
Lecture 3
Recurrence relations and how to solve them!

Announcements
• Homework 1 is due today by midnight
• Homework 2 will be released today (still solo)

• Please (continue to) send OAE letters to
cs161-staff-win2324@cs.stanford.edu

• Midterm: Thu Feb 15, 6-9pm
• Final: Mon Mar 18, 3:30-6:30pm

• Let us know ASAP about midterm exam conflicts
• No final exam accommodations due to conflicting courses

mailto:cs161-staff-win2324@cs.stanford.edu

Announcements
• Office hours:
• Online:

Queue Style
• Click sign up on Queuestatus
• Connect to the Zoom meeting (you’ll go to the waiting room)
• The CA will let you into the Zoom room when it’s your turn

HW-Party Style
• Join the Zoom meeting and the breakout room corresponding to

the question you would like help with.
• The CA will rotate between breakout rooms.
• No Queuestatus.

• In-person:
• Queuestatus NOT used for in-person OHs (just show up)
• Default location: Huang basement (unless the calendar says

otherwise)

Last time….

• Sorting: InsertionSort and MergeSort

• What does it mean to work and be fast?
• Worst-Case Analysis
• Big-Oh Notation

• Analyzing correctness of iterative + recursive algs
• Induction!

• Analyzing running time of recursive algorithms
• By drawing out a tree and adding up all the work done.

Today

• Recurrence Relations!
• How do we calculate the runtime of a recursive

algorithm?

• The Master Theorem
• A useful theorem so we don’t have to answer this

question from scratch each time.
• The Substitution Method
• A different way to solve recurrence relations, more

generally applicable than the Master Method.

Running time of MergeSort

• Let T(n) be the running time of MergeSort on a
length n array.

• We know that 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).

• We also know that T(n) satisfies:
MERGESORT(A):
 n = length(A)
 if n ≤ 1:

return A
 L = MERGESORT(A[:n/2])
 R = MERGESORT(A[n/2:])
 return MERGE(L, R)

𝑇 𝑛 = 2 ⋅ 𝑇
𝑛
2
+ 𝑂(𝑛)

Running time of MergeSort

• Let T(n) be the running time of MergeSort on a
length n array.

• We know that 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).

• We also know that T(n) satisfies:
MERGESORT(A):
 n = length(A)
 if n ≤ 1:

return A
 L = MERGESORT(A[:n/2])
 R = MERGESORT(A[n/2:])
 return MERGE(L, R)

𝑇 𝑛 ≤ 2 ⋅ 𝑇
𝑛
2
+ 11 ⋅ 𝑛

Last time we showed that the time to run MERGE
on a problem of size n is O(n). For concreteness,

let’s say that it’s at most 11n operations.

Recurrence Relations

• 𝑇 𝑛 = 2 ⋅ 𝑇 "
#
+ 11 ⋅ 𝑛	 is a recurrence relation.

• It gives us a formula for T(n) in terms of T(less than n)

• The challenge:

Given a recurrence relation for T(n), find a
closed form expression for T(n).

• For example, 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛))

Note (read after class):
𝑇 𝑛 ≤ 2 ⋅ 𝑇 !

"
+ 11 ⋅ 𝑛 (with a ≤) is

also a recurrence relation. A recurrence
relation with an “=“ exactly defines a

function; a recurrence relation with an
inequality only bounds it.

Technicalities I
Base Cases

• Formally, we should always have base cases with
recurrence relations.

• 𝑇 𝑛 = 2 ⋅ 𝑇 "
#
+ 11 ⋅ 𝑛	 with 𝑇 1 = 1

is not the same function as

• 𝑇 𝑛 = 2 ⋅ 𝑇 "
#
+ 11 ⋅ 𝑛	 with 𝑇 1 = 1000000000

• However, no matter what T is, T(1) = O(1), so sometimes
we’ll just omit it.

Why does T(1) = O(1)?

