
Lecture 14
Greedy algorithms!
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Announcements

• Homework 6 due today

• Homework 7 out later today

• EthiCS lecture this Friday Mar 1, 10:30am
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Announcements

• FAQ: What’s the best way to prepare for the final?
• Practice problems!  

• If Section/HW aren’t enough for you, there are plenty in 
Algorithms Illuminated and in CLRS (which is available for free 
via the Stanford library).  

• We’ll also be posting practice finals.
• When you are reading the book or (re)watching lectures 

or section, try to guess what comes next.  
• If we state a lemma, close the book or pause the video, and try 

to prove the lemma.  
• If we’ve seen the intuition for an algorithm, try to write down 

pseudocode.
• Try the HW on your own before collaborating.
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Roadmap

Sorting

Graphs!Longest, Shortest, Max and Min…

Data 

structures

Asymptotic 
Analysis

Recurrences

Randomized 
Algs

Dynamic 
Programming

Greedy 
Algs

5 lectures 2 lectures

9 lectures

1 st class

Divide and 
conquer

1 lecture

The
Future!

More detailed schedule on the website!

We are here

MIDTERM
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Next two lectures

• Greedy algorithms!
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Greedy algorithms

• Make choices one-at-a-time.
• Never look back.
• Hope for the best.
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Today

• One example of a greedy algorithm that does not 
work:
• Knapsack again

• Three examples of greedy algorithms that do work:
• Activity Selection
• Job Scheduling
• Huffman Coding (if time) You saw these on 

your pre-lecture 
exercise!
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Non-example

• Unbounded Knapsack.
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• Unbounded Knapsack:
• Suppose I have infinite copies of all items.
• What’s the most valuable way to fill the knapsack?

• “Greedy” algorithm for unbounded knapsack:
• Tacos have the best Value/Weight ratio!
• Keep grabbing tacos!

Weight:
Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 39
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Example where greedy works
Activity selection

Frisbee Practice

Orchestra

CS161 study 
group

Sleep

CS110 
Class

Theory Lunch

Theory Seminar

Combinatorics 
Seminar

Underwater basket 
weaving class

Math 51 Class

CS 161 Class

CS 166 Class

CS 161 
Section

CS 161 Office 
Hours

Swimming 
lessons

Programming 
team meeting

Social activity

time

You can only do one activity at a time, and you want to 
maximize the number of activities that you do.  

What to choose?
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Activity selection

• Input:
• Activities a1, a2, …, an

• Start times s1, s2, …, sn

• Finish times f1, f2, …, fn

• Output:
• A way to maximize the number of activities you can do 

today.
In what order should you 
greedily add activities?

ai

timesi fi
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Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.
• Repeat.
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Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.
• Repeat.

16



Greedy Algorithm
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Greedy Algorithm
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time

• Pick activity you can add with the smallest finish time.
• Repeat.
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Greedy Algorithm
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• Repeat.
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Greedy Algorithm
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a4
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Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.
• Repeat.
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Greedy Algorithm

a3a1

a4       
a2

a5

a7

a6 

time

• Pick activity you can add with the smallest finish time.
• Repeat.
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At least it’s fast

• Running time: 
• O(n) if the activities are already sorted by finish time.
• Otherwise, O(n log(n)) if you have to sort them first.
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What makes it greedy?

• At each step in the algorithm, make a choice.
• Hey, I can increase my activity set by one, 
• And leave lots of room for future choices,
• Let’s do that and hope for the best!!!

• Hope that at the end of the day, this results in a 
globally optimal solution.

24



Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When the problem exhibits especially nice optimal 

substructure.

3. The “greedy” approach is often the first you’d think of…
• Why are we getting to it now, in Week 8?

• Proving that greedy algorithms work is often not so easy…

(We will see why in a moment…)
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Back to Activity Selection

a3a1

a4
a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.
• Repeat.
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Why does it work?

• Whenever we make a choice, we don’t rule out an 
optimal solution.

a3a1

a4
a2

a5

a7

a6

time

a5
a3 a7

There’s some optimal solution that 
contains our next choice

Our next 
choice would 
be this one:
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Assuming that statement…

• We never rule out an optimal solution
• At the end of the algorithm, we’ve got some solution.
• So it must be optimal.

