Lecture 18

what we've done and what's to come

Announcements

- HW8 (last one) due today
- Don't forget about the final exam on March 18 (from 3:30pm-6:30pm).
- Two pages of notes (front and back) allowed for the final exam.

Today

- What just happened?
- A whirlwind tour of CS161
- What's next?
- A few gems from future algorithms classes

It's been a fun ride...

What have we learned?

17 lectures in 12 slides.

General approach to algorithm design and analysis

Can I do better?

Algorithm designer

To answer this question we need both rigor and intuition:

Plucky the Pedantic Penguin Lackadaisical Lemur

Detail-oriented Precise
Rigorous

Lucky the

Big-picture Intuitive
Hand-wavey

We needed more details

Worst-case analysis
big-Oh notation

Here is An INPUT!

Algorithm design paradigm: divide and conquer

- Like MergeSort!
- Or Karatsuba's algorithm!
- Or SELECT!
- How do we analyze these?

By careful analysis!

Plucky the Pedantic Penguin

Useful shortcut, the master method is.

While we're on the topic of sorting Why not use randomness?

- We analyzed QuickSort!
- Still worst-case input, but we use randomness after the input is chosen.
- Always correct, usually fast.
- This is a Las Vegas algorithm

All this sorting is making me wonder...

 Can we do better?- Depends on who you ask:

- RadixSort takes time O(n) if the objects are, for example, small integers!
- Can't do better in a comparison-based model.

beyond sorted arrays/linked lists: Binary Search Trees!

- Useful data structure!
- Especially the self-balancing ones!

Red-Black tree!

Maintain balance by stipulating that black nodes are balanced, and that there aren't too many red nodes.

Another way to store things

 Hash tables!

Choose h randomly from a universal hash family.

It's better if the hash family is small! Then it takes less space to store h.

Some buckets

OMG GRAPHS

- BFS, DFS, and applications!
- SCCs, Topological sorting, ...

A fundamental graph problem: shortest paths

- E.g., transit planning, packet routing, ...
- Dijkstra!
- Bellman-Ford!
- Floyd-Warshall!