Siggi the Studious Stork

Plucky the
Pedantic Penguin

On your pre-lecture exercise

• You played around with these examples (when n is
a power of 2):
1. 𝑇 𝑛 = 𝑇 !

"
+ 𝑛, 	 𝑇 1 = 1

2. 𝑇 𝑛 = 2 ⋅ 𝑇 !
" + 𝑛, 	 𝑇 1 = 1

3. 𝑇 𝑛 = 4 ⋅ 𝑇 !
" + 𝑛, 	 𝑇 1 = 1

One approach for all of these
Size n

n/2n/2

n/4

(Size 1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

• The “tree” approach
from last time.

• Add up all the work
done at all the sub-
problems.

Pre-lecture exercise

• (when n is a power of 2):
1. 𝑇 𝑛 = 𝑇 !

"
+ 𝑛, 	 𝑇 1 = 1

2. 𝑇 𝑛 = 2 ⋅ 𝑇 !
" + 𝑛, 	 𝑇 1 = 1

3. 𝑇 𝑛 = 4 ⋅ 𝑇 !
"
+ 𝑛, 	 𝑇 1 = 1

Solutions to pre-lecture exercise (1)

• 𝑇$ 𝑛 = 𝑇$
"
#
+ 𝑛, 𝑇$ 1 = 1.

• Adding up over all layers:

2
%&'

()*(")
𝑛
2%
= 2𝑛	 − 1

• So 𝑇$ 𝑛 = 𝑂 𝑛 .

Size n

n/2

(Size 1)

…

n/4

n/2t

…

n

Contribution
at this layer:

n/2

n/4

n/2t

1

Solutions to pre-lecture exercise (2)
• 𝑇# 𝑛 = 4𝑇#

"
#
+ 𝑛, 𝑇# 1 = 1.

• Adding up over all layers:

2
%&'

()*(")

4% ⋅
𝑛
2%
= 𝑛 2

%&'

()* "

2%

 = 𝑛(2𝑛 − 1)
• So	𝑇# 𝑛 = 𝑂 𝑛#

n

Contribution
at this layer:

2n

4n

2tn

n2

4x

n2 x

4t x

16x

Size n

(Size 1)

…

n/4

n/2t

…

n/2

More examples

• Needlessly recursive integer multiplication
• 𝑇(𝑛) 	= 	4𝑇(𝑛/2) + 	𝑂(𝑛)
• 𝑇(𝑛) 	= 	𝑂(𝑛2)

• Karatsuba integer multiplication
• 𝑇(𝑛) 	= 	3𝑇(𝑛/2) 	+ 	𝑂(𝑛)
• 𝑇(𝑛) 	= 	𝑂(𝑛()*! - 	 ≈	𝑛$./)

• MergeSort
• 𝑇(𝑛) 	= 	2𝑇(𝑛/2) 	+ 	𝑂(𝑛)
• 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛))

T(n) = time to solve a problem of size n.

What’s the pattern?!?!?!?!

This is similar to
T2 from the pre-
lecture exercise.

The master theorem

• A formula for many
recurrence relations.
• We’ll see an example next

lecture where it won’t work.

• Proof: “Generalized” tree
method.

Jedi master Yoda

A useful formula it is.
Know why it works

you should.

The master theorem
• Suppose that 𝑎 ≥ 1, 𝑏 > 1, and	𝑑 are constants

(independent of n).

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 "
0
+ 𝑂 𝑛1 . Then

Many symbols
those are….

Three parameters:
a : number of subproblems
b : factor by which input size shrinks
d : need to do nd work to create all the
subproblems and combine their solutions.

We can also take n/b to
mean either !

"
 or !

"
 and

the theorem is still true.

𝑇 𝑛 =
O 𝑛! log 𝑛 	 if	𝑎 = 𝑏!

O 𝑛! 	 if	𝑎 < 𝑏!

O 𝑛"#$# % 	 if	𝑎 > 𝑏!

Show the Ω, Θ
versions after

lecture.

Technicalities II
Integer division
• If n is odd, I can’t break it up into two problems of

size n/2.

