeat.

Greedy Algorithm

- Pick activity you can add with the smallest finish time.
- Repeat.

Greedy Algorithm

- Pick activity you can add with the smallest finish time.
- Repeat.

Greedy Algorithm

- Pick activity you can add with the smallest finish time.
- Repeat.

Greedy Algorithm

- Pick activity you can add with the smallest finish time.
- Repeat.

At least it's fast

- Running time:
- $O(n)$ if the activities are already sorted by finish time.
- Otherwise, $O(n \log (n))$ if you have to sort them first.

What makes it greedy?

- At each step in the algorithm, make a choice.
- Hey, I can increase my activity set by one,
- And leave lots of room for future choices,
- Let's do that and hope for the best!!!
- Hope that at the end of the day, this results in a globally optimal solution.

Three Questions

1. Does this greedy algorithm for activity selection work?

- Yes. (We will see why in a moment...)

2. In general, when are greedy algorithms a good idea?

- When the problem exhibits especially nice optimal substructure.

3. The "greedy" approach is often the first you'd think of...

- Why are we getting to it now, in Week 8?
- Proving that greedy algorithms work is often not so easy...

Back to Activity Selection

- Pick activity you can add with the smallest finish time.
- Repeat.

Why does it work?

- Whenever we make a choice, we don't rule out an optimal solution.

There's some optimal solution that contains our next choice

Assuming that statement...

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

Lucky the Lackadaisical Lemur

We never rule out an optimal solution

- Suppose we've already chosen a_{i}, and there is still an optimal solution T^{*} that extends our choices.

We never rule out an optimal solution

- Suppose we've already chosen a_{i}, and there is still an optimal solution T^{*} that extends our choices.
- Now consider the next choice we make, say it's a_{k}.
- If a_{k} is in T^{*}, we're still on track.

We never rule out an optimal solution

- Suppose we've already chosen a_{i}, and there is still an optimal solution T^{*} that extends our choices.
- Now consider the next choice we make, say it's a_{k}.
- If a_{k} is not in T^{*}...

We never rule out an optimal solution ctd.

- If a_{k} is not in T^{*}...
- Let a_{j} be the activity in T^{*} with the smallest end time.
- Now consider schedule T you get by swapping a_{j} for a_{k}

We never rule out an optimal solution ctd.

- If a_{k} is not in T^{*}...
- Let a_{j} be the activity in T^{*} (after a_{i} ends) with the smallest end time.
- Now consider schedule T you get by swapping a_{j} for a_{k}

We never rule out an optimal solution ctd.

- This schedule T is still allowed.
- Since a_{k} has the smallest ending time, it ends before a_{j}.
- Thus, a_{k} doesn't conflict with anything chosen after a_{j}.
- And T is still optimal.
- It has the same number of activities as T*.

We never rule out an optimal solution ctd.

- We've just shown:
- If there was an optimal solution that extends the choices we made so far...
- ...then there is an optimal schedule that also contains our next greedy choice a_{k}.

So the algorithm is correct

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

Lucky the Lackadaisical Lemur

So the algorithm is correct

- Inductive Hypothesis:

Plucky the Pedantic Penguin

- After adding the t-th thing, there is an optimal solution that extends the current solution.
- Base case:
- After adding zero activities, there is an optimal solution extending that.
- Inductive step:
- We just did that!
- Conclusion:
- After adding the last activity, there is an optimal solution that extends the current solution.
- The current solution is the only solution that extends the current solution.
- So the current solution is optimal.

Three Questions

1. Does this greedy algorithm for activity selection work?

- Yes.

2. In general, when are greedy algorithms a good idea?

- When the problem exhibits especially nice optimal substructure.

3. The "greedy" approach is often the first you'd think of...

- Why are we getting to it now, in Week 8?
- Proving that greedy algorithms work is often not so easy...

One Common strategy for greedy algorithms

- Make a series of choices.
- Show that, at each step, our choice won't rule out an optimal solution at the end of the day.
- After we've made all our choices, we haven't ruled out an optimal solution, so we must have found one.

