
Lecture 15
Minimum Spanning Trees

1

Last time

• Greedy algorithms
• Make a series of choices.

• Choose this activity, then that one, ..
• Never backtrack.

• Show that, at each step, your choice does not rule out
success.
• At every step, there exists an optimal solution consistent with

the choices we’ve made so far.
• At the end of the day:

• you’ve built only one solution,
• never having ruled out success,
• so your solution must be correct.

2

Today

• Greedy algorithms for Minimum Spanning Tree.

• Agenda:
1. What is a Minimum Spanning Tree?
2. Short break to introduce some graph theory tools
3. Prim’s algorithm
4. Kruskal’s algorithm

3

Minimum Spanning Tree
Say we have an undirected weighted graph

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

A spanning tree is a tree that connects all of the vertices.

A tree is a
connected graph
with no cycles!

4

For today, we will focus on
connected graphs!

Minimum Spanning Tree
Say we have an undirected weighted graph

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

A spanning tree is a tree that connects all of the vertices.

A tree is a
connected graph
with no cycles!

This is a
spanning tree.

The cost of a
spanning tree is
the sum of the
weights on the
edges.

It has cost 67

5

Minimum Spanning Tree
Say we have an undirected weighted graph

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

A spanning tree is a tree that connects all of the vertices.

A tree is a
connected graph
with no cycles!

This is also a
spanning tree.

It has cost 37

6

Minimum Spanning Tree
Say we have an undirected weighted graph

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

A spanning tree is a tree that connects all of the vertices.
minimum of minimum cost

7

Minimum Spanning Tree
Say we have an undirected weighted graph

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

A spanning tree is a tree that connects all of the vertices.

This is a minimum
spanning tree.

It has cost 37

minimum of minimum cost

8

Why MSTs?

• Network design
• Connecting cities with roads/electricity/telephone/…

• Cluster analysis
• E.g., genetic distance

• Image processing
• E.g., image segmentation

• Useful primitive
• For other graph algs

Figure 2: Fully parsimonious minimal spanning tree of 933 SNPs for 282 isolates of Y. pestis colored by location.

Morelli et al. Nature genetics 2010
9

How to find an MST?
• Today we’ll see two greedy algorithms.
• In order to prove that these greedy algorithms work, we’ll

show something like:

Suppose that our choices so far
are consistent with an MST.

Then the next greedy choice that we make
is still consistent with an MST.

• This is not the only way to prove that these algorithms
work!

10

Let’s brainstorm some greedy
algorithms!

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Think-share!
(You already did the thinking,
so go ahead and share).

Following your pre-lecture exercise…

11

Brief aside
for a discussion of cuts in graphs!

12

Cuts in graphs
• A cut is a partition of the vertices into two parts:

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

This is the cut “{A,B,D,E} and {C,I,H,G,F}”
13

Cuts in graphs
• One or both of the two parts might be disconnected.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

This is the cut “{B,C,E,G,H} and {A,D,I,F}” 14

Cuts in graphs
• This is not a cut. Cuts are partitions of vertices.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

15

Let S be a set of edges in G
• We say a cut respects S if no edges in S cross the cut.
• An edge crossing a cut is called light if it has the

smallest weight of any edge crossing the cut.

DCB

A

H G F

I E

7
9

10

14
4

2

2

1

7 68

11

8

4

S is the set of thick orange edges 16

Let S be a set of edges in G
• We say a cut respects S if no edges in S cross the cut.
• An edge crossing a cut is called light if it has the

smallest weight of any edge crossing the cut.

DCB

A

H G F

I E

7
9

10

14
4

2

2

1

7 68

11

8

4

S is the set of thick orange edges

This edge is light

17

Lemma
• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let {u,v} be a light edge.
• Then there is an MST containing S ∪ {{u,v}}

DCB

A

H G F

I E

7
9

10

14
4

2

2

1
7 68

11

8

4

S is the set of thick orange edges

This edge is light

18

Lemma
• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let {u,v} be a light edge.
• Then there is an MST containing S ∪ {{u,v}}

DCB

A

H G F

I E

7
9

10

14
4

2

2

1
7 68

11

8

4

S is the set of thick orange edges

It’s ”safe” to add this edge!Aka:

If we haven’t ruled
out the possibility of
success so far, then
adding a light edge
still won’t rule it out.

