
Lecture 15
Minimum Spanning Trees

1



Last time

• Greedy algorithms
• Make a series of choices.

• Choose this activity, then that one, ..
• Never backtrack.

• Show that, at each step, your choice does not rule out 
success.
• At every step, there exists an optimal solution consistent with 

the choices we’ve made so far.
• At the end of the day:

• you’ve built only one solution, 
• never having ruled out success, 
• so your solution must be correct.
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Today

• Greedy algorithms for Minimum Spanning Tree.

• Agenda:
1. What is a Minimum Spanning Tree?
2. Short break to introduce some graph theory tools
3. Prim’s algorithm
4. Kruskal’s algorithm
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Minimum Spanning Tree
Say we have an undirected weighted graph
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A spanning tree is a tree that connects all of the vertices.

A tree is a 
connected graph 
with no cycles!
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For today, we will focus on 
connected graphs!  



Minimum Spanning Tree
Say we have an undirected weighted graph
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A spanning tree is a tree that connects all of the vertices.

A tree is a 
connected graph 
with no cycles!

This is a 
spanning tree.

The cost of a 
spanning tree is 
the sum of the 
weights on the 
edges.

It has cost 67
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A tree is a 
connected graph 
with no cycles!
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spanning tree.

It has cost 37
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Minimum Spanning Tree
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Minimum Spanning Tree
Say we have an undirected weighted graph
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A spanning tree is a tree that connects all of the vertices.

This is a minimum 
spanning tree.

It has cost 37

minimum of minimum cost
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Why MSTs?

• Network design
• Connecting cities with roads/electricity/telephone/…

• Cluster analysis
• E.g., genetic distance

• Image processing
• E.g., image segmentation

• Useful primitive 
• For other graph algs

Figure 2: Fully parsimonious minimal spanning tree of 933 SNPs for 282 isolates of Y. pestis colored by location.

Morelli et al. Nature genetics 2010
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How to find an MST?
• Today we’ll see two greedy algorithms.
• In order to prove that these greedy algorithms work, we’ll 

show something like:

Suppose that our choices so far 
are consistent with an MST.  

Then the next greedy choice that we make 
is still consistent with an MST.

• This is not the only way to prove that these algorithms 
work!
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Let’s brainstorm some greedy 
algorithms!
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Think-share!
(You already did the thinking, 
so go ahead and share).

Following your pre-lecture exercise…
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Brief aside
for a discussion of cuts in graphs!
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Cuts in graphs
• A cut is a partition of the vertices into two parts:

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

This is the cut “{A,B,D,E} and {C,I,H,G,F}”
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Cuts in graphs
• One or both of the two parts might be disconnected.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

This is the cut “{B,C,E,G,H} and {A,D,I,F}” 14



Cuts in graphs
• This is not a cut.  Cuts are partitions of vertices.
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Let S be a set of edges in G
• We say a cut respects S if no edges in S cross the cut.
• An edge crossing a cut is called light if it has the 

smallest weight of any edge crossing the cut. 
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S is the set of  thick orange edges 16



Let S be a set of edges in G
• We say a cut respects S if no edges in S cross the cut.
• An edge crossing a cut is called light if it has the 

smallest weight of any edge crossing the cut. 
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S is the set of  thick orange edges

This edge is light
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Lemma
• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let {u,v} be a light edge.
• Then there is an MST containing S ∪ {{u,v}} 
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This edge is light

18



Lemma
• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let {u,v} be a light edge.
• Then there is an MST containing S ∪ {{u,v}} 
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S is the set of  thick orange edges

It’s ”safe” to add this edge!Aka:

If we haven’t ruled 
out the possibility of 
success so far, then 
adding a light edge 
still won’t rule it out.

19



Proof of Lemma
• Assume that we have: 
• a cut that respects S
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Proof of Lemma
• Assume that we have: 
• a cut that respects S
• S is part of some MST T.

• Say that {u,v} is light.
• lowest cost crossing the cut
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Proof of Lemma
• Assume that we have: 
• a cut that respects S
• S is part of some MST T.

• Say that {u,v} is light.
• lowest cost crossing the cut

• If {u,v} is in T, we are done.
• T is an MST containing       

both {u,v} and S.

vu
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Proof of Lemma
• Assume that we have: 
• a cut that respects S
• S is part of some MST T.