• However (see CLRS, Section 4.6.2 for details), one can
show that the Master theorem works fine if you
pretend that what you have is:

• From now on we’ll mostly ignore floors and ceilings
in recurrence relations.

𝑇 𝑛 = 𝑇
𝑛
2

+ 𝑇
𝑛
2

+ 𝑂(𝑛)

𝑇 𝑛 = 2 ⋅ 𝑇
𝑛
2
+ 	𝑂(𝑛)

Plucky the
Pedantic Penguin

Examples

• Needlessly recursive integer mult.
• T(n) = 4 T(n/2) + O(n)
• T(n) = O(n2)

• Karatsuba integer multiplication
• T(n) = 3 T(n/2) + O(n)
• T(n) = O(nlog_2(3) ≈ n1.6)

• MergeSort
• T(n) = 2T(n/2) + O(n)
• T(n) = O(nlog(n))

• That other one
• T(n) = T(n/2) + O(n)
• T(n) = O(n)

𝑇 𝑛 = 𝑎 ⋅ 𝑇 !
"
+ 𝑂 𝑛# .

a = 4
b = 2
d = 1

a = 3
b = 2
d = 1

a = 2
b = 2
d = 1

a > bd

a > bd

a = bd

✓
✓
✓

a = 1
b = 2
d = 1

a < bd ✓

𝑇 𝑛 =
O 𝑛# log 𝑛 	 if	𝑎 = 𝑏#

O 𝑛# 	 if	𝑎 < 𝑏#

O 𝑛$%&! ' 	 if	𝑎 > 𝑏#

Proof of the master theorem

• We’ll do the same recursion tree thing we did for
MergeSort, but be more careful.

• Suppose that 𝑇 𝑛 ≤ 𝑎 ⋅ 𝑇 "
0
+ 𝑐 ⋅ 𝑛1 .

Plucky the
Pedantic Penguin

Hang on! The hypothesis of the Master Theorem was
that the extra work at each level was O(nd), but we’re
writing cnd…

That’s true … the hypothesis should be that
𝑇 𝑛 = 𝑎 ⋅ 𝑇 !

"
+ 𝑂 𝑛# .	 For simplicity, today

we are essentially assuming that n0 = 1 in the
definition of big-Oh. It’s a good exercise to verify

why that assumption is without loss of generality.

Siggi the Studious Stork

Recursion tree

Size n

n/bn/b

(Size 1)

…

n/b2

n/btn/btn/btn/btn/btn/bt

…

Level

Amount of
work at this

level

0

problems

1

2

t

logb(n)

1

a

a2

at

𝑎()*" "

Size of
each

problem

n

n/b

n/b2

n/bt

1

…

n/b

n/b2

n/b2
n/b2

n/b2

n/b2

n/b2

𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛
𝑏
+ 𝑐 ⋅ 𝑛#

Recursion tree

Size n

n/bn/b

(Size 1)

…

n/b2

n/btn/btn/btn/btn/btn/bt

…

Level

Amount of
work at this

level

0

problems

1

2

t

logb(n)

1

a

a2

at

𝑎()*" "

Size of
each

problem

n

n/b

n/b2

n/bt

1

…

n/b

n/b2

n/b2
n/b2

n/b2

n/b2

n/b2

𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛
𝑏
+ 𝑐 ⋅ 𝑛#

𝑐 ⋅ 𝑛𝑑

𝑎$𝑐
𝑛
𝑏$

#

𝑎𝑐
𝑛
𝑏

#

𝑎%𝑐
𝑛
𝑏%

#

𝑎&'(! ! 𝑐

Help me fill this in! How much work at each level?
1 minutes: think How much work total?
1 minute: share (wait)

(Let’s pretend that the
base case is T(1) = c for
convenience).