DN0a22a0e3:~ mary§ traceroute -a www.ethz.ch
traceroute to www.ethz.ch (129.132.19.216), 64 hops max, 52 byte packets
1 [AS0] 10.34.160.2 (10.34.160.2) 38.168 ms 31.272 ms 28.841 ms
2 [AS0] cwa-vrtr.sunet (10.21.196.28) 33.769 ms 28.245 ms 24.373 ms
3 [AS32] 171.66.2.229 (171.66.2.229) 24.468 ms 20.115 ms 23.223 ms
4 [AS32] hpr-svl-rtr-vlan8.sunet (171.64.255.235) $24.644 \mathrm{~ms} \quad 24.962 \mathrm{~ms} \quad 17.453 \mathrm{~ms}$
5 [AS2152] hpr-svl-hpr2--stan-ge.cenic.net (137.164.27.161) 22.129 ms 4.902 ms 3.642 ms
6 [AS2152] hpr-lax-hpr3--svl-hpr3-100ge.cenic.net (137.164.25.73) 12.125 ms 43.361 ms 32.
7 [AS2152] hpr-i2--lax-hpr2-r\&e.cenic.net (137.164.26.201) $40.174 \mathrm{~ms} \quad 38.399 \mathrm{~ms} 34.499 \mathrm{~ms}$
8 [AS0] et-4-0-0.4079.sdn-sw.lasv.net.internet2.edu (162.252.70.28) 46.573 ms 23.926 ms
9 [AS0] et-5-1-0.4079.rtsw.salt.net.internet2. edu (162.252.70.31) $30.424 \mathrm{~ms} \quad 25.770 \mathrm{~ms} \quad 23.1$
10 [AS0] et-4-0-0.4079.sdn-sw.denv.net.internet2. edu (162.252.70.8) $\quad 47.454 \mathrm{~ms} \quad 57.273 \mathrm{~ms} \quad 73$.
12 [AS0] et-4-1-0.4070.rtsw.chic.net.internet2.edu (198.71.47.206) $77.937 \mathrm{~ms} \quad 57.421 \mathrm{~ms} \quad 63.6$
[AS0] et-0-1-0.4079.sdn-sw.ashb.net.internet2.edu (162.252.70.60) $77.682 \mathrm{~ms} \quad 71.993 \mathrm{~ms} \quad 73$
$\begin{array}{llllll}14 & \text { [AS0] et-4-1-0.4079.rtsw.wash. net.internet2. edu } & (162.252 .70 .65) & 71.565 \mathrm{~ms} & 74.988 \mathrm{~ms} & 71.6 \\ 15 & \text { [AS21320] internet2-gw.mx1.lon.uk.geant.net }(62.40 .124 .44) & 154.926 \mathrm{~ms} & 145.606 \mathrm{~ms} & 145.872\end{array}$ [AS21320] ae0.mx1.lon2.uk.geant.net (62.40 .98 .79) $146.565 \mathrm{~ms} \quad 146.604 \mathrm{~ms} \quad 146.801 \mathrm{~ms}$
[AS21320] ae0.mx1.par.fr.geant.net (62.40.98.77) $153.289 \mathrm{~ms} \quad 184.995 \mathrm{~ms} \quad 152.682 \mathrm{~ms}$
18 [AS21320] ae2.mx1.gen.ch.geant.net (62.40.98.153) $160.283 \mathrm{~ms} \quad 160.104 \mathrm{~ms} 164.147 \mathrm{~ms}$
19 [AS21320] swice1-100ge-0-3-0-1.switch.ch (62.40.124.22) 162.068 ms 160.595 ms 163.095 ms
20 [AS559] swizh1-100ge-0-1-0-1.switch.ch (130.59.36.94) $\quad 165.824 \mathrm{~ms} \quad 164.216 \mathrm{~ms} \quad 163.983 \mathrm{~ms}$
21 [AS559] swiez3-100ge-0-1-0-4.switch.ch (130.59.38.109) $164.269 \mathrm{~ms} \quad 164.3701 \mathrm{~ms} \quad 163.929 \mathrm{~ms}$
[AS559] rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) $164.082 \mathrm{~ms} \quad 170.645 \mathrm{~ms} \quad 165.372$
23 [AS559] rou-fw-rz-rz-gw.ethz,ch (192.33.92.169) $164.773 \mathrm{~ms} \quad 165.193 \mathrm{~ms} \quad 172.158 \mathrm{~ms}$

Bellman-Ford and Floyd-Warshall
 Dynamic were examples of...
 Programming!

- Not programming in an action movie.

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Steps 3-5: Use dynamic programming: fill in a table to find the answer!

Instead, an algorithmic paradigm!

Big
problem

Sometimes we can take even better advantage of optimal substructure...with

 Greedy algorithms

 Greedy algorithms}

- Make a series of choices, and commit!
- Intuitively we want to show that our greedy choices never rule out success.
- Rigorously, we usually analyzed these by induction.
- Examples!
- Activity Selection
- Job Scheduling
- Huffman Coding
- Minimum Spanning Trees

Cuts and flows

- Minimum s-t cut:

- is the same as maximum s-t flow!
- Ford-Fulkerson can find them!
- useful for routing
- also assignment problems

Stable matching

How to convince actors to use our matching?
Where do preferences come from?
Are the incentives set correctly?

And now we're here

What have we learned?

- A few algorithm design paradigms:
- Divide and conquer, dynamic programming, greedy
- A few analysis tools:
- Worst-case analysis, asymptotic analysis, recurrence relations, probability tricks, proofs by induction
- A few common objects:
- Graphs, arrays, trees, hash functions
- A LOT of examples!

What have we learned? We've filled out a toolbox

- Tons of examples give us intuition about what algorithmic techniques might work when.
- The technical skills make sure our intuition works out.

