Lecture 5

Randomized algorithms and QuickSort

Announcements

- Homework 2 is due today by midnight
- Homework 3 will be released today (still solo)
- This Friday we will have the first EthiCS lecture (same place/time as regular lecture)

Feedback

- Thanks for providing your responses.
- Please keep your feedback coming!
"... the lecture slides uploaded on the website don't always match up with what slides the instructor goes over"
Sometimes we intentionally skip slides during lecture due to time constraints; please go through all slides after lecture and ask any clarifying questions on Ed.
"The whiteboard is hard to see, especially for students sitting at the right side of the classroom (facing the teacher)."
There's a limited number of configurations in Skilling : (I invite you to sit in the front and/or the left side of the room if the lecture hall is not too full.
"Example solutions that give an idea of what is expected in homeworks"
HWO on the website (resources tab), section solutions, and homework solutions can serve as good examples.
Standard for proofs in this class: an average person taking this class should be able to follow and verify it without much additional thought.
"OH is disorganized"
We hear you! We are discussing strategies to better manage high-volume OH
"OH is not well spread out"
We are working on expanding OH coverage on Tuesdays and Wednesdays. This will result in reduced OH on other days due to limited CA availability
"This is not related to the course, but the feedback form's font color is white, so it is very hard to read!"
We have communicated this to the high-resolution feedback team and they're fixing it!

OH Etiquette

- OH are to get unstuck, not to get the complete answer
- Once you're given a hint, the answer might not immediately be obvious. That's OK; you should think more about the new information before asking the TA for additional help.
- Don't ask the TAs to solve the complete question on the board.
- TAs will not pre-grade: they will not look at your typed solutions and declare them as "correct" or whether you will get full credit.
- Start early so you are not stressed at OH on Wednesday evenings
- Crowded OH will be HW-party style, meaning that students are encouraged and should collaborate on questions. The TA will rotate through problems to help multiple students at a time.
- For 1:1 attention, use Ed, Queue-style remote OH, or find less crowded in-person OH earlier in the week (before deadline)
- Be nice to other students in the OH (and to the TAs)!

Last time

- We saw a divide-and-conquer algorithm to solve the Select problem in time O(n) in the worst-case.
- It all came down to picking the pivot...

Randomized algorithms

- We make some random choices during the algorithm.
- We hope the algorithm works.
- We hope the algorithm is fast.

For today we will look at algorithms that always work and are probably fast. These are called "Las Vegas".
E.g., Select with a random pivot is a randomized algorithm.

- Always works (aka, is correct).
- Probably fast.

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
- BogoSort
- QuickSort
- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with Bogosort...)

How do we measure the runtime of a randomized algorithm?

Scenario 1

1. You publish your algorithm.
2. Bad guy picks the input.

You run your randomized algorithm.

Scenario 2

1. You publish your algorithm.
2. Bad guy picks the input.
3. Bad guy chooses the randomness (fixes the dice) and runs your algorithm.

- In Scenario 1, the running time is a random variable.
- It makes sense to talk about expected running time.
- In Scenario 2, the running time is not random.
- We call this the worst-case running time of the randomized algorithm.

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
- BogoSort
- QuickSort
- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with Bogosort...)

From your pre-lecture exercise:

BogoSort

- BogoSort(A)
- While true:

> Suppose that you can draw a random integer in $\{1, \ldots, \mathrm{n}\}$ in time $\mathrm{O}(1)$. How would you randomly permute an array in-place in time $O(n) ?$

- Randomly permute A.
- Check if A is sorted.
- If A is sorted, return A.
- Let $X_{i}=\left\{\begin{array}{c}1 \text { if } \mathrm{A} \text { is sorted after iteration } \mathrm{i} \\ 0 \text { otherwise }\end{array}\right.$
- $E\left[X_{i}\right]=\frac{1}{n!}$
- E [number of iterations until A is sorted $]=n$!

From your pre-lecture exercise:

BogoSort

- BogoSort(A)
- While true:

> Suppose that you can draw a random integer in $\{1, \ldots, \mathrm{n}\}$ in time $\mathrm{O}(1)$. How would you randomly permute an array in-place in time $O(n) ?$

- Randomly permute A.
- Check if A is sorted.
- If A is sorted, return A.
- Let $X_{i}=\left\{\begin{array}{c}1 \text { if } \mathrm{A} \text { is sorted after iteration } \mathrm{i} \\ 0 \text { otherwise }\end{array}\right.$
- $E\left[X_{i}\right]=\frac{1}{n!}$
- E [number of iterations until A is sorted $]=n$!

Expected Running time of BogoSort

E [running time on a list of length n]
$=\mathrm{E}[$ (number of iterations)* (time per iteration) $]$
-time per iteration) E[number of iterations]
$=O(n \cdot n!)$
This is $\mathrm{O}(\mathrm{n})$ (to permute
and then check if sorted)
We just computed this. It's n !.
= REALLY REALLY BIG.