Recursion tree

Size n

n/bn/b

(Size 1)

…

n/b2

n/btn/btn/btn/btn/btn/bt

…

Level

Amount of
work at this

level

0

problems

1

2

t

logb(n)

1

a

a2

at

𝑎()*" "

Size of
each

problem

n

n/b

n/b2

n/bt

1

…

n/b

n/b2

n/b2
n/b2

n/b2

n/b2

n/b2

𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛
𝑏
+ 𝑐 ⋅ 𝑛#

𝑐 ⋅ 𝑛𝑑

𝑎$𝑐
𝑛
𝑏$

#

𝑎𝑐
𝑛
𝑏

#

𝑎%𝑐
𝑛
𝑏%

#

𝑎&'(! ! 𝑐

Total work is at most:

𝑐 ⋅ 𝑛! ⋅ 8
&'(

"#$#(*) 𝑎
𝑏!

&

(Let’s pretend that the
base case isT(1) = c for
convenience).

Now let’s check all the cases

𝑇 𝑛 =
O 𝑛! log 𝑛 	 if	𝑎 = 𝑏!

O 𝑛! 	 if	𝑎 < 𝑏!

O 𝑛"#$# % 	 if	𝑎 > 𝑏!

Case 1: 𝑎 = 𝑏9

• 𝑇 𝑛 = 𝑐 ⋅ 𝑛1 ⋅ ∑<&'
()*"(") =

0#
<

 = 𝑐 ⋅ 𝑛1 ⋅ ∑<&'
()*"(") 1

 = 𝑐 ⋅ 𝑛1 ⋅ (log0 𝑛 + 1)

 = 𝑐 ⋅ 𝑛1 ⋅ ()*(")
()*(0)

+ 1

 = Θ 𝑛1 log 𝑛

𝑇 𝑛 =
O 𝑛# log 𝑛 	 if	𝑎 = 𝑏#

O 𝑛# 	 if	𝑎 < 𝑏#

O 𝑛$%&! ' 	 if	𝑎 > 𝑏#

Equal to 1!

Case 2: 𝑎 < 𝑏9

• 𝑇 𝑛 = 	𝑐 ⋅ 𝑛1 ⋅ ∑<&'
()*"(") =

0#
<

Less than 1!

𝑇 𝑛 =
O 𝑛# log 𝑛 	 if	𝑎 = 𝑏#

O 𝑛# 	 if	𝑎 < 𝑏#

O 𝑛$%&! ' 	 if	𝑎 > 𝑏#

Aside: Geometric sums

• What is ∑<&'> 𝑥<?

• You may remember that ∑<&'> 𝑥< = 	@$%&A$
@A$

 for 𝑥 ≠ 1.
• Morally:

𝑥' + 𝑥$ + 𝑥# + 𝑥- +⋯+ 𝑥>

If 𝑥 > 1, this term dominates.If 0 < 𝑥 < 1, this term dominates.

1 ≤
	𝑥()*−1
𝑥 − 1 ≤

1
1 − 𝑥

(Aka, Θ 1 if x is constant and N is growing).
𝑥(≤

	𝑥()*−1
𝑥 − 1 ≤ 𝑥(⋅

𝑥
𝑥 − 1

(Aka, Θ 𝑥(if x is constant and N is growing).

(If 𝑥 = 1, all
terms the same)

Case 2: 𝑎 < 𝑏9

• 𝑇 𝑛 = 	𝑐 ⋅ 𝑛1 ⋅ ∑<&'
()*"(") =

0#
<

 = 𝑐 ⋅ 𝑛1 ⋅ [some	constant]
 = Θ 𝑛1

Less than 1!

𝑇 𝑛 =
O 𝑛# log 𝑛 	 if	𝑎 = 𝑏#

O 𝑛# 	 if	𝑎 < 𝑏#

O 𝑛$%&! ' 	 if	𝑎 > 𝑏#

Case 3: 𝑎 > 𝑏9

• 𝑇 𝑛 = 	𝑐 ⋅ 𝑛1 ⋅ ∑<&'
()*"(") =

0#
<

 = Θ 𝑛1 =
0#

()*"(")

 =	Θ 𝑛()*"(=)

Larger than 1!