One Common strategy (formally) for greedy algorithms

- Inductive Hypothesis:
- After greedy choice t, you haven't ruled out success.
- Base case:
- Success is possible before you make any choices.
- Inductive step:
- If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
- If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.

One Common strategy for showing we don't rule out success

- Suppose that you're on track to make an optimal solution T^{*}.
- E.g., after you've picked activity i, you're still on track.
- Suppose that T^{*} disagrees with your next greedy choice.
- E.g., it doesn't involve activity k .
- Manipulate T^{*} in order to make a solution T that's not worse but that agrees with your greedy choice.
- E.g., swap whatever activity T* did pick next with activity k.

Note on "Common Strategy"

- This common strategy is not the only way to prove that greedy algorithms are correct!
- I'm emphasizing it in lecture because it often works, and it gives you a framework to get started.

Three Questions

1. Does this greedy algorithm for activity selection work?

- Yes.

2. In general, when are greedy algorithms a good idea?

- When the problem exhibits especially nice optimal substructure.

3. The "greedy" approach is often the first you'd think of...

- Why are we getting to it now, in Week 8?
- Proving that greedy algorithms work is often not so easy...

Optimal sub-structure
in greedy algorithms

- Our greedy activity selection algorithm exploited a natural sub-problem structure:
$A[i]=$ number of activities you can do after the end of activity i
- How does this substructure relate to that of divide-andconquer or DP?
$\mathrm{A}[\mathrm{i}]=$ solution to
this sub-problem

Sub-problem graph view

- Divide-and-conquer:

Sub-problem graph view

- Dynamic Programming:

Sub-problem graph view

- Greedy algorithms:

Sub-problem graph view

- Greedy algorithms:

- Not only is there optimal sub-structure:
- optimal solutions to a problem are made up from optimal solutions of sub-problems
- but each problem depends on only one sub-problem.

Write a DP version of activity selection
(where you fill in a table)! [See hidden slides in the .pptx file for one way]

Three Questions

1. Does this greedy algorithm for activity selection work?

- Yes.

2. In general, when are greedy algorithms a good idea?

- When they exhibit especially nice optimal substructure.

3. The "greedy" approach is often the first you'd think of...

- Why are we getting to it now, in Week 8?
- Proving that greedy algorithms work is often not so easy.

Let's see a few more examples

Another example: Scheduling

CS161 HW

Personal hygiene
Math HW
Administrative stuff for student club
Econ HW
Do laundry
Meditate
Practice musical instrument

Read lecture notes

Have a social life

Scheduling

- n tasks
- Task i takes t_{i} hours
- For every hour that passes until task i is done, pay c_{i}

10 hours

Cost: 2 units per hour until it's done.

Sleep

Cost: 3 units per
hour until it's done.

8 hours

- CS161 HW, then Sleep: costs $10 \cdot 2+(10+8) \cdot 3=74$ units
- Sleep, then CS161 HW: costs $8 \cdot 3+(10+8) \cdot 2=60$ units

Optimal substructure

- This problem breaks up nicely into sub-problems:

Suppose this is the optimal schedule:

Optimal substructure

- This problem breaks up nicely into sub-problems:

Suppose this is the optimal schedule:

If not, then rearranging B, C, D could make a better schedule than (A, B, C, D)!

Optimal substructure

- Seems amenable to a greedy algorithm:

Take the best job first
Then solve this problem

Take the best job first
Then solve this problem

Take the best job first
Then solve this problem

Job B

What does "best" mean?

Note: here we are defining x, y, z, and w. (We use c_{i} and t_{i} for these in the general problem, but we are changing notation for just this thought
$A B$ is better than $B A$ when:

$$
\begin{aligned}
x z+(x+y) w & \leq y w+(x+y) z \\
x z+x w+y w & \leq y w+x z+y z \\
w x & \leq y z \\
\frac{w}{y} & \leq \frac{z}{x}
\end{aligned}
$$ experiment to save on subscripts.)

- Of these two jobs, which should we do first?

Cost: z units per hour until it's done.

Cost: w units per hour until it's done.