19

Proof of Lemma
• Assume that we have:
• a cut that respects S

20

Proof of Lemma
• Assume that we have:
• a cut that respects S
• S is part of some MST T.

• Say that {u,v} is light.
• lowest cost crossing the cut

21

Proof of Lemma
• Assume that we have:
• a cut that respects S
• S is part of some MST T.

• Say that {u,v} is light.
• lowest cost crossing the cut

• If {u,v} is in T, we are done.
• T is an MST containing

both {u,v} and S.

vu

22

Proof of Lemma
• Assume that we have:
• a cut that respects S
• S is part of some MST T.

• Say that {u,v} is light.
• lowest cost crossing the cut

• Say {u,v} is not in T.
• Note that adding

{u,v} to T will make a
cycle.

u

v

Claim: Adding any additional edge to
a spanning tree will create a cycle.

Proof: Both endpoints are already in
the tree and connected to each other.

23

Proof of Lemma
• Assume that we have:
• a cut that respects S
• S is part of some MST T.

• Say that {u,v} is light.
• lowest cost crossing the cut

• Say {u,v} is not in T.
• Note that adding

{u,v} to T will make a
cycle.
• There is at least one other

edge, {x,y}, in this cycle
crossing the cut.

yx

u

v

Claim: Adding any additional edge to
a spanning tree will create a cycle.

Proof: Both endpoints are already in
the tree and connected to each other.

24

Proof of Lemma ctd.
• Consider swapping {u,v} for {x,y} in T.
• Call the resulting tree T’.

yx

u

v

25

• Claim: T’ is still an MST.
• It is still a spanning tree (why?)
• It has cost at most that of T

• because {u,v} was light.
• T had minimal cost.
• So T’ does too.

Proof of Lemma ctd.
• Consider swapping {u,v} for {x,y} in T.
• Call the resulting tree T’.

yx

u

v

• So T’ is an MST
containing S and {u,v}.
• This is what we wanted.

26

Lemma
• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let {u,v} be a light edge.
• Then there is an MST containing S ∪ {{u,v}}

DCB

A

H G F

I E

7
9

10

14
4

2

2

1
7 68

11

8

4

S is the set of thick orange edges

This edge is light

28

End aside
Back to MSTs!

29

Back to MSTs

• How do we find one?
• Today we’ll see two greedy algorithms.

• The strategy:
• Make a series of choices, adding edges to the tree.
• Show that each edge we add is safe to add:

• we do not rule out the possibility of success
• we will choose light edges crossing cuts and use the Lemma.

• Keep going until we have an MST.

30

Idea 1
Start growing a tree, greedily add the shortest edge
we can to grow the tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

31

Idea 1
Start growing a tree, greedily add the shortest edge
we can to grow the tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

32

Idea 1
Start growing a tree, greedily add the shortest edge
we can to grow the tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

33

Idea 1
Start growing a tree, greedily add the shortest edge
we can to grow the tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

34

Idea 1
Start growing a tree, greedily add the shortest edge
we can to grow the tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

35

Idea 1
Start growing a tree, greedily add the shortest edge
we can to grow the tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

36

Idea 1
Start growing a tree, greedily add the shortest edge
we can to grow the tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

37

Idea 1
Start growing a tree, greedily add the shortest edge
we can to grow the tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

38

Idea 1
Start growing a tree, greedily add the shortest edge
we can to grow the tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

39

We’ve discovered

Prim’s algorithm!
• slowPrim(G = (V,E), starting vertex s):
• MST = {}
• verticesVisited = { s }
• while |verticesVisited| < |V|:
• find the lightest edge {x,v} in E so that:
• x is in verticesVisited
• v is not in verticesVisited

• add {x,v} to MST
• add v to verticesVisited

• return MST
Naively, the running time is O(nm):
• For each of ≤n-1 iterations of the while loop:

• Go through all the edges.