• Say that {u,v} is light.
• lowest cost crossing the cut

• Say {u,v} is not in T.
• Note that adding           

{u,v} to T  will make a 
cycle.

u

v

Claim: Adding any additional edge to 
a spanning tree will create a cycle.

Proof: Both endpoints are already in 
the tree and connected to each other.
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Proof of Lemma
• Assume that we have: 
• a cut that respects S
• S is part of some MST T.

• Say that {u,v} is light.
• lowest cost crossing the cut

• Say {u,v} is not in T.
• Note that adding           

{u,v} to T  will make a 
cycle.
• There is at least one other 

edge, {x,y}, in this cycle 
crossing the cut. 

yx

u

v

Claim: Adding any additional edge to 
a spanning tree will create a cycle.

Proof: Both endpoints are already in 
the tree and connected to each other.
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Proof of Lemma ctd.
• Consider swapping {u,v} for {x,y} in T.
• Call the resulting tree T’.

yx

u

v
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• Claim: T’ is still an MST.
• It is still a spanning tree (why?)
• It has cost at most that of T 

• because {u,v} was light.
•  T had minimal cost.
• So T’ does too.

Proof of Lemma ctd.
• Consider swapping {u,v} for {x,y} in T.
• Call the resulting tree T’.

yx

u

v

• So T’ is an MST 
containing S and {u,v}.
• This is what we wanted.
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Lemma
• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let {u,v} be a light edge.
• Then there is an MST containing S ∪ {{u,v}} 
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S is the set of  thick orange edges

This edge is light
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End aside
Back to MSTs!
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Back to MSTs

• How do we find one?
• Today we’ll see two greedy algorithms.

• The strategy:
• Make a series of choices, adding edges to the tree.
• Show that each edge we add is safe to add:

• we do not rule out the possibility of success
• we will choose light edges crossing cuts and use the Lemma.

• Keep going until we have an MST.
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Idea 1
Start growing a tree, greedily add the shortest edge 
we can to grow the tree.
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Idea 1
Start growing a tree, greedily add the shortest edge 
we can to grow the tree.
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Idea 1
Start growing a tree, greedily add the shortest edge 
we can to grow the tree.
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Idea 1
Start growing a tree, greedily add the shortest edge 
we can to grow the tree.
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Idea 1
Start growing a tree, greedily add the shortest edge 
we can to grow the tree.
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Idea 1
Start growing a tree, greedily add the shortest edge 
we can to grow the tree.
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Idea 1
Start growing a tree, greedily add the shortest edge 
we can to grow the tree.
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Idea 1
Start growing a tree, greedily add the shortest edge 
we can to grow the tree.
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Idea 1
Start growing a tree, greedily add the shortest edge 
we can to grow the tree.
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We’ve discovered 

Prim’s algorithm!
• slowPrim( G = (V,E), starting vertex s ):
• MST = {}
• verticesVisited = { s }
• while |verticesVisited| < |V|:
• find the lightest edge {x,v} in E so that:
• x is in verticesVisited
• v is not in verticesVisited

• add {x,v} to MST
• add v to verticesVisited

• return MST
Naively, the running time is O(nm):
• For each of ≤n-1 iterations of the while loop:

• Go through all the edges.

At most n-1 
iterations of this 

while loop.

Time at most m to 
go through all the 
edges and find the 

lightest.

40

Jarnik [1930] 
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Two questions

1. Does it work?
• That is, does it actually return a MST?

2. How do we actually implement this?
• the pseudocode above says “slowPrim”…
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Does it work?

• We need to show that our greedy choices don’t 
rule out success.
• That is, at every step:
• If there exists an MST that contains all of the edges S we 

have added so far…
• …then when we make our next choice {u,v}, there is still 

an MST containing S and {u,v}.

• Now it is time to use our lemma!
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Lemma
• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let {u,v} be a light edge.
• Then there is an MST containing S ∪ {{u,v}} 
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S is the set of  thick orange edges

This edge is light
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Partway through Prim
• Assume that our choices S so far don’t rule out success
• There is an MST consistent with those choices
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edges selected so far.