𝑇 𝑛 =
O 𝑛# log 𝑛 	 if	𝑎 = 𝑏#

O 𝑛# 	 if	𝑎 < 𝑏#

O 𝑛$%&! ' 	 if	𝑎 > 𝑏#

Convince yourself that
this step is legit!

We’ll do this step on the board!

Now let’s check all the cases

𝑇 𝑛 =
O 𝑛! log 𝑛 	 if	𝑎 = 𝑏!

O 𝑛! 	 if	𝑎 < 𝑏!

O 𝑛"#$# % 	 if	𝑎 > 𝑏!

Understanding the Master Theorem

• What do these three cases mean?

• Let 𝑎 ≥ 1, 𝑏 > 1, and	𝑑 be constants.

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 "
0
+ 𝑂 𝑛1 . Then

𝑇 𝑛 =
O 𝑛! log 𝑛 	 if	𝑎 = 𝑏!

O 𝑛! 	 if	𝑎 < 𝑏!

O 𝑛"#$# % 	 if	𝑎 > 𝑏!

The eternal struggle

Branching causes the number
of problems to explode!
The most work is at the

bottom of the tree!

The problems lower in
the tree are smaller!
The most work is at
the top of the tree!

Consider our three warm-ups

1. 𝑇 𝑛 = 𝑇 !
"
+ 𝑛

2. 𝑇 𝑛 = 2 ⋅ 𝑇 !
" + 𝑛

3. 𝑇 𝑛 = 4 ⋅ 𝑇 !
" + 𝑛

First example: tall and skinny tree
Size n

n/2

n/4

n/2t

1

1. 𝑇 𝑛 = 𝑇 "
#
+ 𝑛, 	 𝑎 < 𝑏1

• The amount of work done at the
top (the biggest problem) swamps
the amount of work done anywhere
else.

• T(n) = O(work at top) = O(n)

Most work at the
top of the tree!

WINNER

Third example: bushy tree

Size n

n/2

3. 𝑇 𝑛 = 4 ⋅ 𝑇 "
#
+ 𝑛, 	 𝑎 > 𝑏1

• There are a HUGE number of leaves, and the total work is
dominated by the time to do work at these leaves.

• T(n) = O(work at bottom) = O(4depth of tree) = O(n2)

n/2n/2n/2

1 11111 111
1 11111 111

1 11111 111
1 11111 111

1 11111 111

1 111 111

1 1111 111

WINNER

Most work at
the bottom
of the tree!

Second example: just right
2. 𝑇 𝑛 = 2 ⋅ 𝑇 "

#
+ 𝑛, 	 𝑎 = 𝑏1

• The branching just balances
out the amount of work.

Size n

n/2

n/4

1

n/2

n/4n/4n/4

11111 111

• The same amount of work
is done at every level.

• T(n) = (number of levels) * (work per level)
• = log(n) * O(n) = O(n log(n))

1

TIE!

What have we learned?
• The “Master Method” makes our lives easier.
• But it’s basically just codifying a calculation we

could do from scratch if we wanted to.

The Substitution Method

• Another way to solve recurrence relations.
• More general than the master method.

• Step 1: Generate a guess at the correct answer.
• Step 2: Try to prove that your guess is correct.
• (Step 3: Profit.)

The Substitution Method
first example

• Let’s return to:

𝑇 𝑛 = 2 ⋅ 𝑇 "
#
+ 𝑛, with 𝑇 0 = 0, 𝑇 1 = 1.

• The Master Method says 𝑇 𝑛 = 𝑂 𝑛 log 𝑛 .
• We will prove this via the Substitution Method.

Step 1: Guess the answer
• 𝑇 𝑛 = 2 ⋅ 𝑇 !

" + 𝑛

• 𝑇 𝑛 = 2 ⋅ 2 ⋅ 𝑇 !
>
+ !