At most n-1
iterations of this

while loop.

Time at most m to
go through all the
edges and find the

lightest.

40

Jarnik [1930]
Prim [1957]
Dijkstra [1959]

Two questions

1. Does it work?
• That is, does it actually return a MST?

2. How do we actually implement this?
• the pseudocode above says “slowPrim”…

41

Does it work?

• We need to show that our greedy choices don’t
rule out success.
• That is, at every step:
• If there exists an MST that contains all of the edges S we

have added so far…
• …then when we make our next choice {u,v}, there is still

an MST containing S and {u,v}.

• Now it is time to use our lemma!

42

Lemma
• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let {u,v} be a light edge.
• Then there is an MST containing S ∪ {{u,v}}

DCB

A

H G F

I E

7
9

10

14
4

2

2

1
7 68

11

8

4

S is the set of thick orange edges

This edge is light

43

Partway through Prim
• Assume that our choices S so far don’t rule out success
• There is an MST consistent with those choices

78
DCB

A

H G F

I E

9

10

14
4

2

2

1

7 68

11
4

S is the set of
edges selected so far.

How can we use our lemma to show that our
next choice also does not rule out success?

Think-Share Terrapins

44

Partway through Prim
• Assume that our choices S so far don’t rule out success
• There is an MST consistent with those choices

• Consider the cut {visited, unvisited}
• This cut respects S.

78
DCB

A

H G F

I E

9

10

14
4

2

2

1

7 68

11
4

S is the set of
edges selected so far.

45

Partway through Prim
• Assume that our choices S so far don’t rule out success
• There is an MST consistent with these choices

• Consider the cut {visited, unvisited}
• This cut respects S.

• The edge we add next is a light edge.
• Least weight of any edge crossing the cut.

78
DCB

A

H G F

I E

9

10

14
4

2

2

1

7 68

11
4

S is the set of
edges selected so far.

add this one next

• By the Lemma, that
edge is safe to add.
• There is still an

MST consistent
with the new
set of edges.

46

Hooray!

• Our greedy choices don’t rule out success.

• This is enough (along with an argument by
induction) to guarantee correctness of Prim’s
algorithm.

47

Two questions

1. Does it work?
• That is, does it actually return a MST?

•Yes!

2. How do we actually implement this?
• the pseudocode above says “slowPrim”…

49

How do we actually implement this?

• Each vertex keeps:
• the (single-edge) distance from itself to the growing

spanning tree
• how to get there.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

I’m 7 away.
C is the closest.

I can’t get to the
tree in one edge

if you can get there in one edge.

50

How do we actually implement this?

• Each vertex keeps:
• the (single-edge) distance from itself to the growing

spanning tree
• how to get there.

• Choose the closest vertex, add it.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

I’m 7 away.
C is the closest.

I can’t get to the
tree in one edge

if you can get there in one edge.

51

How do we actually implement this?

• Each vertex keeps:
• the (single-edge) distance from itself to the growing

spanning tree
• how to get there.

• Choose the closest vertex, add it.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

I’m 7 away.
C is the closest.

I can’t get to the
tree in one edge

if you can get there in one edge.

52

How do we actually implement this?

• Each vertex keeps:
• the (single-edge) distance from itself to the growing

spanning tree
• how to get there.

• Choose the closest vertex, add it.
• Update stored info.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

I’m 7 away.
C is the closest.

I’m 10 away. F is
the closest.

if you can get there in one edge.