Lucky the Lackadaisical Lemur
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We never rule out an optimal solution

• Suppose we’ve already chosen ai, and there is still 
an optimal solution T* that extends our choices.

ai

a2

a7

a6

time

aj

ak
a3
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We never rule out an optimal solution

• Suppose we’ve already chosen ai, and there is still 
an optimal solution T* that extends our choices.
• Now consider the next choice we make, say it’s ak.
• If ak is in T*, we’re still on track.

ai

a2

a7

a6

time

aj

ak
a3

Greedy algorithm 
would choose this one.
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We never rule out an optimal solution

• Suppose we’ve already chosen ai, and there is still 
an optimal solution T* that extends our choices.
• Now consider the next choice we make, say it’s ak.
• If ak is not in T*…

ai

a2

a7

a6

time

aj

ak
a3

Greedy algorithm 
would choose this one.
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We never rule out an optimal solution

• If ak is not in T*…
• Let aj be the activity in T* with the smallest end time.
• Now consider schedule T you get by swapping aj for ak

ai

a2

a7

a6

time

aj

ak
a3

Greedy algorithm 
would choose this one.

ctd.

Consider this one.
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We never rule out an optimal solution

• If ak is not in T*…
• Let aj be the activity in T* (after ai ends) with the 

smallest end time.
• Now consider schedule T you get by swapping aj for ak

ai

a2

a7

a6

time

aj

ak
a3

ctd.

SWAP!
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We never rule out an optimal solution

• This schedule T is still allowed.
• Since ak has the smallest ending time, it ends before aj.  
• Thus, ak doesn’t conflict with anything chosen after aj.

• And T is still optimal.
• It has the same number of activities as T*.

ai

a2

a7

a6

time

aj

ak
a3

ctd.

SWAP!
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We never rule out an optimal solution

• We’ve just shown:
• If there was an optimal solution that extends the choices 

we made so far…
• …then there is an optimal schedule that also contains our 

next greedy choice ak.

ai

a2

a7

a6

time

aj

ak
a3

ctd.
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So the algorithm is correct

• We never rule out an optimal solution
• At the end of the algorithm, we’ve got some solution.
• So it must be optimal.

Lucky the Lackadaisical Lemur
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So the algorithm is correct

• Inductive Hypothesis:
• After adding the t-th thing, there is an optimal solution that 

extends the current solution.
• Base case:

• After adding zero activities, there is an optimal solution 
extending that.

• Inductive step:
• We just did that!

• Conclusion:
• After adding the last activity, there is an optimal solution that 

extends the current solution.
• The current solution is the only solution that extends the 

current solution.
• So the current solution is optimal.

Plucky the Pedantic Penguin
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Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When the problem exhibits especially nice optimal 

substructure.

3. The “greedy” approach is often the first you’d think of…
• Why are we getting to it now, in Week 8?

• Proving that greedy algorithms work is often not so easy…
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One Common strategy
for greedy algorithms

• Make a series of choices.
• Show that, at each step, our choice won’t rule out 

an optimal solution at the end of the day.
• After we’ve made all our choices, we haven’t ruled 

out an optimal solution, so we must have found 
one.
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One Common strategy (formally)
for greedy algorithms

• Inductive Hypothesis:
• After greedy choice t, you haven’t ruled out success.

• Base case:
• Success is possible before you make any choices.

• Inductive step:
• If you haven’t ruled out success after choice t, then you 

won’t rule out success after choice t+1.

• Conclusion:
• If you reach the end of the algorithm and haven’t ruled 

out success then you must have succeeded.

“Success” here means 
“finding an optimal solution.”
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One Common strategy
for showing we don’t rule out success

• Suppose that you’re on track to make an optimal 
solution T*.
• E.g., after you’ve picked activity i, you’re still on track.

• Suppose that T* disagrees with your next greedy 
choice.
• E.g., it doesn’t involve activity k.

• Manipulate T*  in order to make a solution T that’s 
not worse but that agrees with your greedy choice.
• E.g., swap whatever activity T* did pick next with activity 

k.

41



Note on “Common Strategy”

• This common strategy is not the only way to prove 
that greedy algorithms are correct!