"
+ 𝑛

• 𝑇 𝑛 = 4 ⋅ 𝑇 !
>
+ 2𝑛

• 𝑇 𝑛 = 4 ⋅ 2 ⋅ 𝑇 !
?
+ !

>
+ 2𝑛

• 𝑇 𝑛 = 8 ⋅ 𝑇 !
? + 3𝑛

• …

𝑇 𝑛 = 2 ⋅ 𝑇 !
+
+ 𝑛, with 𝑇 1 = 1.

Expand 𝑇 !
+

Expand 𝑇 !
,

Simplify

Simplify

Guessing the pattern: 𝑇 𝑛 = 2A ⋅ 𝑇 !
"(+ 𝑡 ⋅ 𝑛

Plug in 𝑡 = log 𝑛 , and get
𝑇 𝑛 = 𝑛 ⋅ 𝑇 1 + log 𝑛 ⋅ 𝑛 = 𝑛 log 𝑛 + 1

You can guess the
answer however
you want: meta-
reasoning, a little

bird told you,
wishful thinking,
etc. One useful
way is to try to

“unroll” the
recursion, like

we’re doing here.

Step 2: Prove the guess is correct.
• Inductive Hypothesis: 𝑇 𝑛 = 𝑛 log 𝑛 + 1 .
• Base Case (n=1): 𝑇 1 = 1 = 1 ⋅ log 1 + 1
• Inductive Step:

• Assume Inductive Hyp. for 1 ≤ 𝑛 < 𝑘	:
• Suppose that 𝑇 𝑛 = 𝑛 log 𝑛 + 1 for all 1 ≤ 𝑛 < 𝑘.

• Prove Inductive Hyp. for n=k:
• 𝑇 𝑘 = 2 ⋅ 𝑇)

$
+ 𝑘 by definition

• 𝑇 𝑘 = 2 ⋅)
$
log)

$
+ 1 + 𝑘 by induction.

• 𝑇 𝑘 = 𝑘 log 𝑘 + 1 by simplifying.
• So Inductive Hyp. holds for n=k.

• Conclusion: For all 𝑛 ≥ 1, 𝑇 𝑛 = 𝑛 log 𝑛 + 1

𝑇 𝑛 = 2 ⋅ 𝑇 !
+
+ 𝑛, with 𝑇 1 = 1.

We’re being sloppy here about floors and
ceilings…what would you need to do to be less sloppy?

Step 3: Profit

• Pretend like you never did Step 1, and just write down:

• Theorem: 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)
• Proof: [Whatever you wrote in Step 2]

What have we learned?

• The substitution method is a different way of
solving recurrence relations.

• Step 1: Guess the answer.
• Step 2: Prove your guess is correct.
• Step 3: Profit.

• We’ll get more practice with the substitution
method next lecture!

Another example (if time)

• 𝑇 𝑛 = 2 ⋅ 𝑇 "
#
+ 32 ⋅ 𝑛

• 𝑇 2 = 2

• Step 1: Guess: 𝑂(𝑛 log 𝑛) (divine inspiration).
• But I don’t have such a precise guess about the

form for the 𝑂(𝑛	log(𝑛)) …
• That is, what’s the leading constant?

• Can I still do Step 2?

(If not time, that’s okay; we’ll see these ideas in Lecture 4)

Aside: What’s wrong with this?

• Inductive Hypothesis: 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)
• Base case: 𝑇 2 = 2 = 𝑂 1 = 𝑂(2 log 2)
• Inductive Step:
• Suppose that 𝑇 𝑛 = 𝑂(𝑛 log 𝑛) for n < k.

• Then 𝑇 𝑘 = 2 ⋅ 𝑇 B
" + 32 ⋅ 𝑘 by definition

• So 𝑇 𝑘 = 2 ⋅ 𝑂 B
" log

B
" + 32 ⋅ 𝑘 by induction

• But that’s 𝑇 𝑘 = 𝑂 𝑘 log 𝑘 , so the I.H. holds for n=k.