But there's lots more out there

A taste of what's to come

- CS154 - Introduction to Automata and Complexity
- CS163 - The Practice of Theory Research
- CS166 - Data Structures
- CS168 - The Modern Algorithmic Toolbox
- MS\&E 212 - Combinatorial Optimization
- CS250 - Error Correcting Codes
- CS252 - Analysis of Boolean Functions
- CS254 - Computational Complexity
- CS255 - Introduction to Cryptography
- CS259Q - Quantum Computing
- CS260 - Geometry of Polynomials in Algorithm Design
- CS261 - Optimization and Algorithmic Paradigms
- CS263 - Counting and Sampling
- CS265 - Randomized Algorithms
- CS2690 - Introduction to Optimization Theory
- MS\&E 316 - Discrete Mathematics and Algorithms
- CS352 - Pseudorandomness
- CS366 - Computational Social Choice
- CS368 - Algorithmic Techniques for Big Data
- EE364A/B - Convex Optimization I and II

findSomeTheoryCourses():

- go to theory.stanford.edu
- Click on "People"
- Look at what we're teaching!

Today
 A few gems

- Linear programming

This will be fluffy, without much detail take more CS theory classes for more detail!

- Low-degree polynomials

Linear Programming

- This is a fancy name for optimizing a linear function subject to linear constraints.
- For example:

Maximize $x+y$
subject to

- It turns out to be an extremely general problem.

We've already seen an example!

- None of the flows

Maximize the sum of the flows leaving s are bigger than the edge capacities

- At every vertex, stuff going in = stuff going out.

Linear Programming

Has a really nice geometric intuition

$$
x+y
$$

subject to
$x \geq 0$
$y \geq 0$
$4 x+y \leq 2$ $x+2 y \leq 1$

Linear Programming

Has a really nice geometric intuition

In general

- The constraints define a polytope
- The function defines a direction
- We just want to find the vertex that is furthest in that direction.

Duality
 How do we know we have an optimal solution?

I claim that the optimum is 5/7.
Proof: say x and y satisfy the constraints.

- $x+y=\frac{1}{7}(4 x+y)+\frac{3}{7}(x+2 y)$
- $\quad \leq \frac{1}{7} \cdot \mathbf{2}+\frac{3}{7} \cdot \mathbf{1}$

$$
=\frac{5}{7}
$$

You can check this point has value $5 / 7$...but how would we prove it's optimal other than by eyeballing it?

$$
\begin{gathered}
x \geq 0 \\
y \geq 0 \\
4 x+y \leq 2 \\
x+2 y \leq 1
\end{gathered}
$$

cute, but

How did you come up with 1/7, 3/7?
I claim that the optimum is 5/7.
Proof: say x and y satisfy the constraints.

- $x+y \leq(4 x+y)+(x+2 y)$
- I want to choose things to put here
- So that I minimize this

Subject to these things
Maximize

Note: it’s not immediately obvious how to turn that into a linear program, this is just meant to convince you that it's plausible.

That's a linear program!

In this case the dual is: $\min 2 w+z$ s.t. $w, z \geq 0$, $4 w+z \geq 1$ and $w+2 z \geq 1$

- How did I find those special values $1 / 7,3 / 7$?
- I solved some linear program. Minimize the upper bound you get, subject to the proof working.

Maximize stuff subject to stuff

Primal

Minimize other stuff subject to other stuff

Dual

We've actually already seen this too The Min-Cut Max-Flow Theorem!

Maximize the sum of the flows leaving s s.t

All the flow constraints are

Dual

LPs and Duality are really powerful

- This general phenomenon shows up all over the place
- Min-Cut Max-Flow is a special case.
- Duality helps us reason about an optimization problem
- The dual provides a certificate that we've solved the primal.
- E.g., if you have a cut and a flow with the same value, you must have found a max flow and a min cut.
- We can solve LPs quickly!
- For example, by intelligently bouncing around the vertices of the feasible region.
- This is an extremely powerful algorithmic primitive.