How can we use our lemma to show that our 
next choice also does not rule out success?

Think-Share Terrapins
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Partway through Prim
• Assume that our choices S so far don’t rule out success
• There is an MST consistent with those choices

• Consider the cut {visited, unvisited}
• This cut respects S.
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Partway through Prim
• Assume that our choices S so far don’t rule out success
• There is an MST consistent with these choices

• Consider the cut {visited, unvisited}
• This cut respects S.

• The edge we add next is a light edge.
• Least weight of any edge crossing the cut.
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add this one next

• By the Lemma, that 
edge is safe to add.
• There is still an 

MST consistent 
with  the new 
set of edges.
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Hooray!

• Our greedy choices don’t rule out success.

• This is enough (along with an argument by 
induction) to guarantee correctness of Prim’s 
algorithm.
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Two questions

1. Does it work?
• That is, does it actually return a MST?

•Yes!

2. How do we actually implement this?
• the pseudocode above says “slowPrim”…
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How do we actually implement this? 

• Each vertex keeps:
• the (single-edge) distance from itself to the growing 

spanning tree
• how to get there.
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I’m 7 away.
C is the closest.

I can’t get to the 
tree in one edge

if you can get there in one edge.
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How do we actually implement this? 

• Each vertex keeps:
• the (single-edge) distance from itself to the growing 

spanning tree
• how to get there.

• Choose the closest vertex, add it.
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How do we actually implement this? 

• Each vertex keeps:
• the (single-edge) distance from itself to the growing 

spanning tree
• how to get there.

• Choose the closest vertex, add it.
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How do we actually implement this? 

• Each vertex keeps:
• the (single-edge) distance from itself to the growing 

spanning tree
• how to get there.

• Choose the closest vertex, add it.
• Update stored info.
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if you can get there in one edge.
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Efficient implementation
Every vertex has a key and a parent
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Can reach x
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a was the vertex that 
k[b] comes from.

Until all the vertices are reached:

∞

x
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min( k[v], weight(u,v) )
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST. 
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Until all the vertices are reached:
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Efficient implementation
Every vertex has a key and a parent
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Efficient implementation
Every vertex has a key and a parent
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• Mark u as reached, and add (p[u],u) to MST. 

x x is “active”
x Can reach x

a b p[b] = a, meaning that 
a was the vertex that 
k[b] comes from.

Until all the vertices are reached:

2

67



Efficient implementation
Every vertex has a key and a parent

27

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

7

10

4

84

0

k[x]

x

k[x] is the distance of x 
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min( k[v], weight(u,v) )
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST. 

x x is “active”
x Can reach x

a b p[b] = a, meaning that 
a was the vertex that 
k[b] comes from.

Until all the vertices are reached:
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Efficient implementation
Every vertex has a key and a parent
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from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min( k[v], weight(u,v) )
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST. 

x x is “active”
x Can reach x

a b p[b] = a, meaning that 
a was the vertex that 
k[b] comes from.

Until all the vertices are reached:
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Efficient implementation
Every vertex has a key and a parent
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k[x] is the distance of x 
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min( k[v], weight(u,v) )
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST. 

x x is “active”
x Can reach x

a b p[b] = a, meaning that 
a was the vertex that 
k[b] comes from.

Until all the vertices are reached:

2

etc.
70



This should look pretty familiar

• Very similar to Dijkstra’s algorithm!
• Differences:

1. Keep track of p[v] in order to return a tree at the end
• But Dijkstra’s can do that too, that’s not a big difference.

2. Instead of d[v] which we update by
• d[v] = min( d[v], d[u] + w(u,v) )

       we keep k[v] which we update by
• k[v] = min( k[v], w(u,v) )

• To see the difference, consider:

Thing 2 is the 

big difference.

U

S T
3

22
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One thing that is similar:
Running time
• Exactly the same as Dijkstra:
• O(mlog(n)) using a Red-Black tree as a priority queue.
• O(m + nlog(n)) amortized time if we use a Fibonacci Heap*.

*See CS166
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Two questions

1. Does it work?
• That is, does it actually return a MST?

•Yes!

2. How do we actually implement this?
• the pseudocode above says “slowPrim”…
• Implement it basically the same way 

we’d implement Dijkstra!
• See IPython notebook for an implementation.
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What have we learned?