• Conclusion:
• By induction, 𝑇 𝑛 = 𝑂(𝑛 log 𝑛) for all n.

Plucky the
Pedantic
Penguin

Siggi the Studious Stork

This is NOT CORRECT!!!

Figure out
what’s
wrong

here!!!

Another example (if time)

• 𝑇 𝑛 = 2 ⋅ 𝑇 "
#
+ 32 ⋅ 𝑛

• 𝑇 2 = 2

• Step 1: Guess: 𝑂(𝑛 log 𝑛) (divine inspiration).
• But I don’t have such a precise guess about the

form for the 𝑂(𝑛	log(𝑛)) …
• That is, what’s the leading constant?

• Can I still do Step 2?

(If no time, that’s okay; we’ll see these ideas in Lecture 4)

Step 2: Prove it, working backwards
to figure out the constant
• Guess: 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑛 log 𝑛 for some constant C TBD.
• Inductive Hypothesis (for 𝑛 ≥ 2) : 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑛 log 𝑛
• Base case: 𝑇 2 = 2 ≤ 𝐶 ⋅ 2 log 2 as long as 𝐶 ≥ 1
• Inductive Step:

𝑇 𝑛 = 2 ⋅ 𝑇
𝑛
2 + 32 ⋅ 𝑛
𝑇 2 = 2

Inductive step

• Assume that the inductive hypothesis holds for n<k.

• 𝑇 𝑘 = 2𝑇 H
#
+ 32𝑘

• 	 ≤ 2𝐶 H
#
log H

#
+ 32𝑘

• = 𝑘 𝐶 ⋅ log 𝑘 + 32	 − 𝐶
• 	 ≤ 𝑘 𝐶 ⋅ log(𝑘) as long as 𝐶 ≥ 32.
• Then the inductive hypothesis holds for n=k.

𝑇 𝑛 = 2 ⋅ 𝑇
𝑛
2 + 32 ⋅ 𝑛
𝑇 2 = 2

Inductive Hypothesis: 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑛 log 𝑛

Step 2: Prove it, working backwards
to figure out the constant
• Guess: 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑛 log 𝑛 for some constant C TBD.
• Inductive Hypothesis (for 𝑛 ≥ 2): 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑛 log 𝑛
• Base case: 𝑇 2 = 2 ≤ 𝐶 ⋅ 2 log 2 as long as 𝐶 ≥ 1
• Inductive step: Works as long as 𝐶 ≥ 32
• So choose 𝐶 = 32.

• Conclusion: 𝑇 𝑛 ≤ 32 ⋅ 𝑛 log 𝑛

𝑇 𝑛 = 2 ⋅ 𝑇
𝑛
2 + 32 ⋅ 𝑛
𝑇 2 = 2

Step 3: Profit.
• Theorem: 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)
• Proof:
• Inductive Hypothesis: 𝑇 𝑛 ≤ 32 ⋅ 𝑛 log 𝑛
• Base case: 𝑇 2 = 2 ≤ 32 ⋅ 2 log 2 is true.
• Inductive step:

• Assume Inductive Hyp. for n<k.

• 𝑇(𝑘) = 2𝑇)
$ + 32𝑘

• 	 ≤ 2 ⋅ 32 ⋅)
$
log)

$
+ 32𝑘

• = 𝑘 32 ⋅ log 𝑘 + 32	 − 32
• 	 = 32 ⋅ 𝑘	log(𝑘)
• This establishes inductive hyp. for n=k.

• Conclusion: 𝑇 𝑛 ≤ 32 ⋅ 𝑛 log 𝑛 for all 𝑛 ≥ 2.
• By the definition of big-Oh, with 𝑛* = 2 and 𝑐 = 32, this

implies that 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

By the def. of T(k)

By induction

Why two methods?

• Sometimes the Substitution Method works where
the Master Method does not.
• More on this next time!

Next Time

• What happens if the sub-problems are different sizes?
• And when might that happen?

BEFORE Next Time

• Pre-lecture 4 exercises!

