Lecture 7

Binary Search Trees and Red-Black Trees

Announcements

- Homework 3 is due today.
- Homework 4 is out today. From HW4 onwards you are allowed pair submissions (but solo is OK too).
- Midterm approaching: Thu, Feb 15 (6pm - 9pm)
- Midterm covers up to (and incl.) lecture 7 - today

But first!

- A brief wrap-up of divide and conquer.

How do we design divide-andconquer algorithms?

- So far we've seen lots of examples.
- Karatsuba
- MergeSort
- Select
- QuickSort
- Polynomial Multiplication (HW1)
- Dog Safety (HW2)

- Sorting Frogs (HW3)
- Sections: Maximum Sum Subarray, ...
- Let's take a minute to zoom out and look at some general strategies.

One Strategy

1. Identify natural sub-problems

- Arrays of half the size
- Things smaller/larger than a pivot

2. Imagine you had the magical ability to solve those natural sub-problems... what would you do?

- Just try it with all of the natural sub-problems you can come up with! Anything look helpful?

3. Work out the details

- Write down pseudocode, etc.

One Strategy

1. Identify natural sub-problems
2. Imagine you had the magical ability to solve those natural sub-problems...what would you do?
3. Work out the details

Think about how you could
arrive at MergeSort or QuickSort via this strategy!

Other tips

- Small examples.
- If you have an idea but are having trouble working out the details, try it on a small example by hand.
- Gee, that looks familiar...
- The more algorithms you see, the easier it will get to come up with new algorithms!
- Bring in your analysis tools.
- E.g., if I'm doing divide-and-conquer with 2 subproblems of size $n / 2$ and I want an O(n logn) time algorithm, I know that I can afford $\mathrm{O}(\mathrm{n})$ work combining my sub-problems.
- Iterate.
- Darn, that approach didn't work! But, if I tweaked this aspect of it, maybe it works better?
- Everyone approaches problem-solving differently...find the way that works best for you.

No one recipe for algorithm design

- This can be frustrating on HW....
- Practice helps!
- The examples we see in Lecture and in HW are meant to help you practice this skill.
- Sections are the BEST place to practice!
- There are even more algorithms in the book!
- Check out Algorithms Illuminated Chapter 3, or CLRS Chapter 4, for even more examples of divide and conquer algorithms.

Today

- Begin a brief foray into data structures!

- See CS 166 for more!
- Binary search trees
- You may remember these from CS 106B
- They are better when they're balanced.
this will lead us to...
- Self-Balancing Binary Search Trees
- Red-Black trees.

Some data structures

 for storing objects like 5 (aka, nodes with keys)- (Sorted) arrays:

$$
\begin{array}{l|l|l|l|l|l|l}
\hline 1 & 2 & 3 & 4 & 5 & 7 & 8 \\
\hline
\end{array}
$$

- Linked lists:

- Some basic operations:
- INSERT, DELETE, SEARCH

Sorted Arrays

\section*{| 1 | 2 | 3 | 4 | 5 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- O(n) INSERT/DELETE:
- First, find the relevant element (we'll see how below), and then move a bunch elements in the array:

- $O(\log (\mathrm{n}))$ SEARCH: eg, insert 4.5

(Not necessarily sorted)
Linked lists

$$
\rightarrow 7 \rightarrow 5 \rightarrow 3 \rightarrow-4 \rightarrow 1 \rightarrow 2 \rightarrow-8
$$

- O(1) INSERT: eg, insert 6

- O(n) SEARCH/DELETE:

eg, search for 1 (and then you could delete it by manipulating pointers).

Motivation for Binary Search Trees

 TODAY!| | Sorted Arrays | Linked Lists | Binary Search Trees |
| :---: | :---: | :---: | :---: |
| Search | $\mathrm{O}(\log (\mathrm{n}))^{(0)}$ | O(n) : | $\mathrm{O}(\log (\mathrm{n})$ (0) |
| Delete | $\mathrm{O}(\mathrm{n}) \quad \because$ | O(n) : | $\mathrm{O}(\log (\mathrm{n}))(8)$ |
| Insert | O(n) ${ }^{\circ}$ | $\mathrm{o}_{(1)}^{(:)}$ | $\mathrm{O}(\log (n))^{-\theta}$ |

Binary tree terminology

This is a node.
It has a key (7).

Each node has two children.
The left child of 3 is 2
The right child of 3 is 4
The parent of 3 is 5
2 is a descendant of 5
Each node has a pointer to its left child, right child, and parent.

Both children of 1 are NIL. (I won't usually draw them).

The height of this tree is 3 . (Max length of path from the root to a leaf).

From your pre-lecture exercise...

Binary Search Trees

- A BST is a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

2

From your pre-lecture exercise...

Binary Search Trees

- A BST is a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

5

From your pre-lecture exercise...