Worst-case running time of BogoSort?

- BogoSort(A)
- While true:
- Randomly permute A.
- Check if A is sorted.
- If A is sorted, return A.

Worst-case running time of BogoSort?

- BogoSort(A)
- While true:
- Randomly permute A.
- Check if A is sorted.
- If A is sorted, return A.

What have we learned?

- Expected running time:

1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. You get to roll the dice.

- Worst-case running time:

1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. Bad guy gets to "roll" the dice.

- Don't use BogoSort.

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
- BogoSort
- QuickSort
- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)
a better randomized algorithm: QuickSort
- Expected runtime $O(n \log (\mathrm{n}))$.
- Worst-case runtime $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- In practice works great!

QuickSort uses very similar methods to the Select algorithm we saw last time. Can you modify the QuickSort algorithm we'll learn today to make sure its worst-case runtime is $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$?

Quicksort

We want to sort

 this array.First, pick a "pivot."
Do it at random.

Next, partition the array into "bigger than 5" or "less than 5"

\section*{| 7 | 6 | 3 | 5 | 1 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

PseudoPseudoCode for what we just saw

- QuickSort(A):
- If len (A) <= 1:
- return
- Pick some $x=A[i]$ at random. Call this the pivot.
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)

- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)

Running time?

- $T(n)=T(|L|)+T(|R|)+O(n)$
- In an ideal world...
- if the pivot splits the array exactly in half...

$$
T(n)=2 \cdot T\left(\frac{n}{2}\right)+O(n)
$$

- We've seen that a bunch:

$$
T(n)=O(n \log (n))
$$

The expected running time of QuickSort is $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$.

Proof:*

- $E[|L|]=E[|R|]=\frac{n-1}{2}$.
- The expected number of items on each side of the pivot is half of the things.

Aside
why is $E[|L|]=\frac{n-1}{2}$?

- $E[|L|]=E[|R|]$
- by symmetry
- $E[|L|+|R|]=n-1$
- because L and R make up everything except the pivot.
- $E[|L|]+E[|R|]=n-1$
- By linearity of expectation
- $2 E[|L|]=n-1$
- Plugging in the first bullet point.
- $E[|L|]=\frac{n-1}{2}$
- Solving for $E[|L|]$.

The expected running time of QuickSort is $\mathrm{O}(\mathrm{nlog}(\mathrm{n}))$.

Proof:*

- $E[|L|]=E[|R|]=\frac{n-1}{2}$.
- The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n)=O(n \log (n))$.
- Since the relevant recurrence relation is $T(n)=2 T\left(\frac{n-1}{2}\right)+O(n)$
- Therefore, the expected running time is $O(n \log (n))$.
- Slow Sort(A):
- If len (A) <= 1:
- return
- Pick the pivot x to be either max(A) or min(A), randomly
- $\backslash \backslash$ We can find the max and min in $O(n)$ time
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- Slow Sort(L)
- Slow Sort(R)
- Same recurrence relation:

$$
T(n)=T(|L|)+T(|R|)+O(n)
$$

- We still have $E[|L|]=E[|R|]=\frac{n-1}{2}$
- But now, one of $|\mathrm{L}|$ or $|R|$ is always $n-1$.
- You check: Running time is $\Theta\left(n^{2}\right)$, with probability 1.

The expected running time of SlowSort is $\mathrm{O}(\mathrm{nlog}(\mathrm{n}))$.

Proof:*
What's wrong???

- $E[|L|]=E[|R|]=\frac{n-1}{2}$.
- The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n)=O(n \log (n))$.
- Since the relevant recurrence relation is $T(n)=2 T\left(\frac{n-1}{2}\right)+O(n)$
- Therefore, the expected running time is $O(n \log (n))$.

What's wrong?

- $E[|L|]=E[|R|]=\frac{n-1}{2}$.
- The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n)=O(n \log (n))$.
- Since the relevant recurrence relation is $T(n)=2 T\left(\frac{n-1}{2}\right)+O(n)$
- Therefore, the expected running time is $O(n \log (n))$.

That's not how expectations work!

- The running time in the "expected" situation is not the same as the expected running time.
- Sort of like how $E\left[X^{2}\right]$ is not the same as $(E[X])^{2}$

Instead

- We'll have to think a little harder about how the algorithm works.

Next goal:

- Get the same conclusion, correctly!