Today
 A few gems

- Linear programming
- Random projections
- Low-degree polynomials

A very useful trick

Take a random projection and hope for the best.

Why would we do this?

- High dimensional data takes a long time to process.
- Low dimensional data can be processed quickly.
- "THEOREM": Random projections approximately preserve properties of data that you care about.

Example: nearest neighbors

- I want to find which point is closest to this one.

Another example:
 Compressed Sensing

- Start with a sparse vector
- Mostly zero or close to zero
$(5,0,0,0,0,0.01,0.01,5.8,32,14,0,0,0,12,0,0,5,0, .03)$
- For example:

This image is sparse

This image is sparse after I take a wavelet transform.

Compressed sensing continued

- Take a random projection of that sparse vector:

Why would I want to do that?

- Image compression and signal processing
- Especially when you never have space to store the whole sparse vector to begin with.

Randomly sampling (in the time domain) a signal that is sparse in the Fourier domain.

Random measurements in an fMRI means you spend less time inside an fMRI

A "single pixel camera" is a thing.

All examples of this:

But why should this be possible?

- There are tons of long vectors that map to the short vector!

Random short fat matrix

Goal: Given the short vector, recover the long sparse vector.

Long sparse vector

Back to the geometry

Theorem:
random projections preserve the geometry of sparse vectors too.

If we don't care about algorithms,

that's more than enough.

All of the sparse

Multiply by
Random short fat matrix

This means that, in theory,

There may be tons of vectors that map to this point, but only one of them is sparse! we can invert that arrow.

How do we do this efficiently??

Goal: Given the short vector, recover the long sparse vector.

An efficient algorithm?

What we'd like to do is:

Minimize number of nonzero entries in x

This norm is the sum
of the absolute values of the entries of x Instead:

$$
\text { Minimize }\|x\|_{1} \quad \text { s.t } \quad A x=y
$$

- It turns out that because the geometry of sparse vectors is preserved, this optimization problem gives the same answer.
- We can use linear programming to solve this quickly!

Today
 A few gems

- Linear programming

- Random projections
- Low-degree polynomials

Another very useful trick Polynomial interpolation

- Say we have a few evaluation points of a low-degree polynomial.
- We can recover the polynomial.
- 2 pts determine a line, 3 pts determine a parabola, etc.
- We can recover the whole polynomial really fast.
- Even works if some of the points are wrong.

One application:
 Communication and Storage

- Alice wants to send a message to Bob
"Hi, Bob!"

$$
f(x)=\boldsymbol{H}+\boldsymbol{I} \cdot x+\boldsymbol{B} \cdot x^{2}+\boldsymbol{O} \cdot x^{3}+\boldsymbol{B} \cdot x^{4}
$$

Bob can do super-fast polynomial interpolation and figure out what Alice meant to say!

This is used in practice

- It's called "Reed-Solomon Encoding"

Another application:
 Designing "random" projections that are better than random

The matrix that treats the big long vector as Alice's message polynomial and evaluates it REALLY FAST at random points.

- This is still "random enough" to make the LP solution work.
- It is much more efficient to manipulate and store!

To learn more:

CS168, CS261, ...

CS168, CS261, CS265, ...

CS168, CS250, ...

What have we learned?

Tons more cool algorithms stuff!

To see more...

- Take more classes!
- Come hang out with the theory group!
- Theory lunch, most Thursdays at noon.
- Join the theory-seminar mailing list for updates.
theory.stanford.edu
Stanford theory group (circa 2017): We are very friendly.

A few final messages...

Thanks to our course coordinator Amelie Byun!

- Amelie has been making all the logistics work behind the scenes.

Thanks to Dan Webber!

- Dan has been helping integrate EthiCS components into the course.

Thanks to our superstar CAs!!! tell them you appreciate them!