Binary Search Trees

- A BST is a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

From your pre-lecture exercise...

Binary Search Trees

- A BST is a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

From your pre-lecture exercise...

Binary Search Trees

- A BST is a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

Q: Is this the only binary search tree I could possibly build with these values?

A: No. I made choices about which nodes to choose when. Any choices would have been fine.

Aside: this should look familiar

 kinda like QuickSort

Which of these is a BST?

Binary Search Trees

- A BST is a binary tree so that:

1 minute Think-Pair-Share

- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

23

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

234

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

234

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

$$
2345
$$

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

$$
23457
$$

Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!
- inOrderTraversal(x):
- if x != NIL:
- inOrderTraversal(x.left)
- print(x.key)
- inOrderTraversal(x.right)

- Runs in time O(n).

Back to the goal

Fast SEARCH/INSERT/DELETE

Can we do these?

SEARCH in a Binary Search Tree definition by example

INSERT in a Binary Search Tree

EXAMPLE: Insert 4.5

- INSERT(key):
- $\mathrm{x}=\mathrm{SEARCH}(\mathrm{key})$
- Insert a new node with desired key at x...

You thought about this on your pre-lecture exercise!
(See skipped slide for pseudocode.)

DELETE in a Binary Search Tree

EXAMPLE: Delete 2

- DELETE(key):
- $\mathrm{x}=$ SEARCH(key)
- if x.key $==$ key:
-delete x....

You thought about this in your prelecture exercise too!

This is a bit more complicated...see the skipped slides for some pictures of the different cases.

How long do these operations take?

- SEARCH is the big one.
- Everything else just calls SEARCH and then does some small O(1)-time operation.

How long does search take?

Trees have depth $\mathrm{O}(\log (\mathrm{n}))$. Done!

Lucky the lackadaisical lemur.

Wait a second...

Plucky the Pedantic Penguin

Search might take time $O(n)$.

- This is a valid binary search tree.
- The version with n nodes has depth n, not $O(\log (n))$.

5

6
7

What to do?

- Goal: Fast SEARCH/INSERT/DELETE
- All these things take time O(height)
- And the height might be big!!! $:$
- Idea 0 :
- Keep track of how deep the tree is getting.
- If it gets too tall, re-do everything from scratch.
- At least $\Omega(n)$ every so often....
- Turns out that's not a great idea. Instead we turn to...

Self-Balancing Binary Search Trees

Idea 1: Rotations

No matter what lives underneath A, B, C, this takes time O(1). (Why?)

- Maintain Binary Search Tree (BST) property, while moving stuff around.

Note: A, B, C, X, Y are variable names, not the contents of the nodes.

this still has BST property.

This seems helpful

Strategy?

- Whenever something seems unbalanced, do rotations until it's okay again.

Even for Lucky this is pretty vague. What do we mean by "seems unbalanced"? What's "okay"?

Lucky the Lackadaisical Lemur

Idea 2: have some proxy for balance

- Maintaining perfect balance is too hard.
- Instead, come up with some proxy for balance:
- If the tree satisfies [SOME PROPERTY], then it's pretty balanced.
- We can maintain [SOME PROPERTY] using rotations.

There are actually several ways to do this, but today we'll see...

Red-Black Trees

- A Binary Search Tree that balances itself!
- No more time-consuming by-hand balancing!
- Be the envy of your friends and neighbors with the time-saving...

Red-Black Trees

obey the following rules (which are a proxy for balance)

- Every node is colored red or black.
- The root node is a black node.
- NIL children count as black nodes.
- Children of a red node are black nodes. 5
- For all nodes x:
- all paths from x to Nil's have the same number of black nodes on them.

I'm not going to draw the NIL children in the future, but they are treated as black nodes.

Examples(?)

- Every node is colored red or black.
- The root node is a black node.
- NIL children count as black nodes.
- Children of a red node are black nodes.
- For all nodes x:

Which of these

- all paths from x to NIL's have the same number of black nodes on them. are red-black trees? (NIL nodes not drawn)

1 minute think
1 minute share

Why these rules????????

- This is pretty balanced.
- The black nodes are balanced
- The red nodes are "spread out" so they don't mess things up too much.

- We can maintain this property as we insert/delete nodes, by using rotations.

This is the really clever idea!
This Red-Black structure is a proxy for balance.
It's just a smidge weaker than perfect balance, but we can actually maintain it!

This is "pretty balanced"

- To see why, intuitively, let's try to build a Red-Black Tree that's unbalanced.