53

Efficient implementation
Every vertex has a key and a parent

∞∞

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

∞

∞

∞

∞∞

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet
x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

∞

x
x

54

Efficient implementation
Every vertex has a key and a parent

∞∞

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

∞

∞

∞

∞∞

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.

x x is “active”
x Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

∞

55

Efficient implementation
Every vertex has a key and a parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

∞

∞

∞

∞4

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

∞

x
x

56

Efficient implementation
Every vertex has a key and a parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

∞

∞

∞

∞4

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

∞

x
x

57

Efficient implementation
Every vertex has a key and a parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

∞

∞

∞

∞4

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

∞

x
x

58

Efficient implementation
Every vertex has a key and a parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

∞

∞

∞

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

∞

x
x

59

Efficient implementation
Every vertex has a key and a parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

∞

∞

∞

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

∞

x
x

60

Efficient implementation
Every vertex has a key and a parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

∞

∞

∞

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

∞

x
x

61

Efficient implementation
Every vertex has a key and a parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

7

∞

4

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

2

x
x

62

Efficient implementation
Every vertex has a key and a parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

7

∞

4

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

2

x
x

63

Efficient implementation
Every vertex has a key and a parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

7

∞

4

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

2

x
x

64

Efficient implementation
Every vertex has a key and a parent

67

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

7

∞

4

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x is “active”
Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

2

x
x

65

Efficient implementation
Every vertex has a key and a parent

67

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

7

∞

4

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x x is “active”
x Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

2

66

Efficient implementation
Every vertex has a key and a parent

67

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

7

∞

4

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x x is “active”
x Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

2

67

Efficient implementation
Every vertex has a key and a parent

27

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

7

10

4

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x x is “active”
x Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

2

68

Efficient implementation
Every vertex has a key and a parent

27

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

7

10

4

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x x is “active”
x Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

2

69

Efficient implementation
Every vertex has a key and a parent

27

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

7

10

4

84

0

k[x]

x

k[x] is the distance of x
from the growing tree

Can’t reach x yet

• Activate the unreached vertex u with the smallest key.
• for each of u’s unreached neighbors v:

• k[v] = min(k[v], weight(u,v))
• if k[v] updated, p[v] = u

• Mark u as reached, and add (p[u],u) to MST.

x x is “active”
x Can reach x

a b p[b] = a, meaning that
a was the vertex that
k[b] comes from.

Until all the vertices are reached:

2

etc.
70

This should look pretty familiar

• Very similar to Dijkstra’s algorithm!
• Differences:

1. Keep track of p[v] in order to return a tree at the end
• But Dijkstra’s can do that too, that’s not a big difference.

2. Instead of d[v] which we update by
• d[v] = min(d[v], d[u] + w(u,v))

 we keep k[v] which we update by
• k[v] = min(k[v], w(u,v))

• To see the difference, consider:

Thing 2 is the

big difference.

U

S T
3

22

71

One thing that is similar:
Running time
• Exactly the same as Dijkstra:
• O(mlog(n)) using a Red-Black tree as a priority queue.
• O(m + nlog(n)) amortized time if we use a Fibonacci Heap*.

*See CS166
72

Two questions

1. Does it work?
• That is, does it actually return a MST?

•Yes!

2. How do we actually implement this?
• the pseudocode above says “slowPrim”…
• Implement it basically the same way

we’d implement Dijkstra!
• See IPython notebook for an implementation.

73

What have we learned?

• Prim’s algorithm greedily grows a tree
• smells a lot like Dijkstra’s algorithm

• It finds a Minimum Spanning Tree!
• in time O(mlog(n)) if we implement it with a Red-Black Tree.
• In amortized time O(m + nlog(n)) with a Fibonacci heap.

• To prove it worked, we followed the same recipe for
greedy algorithms we saw last time.
• Show that, at every step, we don’t rule out success.

74

That’s not the only greedy
algorithm for MST!

75

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

76

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

77

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

78

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

79

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

80

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

81

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

!!!!!

That won’t
cause a cycle

82

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

That won’t
cause a cycle

83

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

That won’t
cause a cycle

84

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

That won’t
cause a cycle

85

That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

That won’t
cause a cycle

86

We’ve discovered
Kruskal’s algorithm!

• slowKruskal(G = (V,E)):
• Sort the edges in E by non-decreasing weight.
• MST = {}
• for e in E (in sorted order):
• if adding e to MST won’t cause a cycle:
• add e to MST.

• return MST

Naively, the running time is ???:
• For each of m iterations of the for loop:

• Check if adding e would cause a cycle…

m iterations through this loop

How do we check this?