• Prim’s algorithm greedily grows a tree
• smells a lot like Dijkstra’s algorithm

• It finds a Minimum Spanning Tree! 
• in time O(mlog(n)) if we implement it with a Red-Black Tree.
• In amortized time O(m + nlog(n)) with a Fibonacci heap.

• To prove it worked, we followed the same recipe for 
greedy algorithms we saw last time.
• Show that, at every step, we don’t rule out success.

74



That’s not the only greedy 
algorithm for MST!
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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!!!!!

That won’t 
cause a cycle
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
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We’ve discovered 
Kruskal’s algorithm!

• slowKruskal(G = (V,E)):
• Sort the edges in E by non-decreasing weight.
• MST = {}
• for e in E (in sorted order):
• if adding e to MST won’t cause a cycle:
• add e to MST.

• return MST

Naively, the running time is ???:
• For each of m iterations of the for loop:

• Check if adding e would cause a cycle…

m iterations through this loop

How do we check this?

How would you 
figure out if added e 
would make a cycle 
in this algorithm?
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Two questions

1. Does it work?
• That is, does it actually return a MST?

2. How do we actually implement this?
• the pseudocode above says “slowKruskal”…

Let’s do this 
one first
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A forest is a 
collection of 
disjoint trees

At each step of Kruskal’s, 
we are maintaining a forest.
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At each step of Kruskal’s, 
we are maintaining a forest.

A forest is a 
collection of 
disjoint trees

When we add an edge, we merge two trees:
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At each step of Kruskal’s, 
we are maintaining a forest.

A forest is a 
collection of 
disjoint trees

When we add an edge, we merge two trees:

We never add an edge within a tree since that would create a cycle.93



Keep the trees in a special data structure

“treehouse”?
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Union-find data structure
also called disjoint-set data structure

• Used for storing collections of sets
• Supports:
• makeSet(u): create a set {u}
• find(u): return the set that u is in
• union(u,v): merge the set that u is in with the set that v is in.

makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)

x
y

z
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Union-find data structure
also called disjoint-set data structure

• Used for storing collections of sets
• Supports:
• makeSet(u): create a set {u}
• find(u): return the set that u is in
• union(u,v): merge the set that u is in with the set that v is in.

makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)

x y

z
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Union-find data structure
also called disjoint-set data structure

• Used for storing collections of sets
• Supports:
• makeSet(u): create a set {u}
• find(u): return the set that u is in
• union(u,v): merge the set that u is in with the set that v is in.

makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)

find(x)

x y

z
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Kruskal pseudo-code

• kruskal(G = (V,E)):
• Sort E by weight in non-decreasing order
• MST = {}                                   // initialize an empty tree

• for v in V:
• makeSet(v)                               // put each vertex in its own tree in the forest

• for (u,v) in E:                           // go through the edges in sorted order

• if find(u) != find(v):         // if u and v are not in the same tree

• add (u,v) to MST
• union(u,v)                         // merge u’s tree with v’s tree

• return MST

98



Once more…
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To start, every vertex is in its own tree.
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Once more…
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Then start merging.
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Once more…
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Once more…
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Once more…
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Once more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Then start merging.

106



Once more…
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Then start merging.

Stop when we have one big tree!
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Running time
• Sorting the edges takes O(m log(n))
• In practice, if the weights are small integers we can use 

radixSort and take time O(m)
• For the rest:
• n calls to makeSet

• put each vertex in its own set
• 2m calls to find

• for each edge, find its endpoints
• n-1 calls to union

• we will never add more than n-1 edges to the tree,
• so we will never call union more than n-1 times.

• Total running time:
• Worst-case O(mlog(n)), just like Prim with a RBtree.
• Closer to O(m) if you can do radixSort

In practice, each of 
makeSet, find, and union 
run in ≈ constant time*
(There is a simpler way which 
does find and union in time 
O(log n)).

*technically, they run in amortized time O(𝛼(𝑛)), where 𝛼(𝑛) is the inverse Ackerman function. 
𝛼 𝑛 ≤ 4 provided that n is smaller than the number of atoms in the universe. 
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Two questions

1. Does it work?
• That is, does it actually return a MST?

2. How do we actually implement this?
• the pseudocode above says “slowKruskal”…
• Worst-case running time O(mlog(n)) using a 

union-find data structure.