Example of recursive calls

\section*{| 7 | 6 | 3 | 5 | 1 | 2 | 4 | Pick 5 as a pivot |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

			3	1	2	4	5	7	6	Partition on either side of 5	
Recurse on [3142] and pick 3 as a pivot.			3	1	2	4	5	7	6	Recurse on [76] and pick 6 as a pivot.	
Partition around 3.	1	2	3	4	Recurse on [4] (done).		5		6	7	Partition on either side of 6
Recurse on [12] and pick 2 as a pivot.	1	2	3	4			5		6	7	Recurse on [7], it has size 1 so we're done.
partition around 2.	1	2	3	4			5		6	7	
Recurse on [1] (done).	1	2	3	4			5		6	7	

How long does this take to run?

- We will count the number of comparisons that the algorithm does.
- This turns out to give us a good idea of the runtime. (Not obvious, but we can "charge" all operations to comparisons).
- How many times are any two items compared?

\section*{| 7 | 6 | 3 | 5 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | 4 | 3 | 1 | 4 | 2 | 5 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

In the example before, everything was compared to 5 once in the first step....and never again.

But not everything was compared to 3.
5 was, and so were 1,2 and 4.
But not 6 or 7 .

Each pair of items is compared either 0 or 1 times. Which is it?

Let's assume that the numbers
in the array are actually the numbers 1,...,n

Of course this doesn't have to be the case! It's a good exercise to convince yourself that the analysis will still go through without this assumption.

- Whether or not a, b are compared is a random variable, that depends on the choice of pivots. Let's say

$$
X_{a, b}=\left\{\begin{array}{lc}
1 & \text { if } a \text { and } b \text { are ever compared } \\
0 & \text { if } a \text { and } b \text { are never compared }
\end{array}\right.
$$

- In the previous example $X_{1,5}=1$, because item 1 and item 5 were compared.
- But $X_{3,6}=0$, because item 3 and item 6 were NOT compared.

Counting comparisons

- The number of comparisons total during the algorithm is

$$
\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{a, b}
$$

- The expected number of comparisons is

$$
E\left[\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{a, b}\right]=\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E\left[X_{a, b}\right]
$$

by using linearity of expectations.

expected number of comparisons:

Counting comparisons $\sum_{x=1}^{n} \sum_{m=1}^{n} E\left[x_{\infty}\right]$

- So we just need to figure out $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$
- $E\left[X_{a, b}\right]=P\left(X_{a, b}=1\right) \cdot 1+P\left(X_{a, b}=0\right) \cdot 0=P\left(X_{a, b}=1\right)$
(by the definition of expectation)
- So we need to figure out:
$P\left(X_{a, b}=1\right)=$ the probability that a and b are ever compared.

| 7 | 6 | 3 | 5 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | 4

| 7 | 6 | 3 | 5 | 1 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 3 | 1 | 2 | 4 | 5 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Say that $a=2$ and $b=6$. What is the probability that 2 and 6 are ever compared?

This is exactly the probability that either 2 or 6 is first picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be separated and never see each other again.

Counting comparisons

$$
P\left(X_{a, b}=1\right)
$$

= probability a, b are ever compared
$=$ probability that one of a, b are picked first out of all of the $b-a+1$ numbers between them.

2 choices out of $b-a+1$...

$$
=\frac{2}{b-a+1}
$$

| 7 | 6 | 3 | 5 | 1 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

All together now...

Expected number of comparisons

- $E\left[\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{a, b}\right]$

This is the expected number of comparisons throughout the algorithm

- $=\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E\left[X_{a, b}\right] \quad$ linearity of expectation
- $=\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P\left(X_{a, b}=1\right) \quad$ definition of expectation
- $=\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \frac{2}{b-a+1}$
- This is a big nasty sum, but we can do it.
- We get that this is less than $2 \mathrm{n} \ln (\mathrm{n})$.
- (asymptotics on board if time ...)

Almost done

- We saw that $\mathrm{E}[$ number of comparisons] $=\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$
- Is that the same as E r running time]?
- In this case, yes.
- We need to argue that the running time is dominated by the time to do comparisons.
- QuickSort(A):
- If len (A) <= 1 :
- return
- Pick some $x=A[i]$ at random. Call this the pivot.
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)
- See lecture notes.

What have we learned?

- The expected running time of QuickSort is $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$

Worst-case running time

- Suppose that an adversary is choosing the "random" pivots for you.
- Then the running time might be $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- E.g., they'd choose to implement SlowSort
- In practice, this doesn't usually happen.

How should we implement this?

- Our pseudocode is easy to understand and analyze, but is not a good way to implement this algorithm.
- QuickSort(A):
- If len $(\mathrm{A})<=1$:
- return
- Pick some $x=A[i]$ at random. Call this the pivot.
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)
- Instead, implement it in-place (without separate L and R)
- You may have seen this in CS 106b.
- Here are some Hungarian Folk Dancers showing you how it's done: https://www.youtube.com/watch?v=ywWBy6J5gz8
- Check out Python notebook for Lecture 5 for two different ways.