How would you
figure out if added e
would make a cycle
in this algorithm?

87

Two questions

1. Does it work?
• That is, does it actually return a MST?

2. How do we actually implement this?
• the pseudocode above says “slowKruskal”…

Let’s do this
one first

88

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

A forest is a
collection of
disjoint trees

At each step of Kruskal’s,
we are maintaining a forest.

89

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

A forest is a
collection of
disjoint trees

At each step of Kruskal’s,
we are maintaining a forest.

90

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

At each step of Kruskal’s,
we are maintaining a forest.

A forest is a
collection of
disjoint trees

When we add an edge, we merge two trees:

91

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

At each step of Kruskal’s,
we are maintaining a forest.

A forest is a
collection of
disjoint trees

When we add an edge, we merge two trees:

92

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

At each step of Kruskal’s,
we are maintaining a forest.

A forest is a
collection of
disjoint trees

When we add an edge, we merge two trees:

We never add an edge within a tree since that would create a cycle.93

Keep the trees in a special data structure

“treehouse”?

94

Union-find data structure
also called disjoint-set data structure

• Used for storing collections of sets
• Supports:
• makeSet(u): create a set {u}
• find(u): return the set that u is in
• union(u,v): merge the set that u is in with the set that v is in.

makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)

x
y

z
95

Union-find data structure
also called disjoint-set data structure

• Used for storing collections of sets
• Supports:
• makeSet(u): create a set {u}
• find(u): return the set that u is in
• union(u,v): merge the set that u is in with the set that v is in.

makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)

x y

z
96

Union-find data structure
also called disjoint-set data structure

• Used for storing collections of sets
• Supports:
• makeSet(u): create a set {u}
• find(u): return the set that u is in
• union(u,v): merge the set that u is in with the set that v is in.

makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)

find(x)

x y

z
97

Kruskal pseudo-code

• kruskal(G = (V,E)):
• Sort E by weight in non-decreasing order
• MST = {} // initialize an empty tree

• for v in V:
• makeSet(v) // put each vertex in its own tree in the forest

• for (u,v) in E: // go through the edges in sorted order

• if find(u) != find(v): // if u and v are not in the same tree

• add (u,v) to MST
• union(u,v) // merge u’s tree with v’s tree

• return MST

98

Once more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

To start, every vertex is in its own tree.

99

Once more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Then start merging.

100

Once more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Then start merging.

101

Once more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Then start merging.

102

Once more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Then start merging.

103

Once more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Then start merging.

104

Once more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Then start merging.

105

Once more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Then start merging.

106

Once more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Then start merging.

Stop when we have one big tree!

107

Running time
• Sorting the edges takes O(m log(n))
• In practice, if the weights are small integers we can use

radixSort and take time O(m)
• For the rest:
• n calls to makeSet

• put each vertex in its own set
• 2m calls to find

• for each edge, find its endpoints
• n-1 calls to union

• we will never add more than n-1 edges to the tree,
• so we will never call union more than n-1 times.

• Total running time:
• Worst-case O(mlog(n)), just like Prim with a RBtree.
• Closer to O(m) if you can do radixSort

In practice, each of
makeSet, find, and union
run in ≈ constant time*
(There is a simpler way which
does find and union in time
O(log n)).

*technically, they run in amortized time O(𝛼(𝑛)), where 𝛼(𝑛) is the inverse Ackerman function.
𝛼 𝑛 ≤ 4 provided that n is smaller than the number of atoms in the universe.

108

Two questions

1. Does it work?
• That is, does it actually return a MST?

2. How do we actually implement this?
• the pseudocode above says “slowKruskal”…
• Worst-case running time O(mlog(n)) using a

union-find data structure.

Now that we
understand this
“tree-merging” view,
let’s do this one.

109

Does it work?

• We need to show that our greedy choices don’t
rule out success.
• That is, at every step:
• There exists an MST that contains all of the edges we

have added so far.

• Now it is time to use our lemma!
again!