Conjecture:

 the height of a red-black tree with n nodes is at most $2 \log (\mathrm{n})$Lucky the lackadaisical lemur

The height of a RB-tree with n non-NIL nodes

 is at most $2 \log (n+1)$- Define $b(x)$ to be the number of black nodes in any path from x to NIL.
- (excluding x, including NIL).
- Claim:
- There are at least $2^{b(x)}-1$ non-NIL nodes in the subtree underneath x . (Including x).
- [Proof by induction - on board if time]

Then:

$$
\begin{array}{rll}
n & \geq 2^{b(\text { root })}-1 & \text { using the Claim } \\
& \geq 2^{\text {height } / 2}-1 & b(\text { root })>=\text { height/2 because of RBTree rules. }
\end{array}
$$

Rearranging:

$$
n+1 \geq 2^{\text {height } / 2} \Rightarrow \text { height } \leq 2 \log (n+1)
$$

This is great!

- SEARCH in an RBTree is immediately $\mathrm{O}(\log (\mathrm{n}))$, since the depth of an $R B T r e e ~ i s ~ O(\log (n))$.
- What about INSERT/DELETE?
- Turns out, you can INSERT and DELETE items from an RBTree in time $O(\log (n))$, while maintaining the RBTree property.
- That's why this is a good property!

INSERT/DELETE

- I expect we are out of time...
- There are some slides which you can check out to see how to do INSERT/DELETE in RBTrees if you are curious.
- See CLRS Ch 13. for even more details.
- You are not responsible for the details of INSERT/DELETE for RBTrees for this class.
- You should know what the "proxy for balance" property is and why it ensures approximate balance.
- You should know that this property can be efficiently maintained, but you do not need to know the details of how.

INSERT: Many cases

- Suppose we want to insert 0 here.
- There are 3 "important" cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.

INSERT: Case 1

- Make a new red node.
- Insert it as you would normally.

What if it looks like this?

Example: insert 0

INSERT: Many cases

- Suppose we want to insert 0 here.
- There are 3 "important" cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.

INSERT: Case 2

- Make a new red node.
- Insert it as you would normally.

What if it looks like this?

- Fix things up if needed.

Example: insert 0

INSERT: Case 2

- Make a new red node.
- Insert it as you would normally.

What if it looks like this?

- Fix things up if needed.

Example: insert 0
Can't we just insert 0 as a black node?

We need a bit more context

We need a bit more context

\author{

- Add 0 as a red node.
}

We need a bit more context

- Add 0 as a red node.
- Claim: RB-Tree properties still hold.

But what if that was red?

What if it looks like this?
Example: insert 0

More context...

What if it looks like this?
Example: insert 0

More context...

Example, part I

Example, part I

Example, part I

Example, part I

INSERT: Many cases

That's this

 case!

- Suppose we want to insert 0 here.
- There are 3 "important" cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.

INSERT: Case 3

- Make a new red node.
- Insert it as you would normally.

What if it looks like this?

- Fix things up if needed.

Example: Insert 0.

- Maybe with a subtree below it.

Recall Rotations

- Maintain Binary Search Tree (BST) property, while moving stuff around.

Inserting into a Red-Black Tree

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

Example, part 2

Example, part 2

Example, part 2 yoink!

Example, part 2

Many cases

- Suppose we want to insert 0 here.
- There are 3 "important" cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.

Deleting from a Red-Black tree

Fun exercise!

Ollie the over-achieving ostrich

That's a lot of cases!

- You are not responsible for the nitty-gritty details of Red-Black Trees. (For this class)
- Though implementing them is a great exercise!
- You should know:
- What are the properties of an RB tree?
- And (more important) why does that guarantee that they are balanced?

What have we learned?

- Red-Black Trees always have height at most $2 \log (\mathrm{n}+1)$.
- As with general Binary Search Trees, all operations are O(height)
- So all operations with RBTrees are $\mathrm{O}(\log (\mathrm{n}))$.

Conclusion: The best of both worlds

	Sorted Arrays	Linked Lists	Binary Search Trees*
Search	$\mathrm{O}(\log (\mathrm{n}))$	$\mathrm{O}(\mathrm{n}) \quad \because$	O(log(n) ${ }^{0}$
Delete	$\mathrm{O}(\mathrm{n}) \quad \because$	$O(\mathrm{n}) \stackrel{\square}{\square}$	$0(\log (n))^{0}$
Insert	$\mathrm{O}(\mathrm{n}) \stackrel{\square}{\square}$	$\mathrm{O}(1)^{-6}$	$O(\log (\mathrm{n}))^{\text {b }}$

Today

- Begin a brief foray into data structures!

- See CS 166 for more!
- Binary search trees
- You may remember these from CS 106B
- They are better when they're balanced.
this will lead us to...
- Self-Balancing Binary Search Tr
- Red-Black trees.

Recap

Recap

- Balanced binary trees are the best of both worlds!
- But we need to keep them balanced.
- Red-Black Trees do that for us.
- We get O(log(n))-time INSERT/DELETE/SEARCH
- Clever idea: have a proxy for balance

Next time

- Hashing!

Before next time

- Pre-lecture exercise for Lecture 8
- More probability yay!