• I’m emphasizing it in lecture because it often 
works, and it gives you a framework to get started.

42



Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When the problem exhibits especially nice optimal 

substructure.

3. The “greedy” approach is often the first you’d think of…
• Why are we getting to it now, in Week 8?

• Proving that greedy algorithms work is often not so easy…
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Optimal sub-structure 
in greedy algorithms

• Our greedy activity selection algorithm exploited a natural 
sub-problem structure:

A[i] = number of activities you can do after the end of activity i

• How does this substructure relate to that of divide-and-
conquer or DP?

ai

a2

a7

a6

time

aj

ak a3

A[i] = solution to 
this sub-problem
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Sub-problem graph view

• Divide-and-conquer:

Big problem

sub-problemsub-problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem
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Sub-problem graph view

• Dynamic Programming:

Big problem

sub-problemsub-problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-problem
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Sub-problem graph view

• Greedy algorithms:

Big problem

sub-sub-
problem

sub-problem
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Sub-problem graph view

• Greedy algorithms:

Big problem

sub-sub-
problem

sub-problem

• Not only is there optimal sub-structure:
• optimal solutions to a problem are made up 

from optimal solutions of sub-problems

• but each problem depends on only one 
sub-problem.

Ollie the Over-achieving Ostrich

Write a DP version of activity selection 
(where you fill in a table)!  [See hidden 

slides in the .pptx file for one way]
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Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When they exhibit especially nice optimal substructure.

3. The “greedy” approach is often the first you’d think of…
• Why are we getting to it now, in Week 8?

• Proving that greedy algorithms work is often not so easy.
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Let’s see a few more examples
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Another example:
Scheduling

CS161 HW

Personal hygiene

Math HW

Econ HW

Practice musical instrument

Read lecture notes

Have a social life

Sleep

Administrative stuff for student club

Do laundry

Meditate
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Scheduling
• n tasks
• Task i takes ti hours
• For every hour that passes until task i is done, pay ci

• CS161 HW, then Sleep:  costs 10 ⋅ 2 + (10 + 8) ⋅ 3 = 74 units
• Sleep, then CS161 HW: costs 8 ⋅ 3 + (10 + 8) ⋅ 2 = 60 units

CS161 HW

Sleep

10 hours

8 hours

Cost: 2 units per 
hour until it’s done.

Cost: 3 units per 
hour until it’s done.
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Optimal substructure

• This problem breaks up nicely into sub-problems:

Job A Job B Job C Job D

Suppose this is the optimal schedule:

Then this must be the optimal 
schedule on just jobs B,C,D.

Why?

67



Optimal substructure

• This problem breaks up nicely into sub-problems:

Job A Job B Job C Job D

Suppose this is the optimal schedule:

Then this must be the optimal 
schedule on just jobs B,C,D.

If not, then rearranging B,C,D 
could make a better schedule 

than (A,B,C,D)!



Optimal substructure

• Seems amenable to a greedy algorithm:

Job A Job B Job C Job D

Take the best job first Then solve this problem

Job BJob C Job D

Take the best job first Then solve this problem

Job BJob D

Take the best job first

(That one’s easy J )

Then solve this problem
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What does “best” 
mean?

• Of these two jobs, which should we do first?

• Cost( A then B ) = x	⋅	z + (x + y) ⋅ w
• Cost( B then A ) = y ⋅	w + (x + y) ⋅	z

Job A

Job B

x hours

y hours

Cost: z units per 
hour until it’s done.

Cost: w units per 
hour until it’s done.

AB is better than BA when:
𝑥𝑧 + 𝑥 + 𝑦 𝑤 ≤ 𝑦𝑤 + 𝑥 + 𝑦 𝑧
𝑥𝑧 + 𝑥𝑤 + 𝑦𝑤 ≤ 𝑦𝑤 + 𝑥𝑧 + 𝑦𝑧

𝑤𝑥 ≤ 𝑦𝑧
𝑤
𝑦 ≤

𝑧
𝑥

What matters is the ratio:

cost	of	delay
time	it	takes

“Best” means 
biggest ratio.70

Note: here we are defining x, y, z, and w.  (We use ci and ti for these in 
the general problem, but we are changing notation for just this thought 
experiment to save on subscripts.)



