
CS 161 (Stanford, Winter 2024) Lecture 3
Pre-lecture exercises will not be collected for credit. However, you will get more out of
each lecture if you do them, and they will be referenced during the lecture. We recommend
writing out your answers to pre-lecture exercises before class. Pre-lecture exercises usually
should not take you more than 30 minutes.

Pre-Lecture Exercises
In this pre-lecture exercise, you’ll explore recurrence relations. A recurrence relation defines a
function T (n) recursively. For example, for n = 2i which is a power of 2, we might define:

T (n) =

{
2 · T (n/2) + n n > 1

T (n) = 1 n = 1
.

Why is a function like this relevant to us? It turns out that it is a good way to write down the
running time of divide-and-conquer algorithms. For example, we saw with MergeSort that
we broke up one problem of size n into two problems of size n/2; and then it took us an
extra O(n) operations to merge the solutions. Let’s say for concreteness that it takes 11n
operations, where the 11 is arbitrary. So if T̃ (n) is the number of operations it takes to run
MergeSort on a list of size n, we could write something like

T̃ (n) = 2T̃ (n/2) + 11 · n,

which is similar to the function T (n) above. The way to interpret the base case T (1) = 1
is that it takes one operation to sort a list of length 1 since we just return it; it’s already
sorted. We saw in class that T̃ (n) = O(n log(n)). That is, the running time of MergeSort is
O(n log(n)).

Exercise 1

The first problem in the pre-lecture exercise is to understand the above text and make sure
you understand the connection between the function T̃ (n) defined above to the running time
of MergeSort.

For the rest of the pre-lecture exercise, you’ll see if you can generalize the argument that we
saw in class to different recurrence relations. For reference, on the next page we’ve shown
two different ways of showing that T (n) = O(n log(n)). (We went with T (n) instead of
T̃ (n) because it’s a little bit cleaner to write down without carrying that factor of “11” around
everywhere, and the point still gets across.) If you found the tree method confusing, you
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might like the second method which just uses algebra.

Exercise 2

Now try to generalize the argument for T (n) to the following two recurrence relations. That
is, for each of T1(n) and T2(n) below, figure out an expression of the form Tj(n) = O(·).
Assume that n is a power of 2 if it helps.

• T1(n) =

{
T1(n/2) + n n > 1

T1(n) = 1 n = 1
. • T2(n) =

{
4 · T2(n/2) + n n > 1

T2(n) = 1 n = 1
.
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Here are two different ways to understand the running time of T (n), when n is a power
of 2:

SOLUTION 1. Just like we did in class, imagine a tree with log(n)+ 1 levels. The top node
is labeled “n", its two children are labeled “n/2", and so on.

n

n/2 n/2

n/4 n/4 n/4 n/4

. . . etc.

Consider T (n) = T (n/2) + T (n/2) + n. In the context of the tree above, that means that
T (n) = n + (stuff contributed by things in the tree lower than the root). That is,

T (n) = (label on the root)+ (stuff contributed by things lower than the root).

We can repeat this logic recursively to figure out what that second term is, all the way down
to the bottom of the tree, where we have T (1) = 1. We conclude that each node in the tree
that’s labeled k contributes k to the sum.1 Now we add everything up:

• The zeroth layer contributes n, since there is one problem of size n, which contributes n.

• The first layer also contributes n, since there are two problems of size n/2, each of
which contributes n/2.

• · · ·

• The t’th layer also contributes n, since there are 2t problems of size n/2t , each of which
contributes n/2t .

• · · ·

• The log(n)th layer (which is the bottom one) also contributes n, since there are n
problems of size 1, each of which (by the base case T (1) = 1) contributes 1.

Altogether there are log(n) + 1 layers, each contributing n, so we conclude that, when n is a
power of 2,

T (n) = n(log(n) + 1).

Notice that this is an exact answer when n is a power of 2, we don’t even need a O(·).
1Notice that this is a special consequence of the fact that the term we are adding in the definition of T (n) is

exactly n; if it were, say 11 · n, the contribution of a node labeled k would be 11k .
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SOLUTION 2. We can do the same calculation without the tree, by repeatedly applying
our formula.

T (n) = 2T (n/2) + n

= 2 (2T (n/4) + n/2) + n

= 4T (n/4) + 2n

= 4(2T (n/8) + n/4) + 2n

= 8T (n/8) + 3n

and at this point we can spot the pattern: for all j ≤ log(n),

T (n) = 2jT (n/2j) + jn.

To formally prove that this is true, we should use a proof by induction; that’s called the
substitution method and we’ll talk about it soon. But for now, you can convince yourself that
this is true.

Once we have this, we can just plug in j = log(n), and get

T (n) = 2log(n)T (n/2log(n)) + n log(n) = n · T (1) + n log(n) = n(log(n) + 1),

just as before.
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