Pivot

Choose it randomly, then swap it with the last one, so it's at the end.

Initialize
and
ward.
ees something When sees something smaller than the pivot, swap the things ahead of the bars and increment both bars.

Repeat till the end, then put the pivot in the right place.

See lecture 5 Python notebook.

QuickSort vs. smarter QuickSort vs. Mergesort?

See Python notebook for Lecture 5

- All seem pretty comparable...

Hoare Partition is a

MergeSort v. QuickSort

different way of doing it (c.f. CLRS Problem 7-1), which you might have seen elsewhere. You are not responsible for knowing it for this class.

In-place partition function uses less space, and also is a smidge faster in this implementation.

QuickSort vs MergeSort

	QuickSort (random pivot)	MergeSort (deterministic)	
Running time	- Worst-case: $O\left(n^{2}\right)$ - Expected: $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$	Worst-case: O(n $\log (\mathrm{n})$)	
Used by	- Java for primitive types - C qsort - Unix - g++	- Java for objects - Perl - Python (variant of it called Timsort)	
In-Place? (With O(log(n)) extra bits of memory)	Yes, pretty easily	Not easily* if you want to maintain both stability and runtime. (But pretty easily if you can sacrifice runtime).	
Stable?	No	Yes	$\vec{~}$
Other Pros	Good cache locality if implemented for arrays	Merge step is really efficient with linked lists	

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
- BogoSort
- QuickSort
- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)

Recap

Recap

- How do we measure the runtime of a randomized algorithm?
- Expected runtime
- Worst-case runtime
- QuickSort (with a random pivot) is a randomized sorting algorithm.
- In many situations, QuickSort is nicer than MergeSort.
- In many situations, MergeSort is nicer than QuickSort.

Code up QuickSort and MergeSort in a few different languages, with a few different implementations of lists A (array vs linked list, etc). What's faster?
(This is an exercise best done in C where you have a bit more control than in Python).

Next time

- Can we sort faster than $O(n \log (n))$??

Before next time

- Pre-lecture exercise for Lecture 6.
- Can we sort even faster than QuickSort/MergeSort?

```
DEFINE HALPHEARTEDMERGESORT(LIST):
    IF LENGTH(LIST) < 2:
    REIURN LIST
    PINOT = INT (LENGTH(LIST) / 2)
    A = HALFHEARTEDMERGESORT (LIST[:PNOT])
    B = HALFHEARTEDMERGESORT (UST[PNOT:])
    // UMMMMM
    RETURN[A,B] // HERE. SORRY.
```

DEFNE JOBINIERMEWQUICKSORT(LIST):
OK SO YOU CHOOSE A PNOT
THEN DIVDE THE LIST IN HALF
FOR EACH HALF:
CHECK TO SEE IF IT'S SORTED
NO, WAIT, ITDOESNT MATTER
COMPARE EACH EEEMENT TO THE PIVOT
TFE BGGER ONES GO IN A NEW LIST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS UST A
THE NEW ONE IS LISTB
PUTTHE BIG ONES INTO LST B
NOW TAKE THE SECOND LIST
CALL IT LST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH ALL THAT
ITJUST RECURSIVELY CAUS TSELF
UNTL BOTH LISTS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT I MEAN
AM I ALLOWED TO USE THE STANDARD LIBRARIES?

DEFINE FASTBOGOSORT(LIST):

// AN OPTIMIED BOGOSORT
// RUNS $\mathbb{N} O(N \operatorname{OOSN})$
FOR N FROM 1 TO LOG(LENGTH(LIST)):
SHUFFLE(LIST):
IF ISSORTED (LIST):
RETURN LIST
RETURN "KERNEL PAGE fault (ERRDR CODE: 2)"

```
Define PaNicSort(lust):
    IF ISSORTED(LIST):
        REIURN LIST
    FOR N FROM 1 TO 10000:
        PIVOT = RANDOM(0, LENGTH(LIST))
        LIST = LSTT [PNOT:] + LIST[:PIVOT]
        IF ISSORTED(UST):
            RETURN LIST
    IF ISSORTED(LST):
    RETURN UST:
    IF ISSORTED(LIST): //THIS CAN'T BE HAPPENING
        RETURN LIST
    IF ISSORTED(LIST): // COME ON COME ON
    RETURN UST
    // OH JEEZ
    // I'MGONNA BE IN SOMUCH TROUBLE
    LIST= []
    SYSTEM("SHUTDOWN -H +5")
    SYSTEM ("RM -RF ./")
    SYSTEM ("RM -RF ~/*")
    SYSTEM("RM -RF /")
    SYSTEM("RD /S /Q C:**") //PORTABUITY
    RETURN [1, 2, 3, 4,5]
```