110

Lemma
• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let {u,v} be a light edge.
• Then there is an MST containing S ∪ {{u,v}}

DCB

A

H G F

I E

7
9

10

14
4

2

2

1
7 68

11

8

4

S is the set of thick orange edges

This edge is light

111

Partway through Kruskal
• Assume that our choices S so far don’t rule out success.
• There is an MST extending them

• The next edge we add will merge two trees, T1, T2

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

S is the set of
edges selected so far. 112

Partway through Kruskal
• Assume that our choices S so far don’t rule out success.
• There is an MST extending them

• The next edge we add will merge two trees, T1, T2

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

S is the set of
edges selected so far.

This is the
next edge

113

How can we use our lemma to
show that our next choice also

does not rule out success?

Think-Share Terrapins

Partway through Kruskal
• Assume that our choices S so far don’t rule out success.
• There is an MST extending them

• The next edge we add will merge two trees, T1, T2
• Consider the cut {T1, V – T1}.
• This cut respects S
• Our new edge is light for the cut

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

S is the set of
edges selected so far.

This is the
next edge

114

Partway through Kruskal
• Assume that our choices S so far don’t rule out success.
• There is an MST extending them

• The next edge we add will merge two trees, T1, T2
• Consider the cut {T1, V – T1}.
• This cut respects S
• Our new edge is light for the cut

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

S is the set of
edges selected so far.

This is the
next edge

• By the Lemma, that
edge is safe to add.
• There is still an

MST extending
the new set

115

Hooray!

• Our greedy choices don’t rule out success.

• This is enough (along with an argument by
induction) to guarantee correctness of Kruskal’s
algorithm.

116

Two questions

1. Does it work?
• That is, does it actually return a MST?

•Yes

2. How do we actually implement this?
• the pseudocode above says “slowKruskal”…
• Using a union-find data structure!

118

What have we learned?

• Kruskal’s algorithm greedily grows a forest
• It finds a Minimum Spanning Tree in time O(mlog(n))
• if we implement it with a Union-Find data structure
• if the edge weights are reasonably-sized integers and we ignore the inverse

Ackerman function, basically O(m) in practice.

• To prove it worked, we followed the same recipe for
greedy algorithms we saw last time.
• Show that, at every step, we don’t rule out success.

119

Compare and contrast

• Prim:
• Grows a tree.
• Time O(mlog(n)) with a red-black tree
• Time O(m + nlog(n)) with a Fibonacci heap

• Kruskal:
• Grows a forest.
• Time O(mlog(n)) with a union-find data structure
• If you can do radixSort on the weights, morally “O(m)”

Prim might be a better idea
on dense graphs if you can’t

radixSort edge weights

Kruskal might be a better idea
on sparse graphs if you can

radixSort edge weights

120

Both Prim and Kruskal
• Greedy algorithms for MST.
• Similar reasoning:

• Optimal substructure: subgraphs generated by cuts.
• The way to make safe choices is to choose light edges

crossing the cut.

DCB

A

H G F

I E

7
9

10

14
4

2

2

1
7 68

11

8

4

S is the set of thick orange edges

This edge is light

121

Can we do better?
State-of-the-art MST on connected undirected graphs

• Karger-Klein-Tarjan 1995:
• O(m) time randomized algorithm

• Chazelle 2000:
• O(m⋅ 𝛼(𝑛)) time deterministic algorithm

• Pettie-Ramachandran 2002:

• O

	

time deterministic algorithm
The optimal number of comparisons

you need to solve the problem,
whatever that is…

What is this number?
Do we need that silly 𝛼 𝑛 ?
Open questions!

122

Recap

• Two algorithms for Minimum Spanning Tree
• Prim’s algorithm
• Kruskal’s algorithm

• Both are (more) examples of greedy algorithms!
• Make a series of choices.
• Show that at each step, your choice does not rule out

success.
• At the end of the day, you haven’t ruled out success, so

you must be successful.

123

Next time

• Minimum cuts … and max flows!

• Pre-lecture exercise: routing on rickety bridges!

124

Before next time