What matters is the ratio:
$\frac{\text { cost of delay }}{\text { time it takes }}$
"Best" means biggest ratio. ${ }^{70}$

Idea for greedy algorithm

- Choose the job with the biggest $\frac{\text { cost of delay }}{\text { time it takes }}$ ratio.

Lemma

This greedy choice doesn't rule out success

- Suppose you have already chosen some jobs, and haven't yet ruled out success:

- Then if you choose the next job to be the one left that maximizes the ratio cost/time, you still won't rule out success.
- Proof sketch:
- Say Job B maximizes this ratio, but it's not the next job in the opt. soln.

How can we manipulate the optimal solution above to make an optimal solution where B is the next job we choose after E?
1 minute think; (wait) 1 minute share

Lemma

This greedy choice doesn't rule out success

- Suppose you have already chosen some jobs, and haven't yet ruled out success:
Job C Job A Job B Job D
- Then if you choose the next job to be the one left that maximizes the ratio cost/time, you still won't rule out success.
- Proof sketch:
- Say Job B maximizes this ratio, but it's not the next job in the opt. soln.
- Switch A and B! Nothing else will change, and we just showed that the cost of the solution won't increase.
\square

\square
Job A
Job D
- Repeat until B is first.
\square
Job C Job A Job D
- Now this is an optimal schedule where B is first.

Back to our framework for proving correctness of greedy algorithms

- Inductive Hypothesis:
- After greedy choice t, you haven't ruled out success.
- Base case:
- Success is possible before you make any choices.

Just did the inductive step!

- Inductive step:
- If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
- If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.

Fill in the details!

Greedy Scheduling Solution

- scheduleJobs(JOBS):
- Sort JOBS in decreasing order by the ratio:
- $r_{i}=\frac{c_{i}}{t_{i}}=\frac{\text { cost of delaying job i }}{\text { time job i takes to complete }}$
- Return JOBS

Running time: $\mathrm{O}(\mathrm{n} \log (\mathrm{n})$)

Now you can go about your schedule peacefully, in the optimal way.

What have we learned?

- A greedy algorithm works for scheduling
- This followed the same outline as the previous example:
- Identify optimal substructure:

- Find a way to make choices that won't rule out an optimal solution.
- largest cost/time ratios first.

One more example Huffman coding

- everyday english sentence
- 01100101011101100110010101110010011110010110010001100001 01111001001000000110010101101110011001110110110001101001 01110011011010000010000001110011011001010110111001110100 01100101011011100110001101100101
- qwertyui_opasdfg+hjklzxcv
- 01110001011101110110010101110010011101000111100101110101 01101001010111110110111101110000011000010111001101100100 01100110011001110010101101101000011010100110101101101100 01111010011110000110001101110110

One more example Huffman coding

- everyday english sentence
- 01100101011101100110010101110010011110010110010001100001 01111001001000000110010101101110011001110110110001101001 01110011011010000010000001110011011001010110111001110100 01100101011011100110001101100101
- qwertyui_opasdfg+hjklzxcv
- 01110001011101110110010101110010011101000111100101110101 01101001010111110110111101110000011000010111001101100100 01100110011001110010101101101000011010100110101101101100 01111010011110000110001101110110

Suppose we have some distribution on characters

Suppose we have some distribution on characters

Try 0 (like ASCII)

- Every letter is assigned a binary string of three bits.

Wasteful!

Try 1

- Every letter is assigned a binary string of one or two bits.
- The more frequent letters get the shorter strings.
- Problem:
- Does 000 mean AAA or BA or AB?

16

Try 2: prefix-free coding

- Every letter is assigned a binary string.
- More frequent letters get shorter strings.

Try 2: prefix-free coding

- Every letter is assigned a binary string.
- More frequent letters get shorter strings.

Try 2: prefix-free coding

- Every letter is assigned a binary string.
- More frequent letters get shorter strings.

Try 2: prefix-free coding

- Every letter is assigned a binary string.
- More frequent letters get shorter strings.

A prefix-free code is a tree

How good is a tree?

- Imagine choosing a letter at random from the language.
- Not uniformly random, but according to our histogram!
- The cost of a tree is the expected length of the encoding of a random letter.