Idea for greedy algorithm

• Choose the job with the biggest cost	of	delaytime	it	takes ratio.
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Lemma
This greedy choice doesn’t rule out success

• Suppose you have already chosen some jobs, and haven’t yet 
ruled out success: 

• Then if you choose the next job to be the one left that maximizes 
the ratio cost/time, you still won’t rule out success.
• Proof sketch:

• Say Job B maximizes this ratio, but it’s not the next job in the opt. soln.

Job A Job BJob C Job DJob E

Already 
chosen E

There’s some way to order 
A, B,C, D that’s optimal…

Say greedy chooses job B

How can we manipulate the optimal solution 
above to make an optimal solution where B is 

the next job we choose after E?
1 minute think; (wait) 1 minute share
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Lemma
This greedy choice doesn’t rule out success

• Suppose you have already chosen some jobs, and haven’t yet 
ruled out success:

• Then if you choose the next job to be the one left that maximizes 
the ratio cost/time, you still won’t rule out success.
• Proof sketch:

• Say Job B maximizes this ratio, but it’s not the next job in the opt. soln.
• Switch A and B!  Nothing else will change, and we just showed that the 

cost of the solution won’t increase.

• Repeat until B is first.

• Now this is an optimal schedule where B is first.

Job AJob BJob C Job D

Job AJob B Job C Job D

Job E

Job E

Job A Job BJob C Job DJob E

Already 
chosen E

There’s some way to order 
A, B,C, D that’s optimal…

Say greedy chooses job B
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Back to our framework for proving 
correctness of greedy algorithms

• Inductive Hypothesis:
• After greedy choice t, you haven’t ruled out success.

• Base case:
• Success is possible before you make any choices.

• Inductive step:
• If you haven’t ruled out success after choice t, then 

you won’t rule out success after choice t+1.

• Conclusion:
• If you reach the end of the algorithm and haven’t 

ruled out success then you must have succeeded.

74

Fill in the details!

Just did the 
inductive step!



Greedy Scheduling Solution
• scheduleJobs( JOBS ):
• Sort JOBS in decreasing order by the ratio:

• 𝒓𝒊 =
𝒄𝒊
𝒕𝒊
= cost	of	delaying	job	i	
time	job	i	takes	to	complete

• Return JOBS

Running time: O(n log(n))

Now you can go about your schedule 
peacefully, in the optimal way.75



What have we learned?

• A greedy algorithm works for scheduling

• This followed the same outline as the previous example:
• Identify optimal substructure:

• Find a way to make choices that won’t rule out an optimal 
solution.
• largest cost/time ratios first.

Job A Job B Job C Job D
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One more example
Huffman coding

• everyday english sentence
• 01100101 01110110 01100101 01110010 01111001 01100100 01100001 

01111001 00100000 01100101 01101110 01100111 01101100 01101001 
01110011 01101000 00100000 01110011 01100101 01101110 01110100 
01100101 01101110 01100011 01100101

• qwertyui_opasdfg+hjklzxcv
• 01110001 01110111 01100101 01110010 01110100 01111001 01110101 

01101001 01011111 01101111 01110000 01100001 01110011 01100100 
01100110 01100111 00101011 01101000 01101010 01101011 01101100 
01111010 01111000 01100011 01110110
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One more example
Huffman coding

• everyday english sentence
• 01100101 01110110 01100101 01110010 01111001 01100100 01100001 

01111001 00100000 01100101 01101110 01100111 01101100 01101001 
01110011 01101000 00100000 01110011 01100101 01101110 01110100 
01100101 01101110 01100011 01100101

• qwertyui_opasdfg+hjklzxcv
• 01110001 01110111 01100101 01110010 01110100 01111001 01110101 

01101001 01011111 01101111 01110000 01100001 01110011 01100100 
01100110 01100111 00101011 01101000 01101010 01101011 01101100 
01111010 01111000 01100011 01110110

ASCII is pretty wasteful for 
English sentences.  If e shows 
up so often, we should have a 
shorter way of representing it!
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Suppose we have some 
distribution on characters
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Suppose we have some 
distribution on characters

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

For simplicity, 
let’s go with this 

made-up example

How to encode them as 
efficiently as possible?
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Try 0
(like ASCII)

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

000 011001 010 100 101

• Every letter is assigned a binary string 
of three bits.