Now that we 
understand this 
“tree-merging” view, 
let’s do this one.
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Does it work?

• We need to show that our greedy choices don’t 
rule out success.
• That is, at every step:
• There exists an MST that contains all of the edges we 

have added so far.

• Now it is time to use our lemma!
again!
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Lemma
• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let {u,v} be a light edge.
• Then there is an MST containing S ∪ {{u,v}} 
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S is the set of  thick orange edges

This edge is light
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Partway through Kruskal
• Assume that our choices S so far don’t rule out success.
• There is an MST extending them

• The next edge we add will merge two trees, T1, T2
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S is the set of 
edges selected so far. 112



Partway through Kruskal
• Assume that our choices S so far don’t rule out success.
• There is an MST extending them

• The next edge we add will merge two trees, T1, T2
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How can we use our lemma to 
show that our next choice also 

does not rule out success?
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Partway through Kruskal
• Assume that our choices S so far don’t rule out success.
• There is an MST extending them

• The next edge we add will merge two trees, T1, T2
• Consider the cut {T1, V – T1}.
• This cut respects S
• Our new edge is light for the cut
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Partway through Kruskal
• Assume that our choices S so far don’t rule out success.
• There is an MST extending them

• The next edge we add will merge two trees, T1, T2
• Consider the cut {T1, V – T1}.
• This cut respects S
• Our new edge is light for the cut
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S is the set of 
edges selected so far.

This is the 
next edge

• By the Lemma, that 
edge is safe to add.
• There is still an 

MST extending 
the new set
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Hooray!

• Our greedy choices don’t rule out success.

• This is enough (along with an argument by 
induction) to guarantee correctness of Kruskal’s 
algorithm.
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Two questions

1. Does it work?
• That is, does it actually return a MST?

•Yes

2. How do we actually implement this?
• the pseudocode above says “slowKruskal”…
• Using a union-find data structure!
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What have we learned?

• Kruskal’s algorithm greedily grows a forest
• It finds a Minimum Spanning Tree in time O(mlog(n)) 
• if we implement it with a Union-Find data structure
• if the edge weights are reasonably-sized integers and we ignore the inverse 

Ackerman function, basically O(m) in practice.

• To prove it worked, we followed the same recipe for 
greedy algorithms we saw last time.
• Show that, at every step, we don’t rule out success.
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Compare and contrast

• Prim:
• Grows a tree.
• Time O(mlog(n)) with a red-black tree
• Time O(m + nlog(n)) with a Fibonacci heap

• Kruskal:
• Grows a forest.
• Time O(mlog(n)) with a union-find data structure
• If you can do radixSort on the weights, morally “O(m)”

Prim might be a better idea 
on dense graphs if you can’t 

radixSort edge weights

Kruskal might be a better idea 
on sparse graphs if you can 

radixSort edge weights

120



Both Prim and Kruskal
• Greedy algorithms for MST.
• Similar reasoning:

• Optimal substructure: subgraphs generated by cuts.
• The way to make safe choices is to choose light edges 

crossing the cut.
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S is the set of  thick orange edges

This edge is light
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Can we do better?
State-of-the-art MST on connected undirected graphs

• Karger-Klein-Tarjan 1995: 
• O(m) time randomized algorithm

• Chazelle 2000:                  
• O(m⋅ 𝛼(𝑛)) time deterministic algorithm

• Pettie-Ramachandran 2002:

•  O

	

time deterministic algorithm
The optimal number of comparisons 

you need to solve the problem, 
whatever that is…

What is this number?
Do we need that silly 𝛼 𝑛 ?
Open questions!
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Recap

• Two algorithms for Minimum Spanning Tree
• Prim’s algorithm
• Kruskal’s algorithm

• Both are (more) examples of greedy algorithms!
• Make a series of choices.
• Show that at each step, your choice does not rule out 

success.
• At the end of the day, you haven’t ruled out success, so 

you must be successful.
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Next time

• Minimum cuts … and max flows!

• Pre-lecture exercise: routing on rickety bridges!
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Before next time