Expected cost of encoding a letter with this tree:

$$
2(0.45+0.16)+3(0.05+0.13+0.12+0.09)=2.39
$$

Question

- Given a distribution P on letters, find the lowestcost tree, where
$\operatorname{cost}($ tree $)=$

Greedy algorithm

- Greedily build sub-trees from the bottom up.
- Greedy goal: less frequent letters should be further down the tree.

Solution

 greedily build subtrees, starting with the infrequent letters

Solution

 greedily build subtrees, starting with the infrequent letters

Solution

 greedily build subtrees, starting with the infrequent letters

Solution

 greedily build subtrees, starting with the infrequent letters

Solution

 greedily build suptrees, starting with the infrequent letters

Solution

 greedily build subtrees, starting with the infrequent letters

What exactly was the algorithm?

- Create a node like D: 16 for each letter/frequency
- The key is the frequency (16 in this case)
- Let CURRENT be the list of all these nodes.
- while len(CURRENT) > 1 :
- X and $Y \leftarrow$ the nodes in CURRENT with the smallest keys.
- Create a new node Z with Z.key = X.key + Y.key
- Set Z.left = X, Z.right = Y
- Add Z to CURRENT and remove X and Y
- return CURRENT[0]

This is called Huffman Coding:

- Create a node like D: 16 for each letter/frequency
- The key is the frequency (16 in this case)
- Let CURRENT be the list of all these nodes.
- while len(CURRENT) > 1 :
- X and $Y \leftarrow$ the nodes in CURRENT with the smallest keys.
- Create a new node Z with Z.key $=X$.key + Y.key
- Set Z.left = X, Z.right = Y
- Add Z to CURRENT and remove X and Y
- return CURRENT[0]

Does it work?

- Yes.
- We will sketch a proof here.
- Same strategy:
- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
- Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.

Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal tree where x and y are siblings.

- Say that an optimal tree looks like this:

Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
- the cost can't increase; a was more frequent than x, and we just made a's encoding shorter and x's longer.
- Repeat this logic until we get an optimal tree with x and y as siblings.
- The cost never increased so this tree is still optimal.

Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal tree where x and y are siblings.

- Say that an optimal tree looks like this:

Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
- the cost can't increase; a was more frequent than x, and we just made a's encoding shorter and x's longer.
- Repeat this logic until we get an optimal tree with x and y as siblings.
- The cost never increased so this tree is still optimal.

Huffman Coding Works (idea)

- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
- Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.
- That's enough to show that we don't rule out optimality on the first step.

Huffman Coding Works (idea)

- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
- Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.
- That's enough to show that we don't rule out optimality on the first step.
- To show that continue to not rule out optimality once we start grouping stuff...

Huffman Coding Works (idea)

- To show that continue to not rule out optimality once we start grouping stuff...
- The basic idea is that we can treat the "groups" as leaves in a new alphabet.

Huffman Coding Works (idea)

- To show that continue to not rule out optimality once we start grouping stuff...
- The basic idea is that we can treat the "groups" as leaves in a new alphabet.
- Then we can use the lemma from before.

For a full proof

- See lecture notes or CLRS!

What have we learned?

- ASCII isn't an optimal way* to encode English, since the distribution on letters isn't uniform.
- Huffman Coding is an optimal way!
- To come up with an optimal scheme for any language efficiently, we can use a greedy algorithm.
- To come up with a greedy algorithm:
- Identify optimal substructure
- Find a way to make choices that won't rule out an optimal solution.
- Create subtrees out of the smallest two current subtrees.

Recap I

- Greedy algorithms!
- Three examples:
- Activity Selection
- Scheduling Jobs
- Huffman Coding
- If we had time

Recap II

- Greedy algorithms!
- Often easy to write down
- But may be hard to come up with and hard to justify
- The natural greedy algorithm may not always be correct.
- A problem is a good candidate for a greedy algorithm if:
- it has optimal substructure
- that optimal substructure is REALLY NICE
- solutions depend on just one other sub-problem.

Next time

- Greedy algorithms for Minimum Spanning Tree!

Before next time

- Pre-lecture exercise: thinking about MSTs