Wasteful!  
• 110 and 111 are never used.  
• We should have a shorter way of 

representing A.
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Try 1

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

0 100 01 10 11

• Every letter is assigned a binary string 
of one or two bits.  

• The more frequent letters get the 
shorter strings.

• Problem: 
• Does 000 mean AAA or BA or AB?
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Try 2: prefix-free coding

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

01 00101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101

Confusingly, “prefix-free codes” are also sometimes 
called “prefix codes” (e.g. in CLRS).
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Try 2: prefix-free coding

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

01 00101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101 F

Confusingly, “prefix-free codes” are also sometimes 
called “prefix codes” (including in CLRS).
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Try 2: prefix-free coding

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

01 00101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101 FB

Confusingly, “prefix-free codes” are also sometimes 
called “prefix codes” (including in CLRS).
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Try 2: prefix-free coding

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

01 00101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101 FBA

Question: What is the most efficient 
way to do prefix-free coding? 

That is, how can we use as few bits 
as possible in expectation?

Confusingly, “prefix-free codes” are also sometimes 
called “prefix codes” (including in CLRS).

87

(This is not it).



A prefix-free code is a tree

D: 16 A: 45

B:13F:5 C:12 E:9

0

0 0

0 0 1

1

1

1

1

00 01

100 101 110 111
As long as all the letters 
show up as leaves, this 

code is prefix-free.

B:13 below means that ‘B’ 
makes up 13% of the 

characters that ever appear.
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How good is a tree?

D: 16 A: 45

B:13F:5 C:12 E:9

0

0 0

0 0 1

1

1

1

1

00 01

100 101 110 111

• Imagine choosing a letter at random from the language.
• Not uniformly random, but according to our histogram!

• The cost of a tree is the expected length of the encoding of a random letter.

Expected cost of encoding a letter with this tree:
𝟐 𝟎. 𝟒𝟓 + 𝟎. 𝟏𝟔 + 𝟑 	𝟎. 𝟎𝟓 + 𝟎. 𝟏𝟑 + 𝟎. 𝟏𝟐 + 𝟎. 𝟎𝟗 = 𝟐. 𝟑𝟗

Cost = 

	 ?
!"#$"%	'

	 𝑃 𝑥 ⋅ depth(𝑥)
P(x) is the 
probability 
of letter x

The depth in the 
tree is the length 
of the encoding
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Question

• Given a distribution P on letters, find the lowest-
cost tree, where

cost(tree) = 	 +
!"#$"%	'

𝑃 𝑥 ⋅ depth(𝑥)
P(x) is the 
probability 
of letter x

The depth in the 
tree is the length 
of the encoding
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Greedy algorithm

• Greedily build sub-trees from the bottom up.
• Greedy goal: less frequent letters should be further 

down the tree.
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Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1
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Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1
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Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

30

1

0
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Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

30

1

0

55
1

0
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Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

30

1

0

55
1

0

100
1

0
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Solution
greedily build subtrees, starting with the infrequent letters

D: 16 

A: 45

B:13

F:5

C:12

E:9

14

0 1

25

0 1

30

10

55
10

100

10

0

100 101 110

1110 1111

Expected cost of encoding a letter:
𝟏 ⋅ 𝟎. 𝟒𝟓

+
𝟑 ⋅ 𝟎. 𝟒𝟏

+
𝟒 ⋅ 𝟎. 𝟏𝟒

= 𝟐. 𝟐𝟒
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What exactly was the algorithm?

• Create a node like            for each letter/frequency
• The key is the frequency (16 in this case)

• Let CURRENT be the list of all these nodes.
• while len(CURRENT) > 1:
• X and Y ← the nodes in CURRENT with the smallest keys.  
• Create a new node Z with Z.key = X.key + Y.key
• Set Z.left = X, Z.right = Y
• Add Z to CURRENT and remove X and Y

• return CURRENT[0] 

D: 16 

F:5 E:9

14

0 1

Y

Z

X
D: 16    A: 45 B:13 C:12
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This is called Huffman Coding:

• Create a node like            for each letter/frequency
• The key is the frequency (16 in this case)

• Let CURRENT be the list of all these nodes.
• while len(CURRENT) > 1:
• X and Y ← the nodes in CURRENT with the smallest keys.  
• Create a new node Z with Z.key = X.key + Y.key
• Set Z.left = X, Z.right = Y
• Add Z to CURRENT and remove X and Y

• return CURRENT[0] 

D: 16 

F:5 E:9

14

0 1

Y

Z

X
D: 16    A: 45 B:13 C:12
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Does it work?
• Yes.
• We will sketch a proof here.
• Same strategy:
• Show that at each step, the choices we are making 

won’t rule out an optimal solution.
• Lemma:

• Suppose that x and y are the two least-frequent letters.  Then 
there is an optimal tree where x and y are siblings.

D: 16    A: 45 B:13 F:5C:12 E:9

14
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Lemma 
proof idea
• Say that an optimal tree looks like this:

• What happens to the cost if we swap x for a?
• the cost can’t increase; a was more frequent than x, and we 

just made a’s encoding shorter and x’s longer.
• Repeat this logic until we get an optimal tree with x and 

y as siblings.
• The cost never increased so this tree is still optimal.

If x and y are the two least-frequent letters, there 
is an optimal tree where x and y are siblings.

x

a

Lowest-level sibling 
nodes: at least one of 
them is neither x nor y
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Lemma 
proof idea
• Say that an optimal tree looks like this:

• What happens to the cost if we swap x for a?
• the cost can’t increase; a was more frequent than x, and we 

just made a’s encoding shorter and x’s longer.
• Repeat this logic until we get an optimal tree with x and 

y as siblings.
• The cost never increased so this tree is still optimal.

x y

Lowest-level sibling 
nodes: at least one of 
them is neither x nor y

If x and y are the two least-frequent letters, there 
is an optimal tree where x and y are siblings.
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Huffman Coding Works (idea)
• Show that at each step, the choices we are making 

won’t rule out an optimal solution.
• Lemma:

• Suppose that x and y are the two least-frequent letters.  
Then there is an optimal tree where x and y are siblings.

• That’s enough to show that we don’t rule out 
optimality on the first step.
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0 1

14

103



Huffman Coding Works (idea)
• Show that at each step, the choices we are making 

won’t rule out an optimal solution.
• Lemma:

• Suppose that x and y are the two least-frequent letters.  
Then there is an optimal tree where x and y are siblings.

• That’s enough to show that we don’t rule out 
optimality on the first step.
• To show that continue to not rule out optimality 

once we start grouping stuff…
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Huffman Coding Works (idea)
• To show that continue to not rule out optimality 

once we start grouping stuff…
• The basic idea is that we can treat the “groups” as 

leaves in a new alphabet.
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Huffman Coding Works (idea)
• To show that continue to not rule out optimality 

once we start grouping stuff…
• The basic idea is that we can treat the “groups” as 

leaves in a new alphabet.
• Then we can use the lemma from before.

D: 16 A: 45 B:13 F:5C:12 E:9
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• See lecture notes or CLRS!

For a full proof



What have we learned?

• ASCII isn’t an optimal way* to encode English, since 
the distribution on letters isn’t uniform.
• Huffman Coding is an optimal way!
• To come up with an optimal scheme for any 

language efficiently, we can use a greedy algorithm.

• To come up with a greedy algorithm:
• Identify optimal substructure
• Find a way to make choices that won’t rule out an 

optimal solution.
• Create subtrees out of the smallest two current subtrees.

*If all we care about is 
number of bits.
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Recap I

• Greedy algorithms!
• Three examples:
• Activity Selection
• Scheduling Jobs
• Huffman Coding

• If we had time
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Recap II

• Greedy algorithms!
• Often easy to write down
• But may be hard to come up with and hard to justify

• The natural greedy algorithm may not always be 
correct.
• A problem is a good candidate for a greedy 

algorithm if:
• it has optimal substructure
• that optimal substructure is REALLY NICE

• solutions depend on just one other sub-problem.
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Next time

• Greedy algorithms for Minimum Spanning Tree!

• Pre-lecture exercise: thinking about MSTs

Before next time
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