
Lecture 9
Graphs, BFS and DFS
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Announcements!
• Homework 4 due today.
• No new homework this week: use the time to study 

for the midterm!
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Roadmap

Sorting
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structures
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Outline

• Part 0: Graphs and terminology

• Part 1: Depth-first search 
• Application: topological sorting
• Application: in-order traversal of BSTs

• Part 2: Breadth-first search
• Application: shortest paths
• Application (if time): is a graph bipartite?
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Part 0: Graphs

5



Graphs

Graph of the internet 
(circa 1999…it’s a lot 
bigger now…) 6



Graphs

Citation graph of 
literary theory 
academic papers
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Graphs

Theoretical Computer 
Science academic 
communities
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Graphs
The Godfather Characters 
Interaction Network
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Graphs jetblue flights
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Graphs Complexity Zoo
containment graph
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Graphs debian dependency (sub)graph
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Graphs

Immigration 
flows
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Graphs Potato trade
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Graphs

Soybeans

Water
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Graphs
Graphical models
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Graphs

What eats what in 
the Atlantic ocean?
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Graphs Neural connections 
in the brain
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Graphs

•There are a lot of graphs.

• We want to answer questions about them.
• Efficient routing?
• Community detection/clustering?
• From pre-lecture exercise:

• Computing Bacon numbers
• Signing up for classes without violating pre-req constraints
• How to distribute fish in tanks so that none of them will fight.

• This is what we’ll do for the next several lectures.
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Undirected Graphs

• Has vertices and edges
• V is the set of vertices
• E is the set of edges
• Formally, a graph is G = (V,E)

• Example
• V = {1,2,3,4}
• E = { {1,3}, {2,4}, {3,4}, {2,3} }

1

2

3

4

• The degree of vertex 4 is 2.  
• There are 2 edges coming out.

• Vertex 4’s neighbors are 2 and 3

G = (V,E) 
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Directed Graphs

• Has vertices and edges
• V is the set of vertices
• E is the set of DIRECTED edges
• Formally, a graph is G = (V,E)

• Example
• V = {1,2,3,4}
• E = { (1,3), (2,4), (3,4), (4,3), (3,2) }

1

2

3

4
G = (V,E) 

• The in-degree  of vertex 4 is 2.
• The out-degree of vertex 4 is 1.
• Vertex 4’s incoming neighbors are 2,3 
• Vertex 4’s outgoing neighbor is 3.21



How do we represent graphs?

• Option 1: adjacency matrix

1

2

3

4

1          2           3           4

1     2      3      4

0 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0
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How do we represent graphs?

• Option 1: adjacency matrix

1

2

3

4

1          2           3           4

1     2      3      4

1 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0
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How do we represent graphs?
• Option 1: adjacency matrix

Destination
1          2           3           4

1      2      3      4
Source

0 0
0 0

1 0
0 1

0 1
0 0

0 1
1 0

	

1

2

3

4
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How do we represent graphs?

• Option 2: adjacency lists.

1

2

3

4

How would you 
modify this for 
directed graphs?4’s neighbors are 

2 and 3

1 2 3 4

3 4 1

4

2

33
2 25



In either case

• Vertices can store other information
• Attributes (name, IP address, …)
• Helper info for algorithms that we will perform on the 

graph

• Want to be able to do the following operations:
• Edge Membership: Is edge e in E?
• Neighbor Query: What are the neighbors of vertex v?
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Trade-offs

Edge membership
Is e = {v,w} in E?

Neighbor query
Give me a list of v’s 
neighbors.

Say there are n vertices 
and m edges.

Space requirements

0 0
0 0

1 0
1 1

1 1
0 1

0 1
1 0

	

1 2 3 4

3 4 1

4

2

33

O(1)

O(n)

O(deg(v)) or 
O(deg(w))

O(deg(v))

O(n2) O(n + m)

Generally better for sparse 
graphs (where 𝑚 ≪ 𝑛!)

We’ll assume this 
representation for 
the rest of the class

See Lecture 9 Python notebook for an actual 
implementation! 27
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Part 1: Depth-first search

28



How do we explore a graph?

1

2

3

4

5

8

6
7

At each node, you can get a list of neighbors, 
and choose to go there if you want.
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start

40



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

Labyrinth: 

explo
red!

start
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Depth First Search 
Exploring a labyrinth with pseudocode

• Each vertex keeps track of whether it is:
• Unvisited
• In progress
• All done

• Each vertex will also keep track of:
• The time we first enter it.
• The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what we are about to go 
through.  This way has more bookkeeping – the bookkeeping will be useful later!
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Depth First Search

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime
• currentTime += 1
• Mark w as .
• for v in w.neighbors:
• if v is :
• currentTime

= DFS(v, currentTime)
• currentTime += 1

• w.finishTime = currentTime
• Mark w as 
• return currentTime

unvisited

in progress

all done

w

currentTime = 0
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime
• currentTime += 1
• Mark w as .
• for v in w.neighbors:
• if v is :
• currentTime

= DFS(v, currentTime)
• currentTime += 1

• w.finishTime = currentTime
• Mark w as 
• return currentTime

unvisited

in progress

all done

Start:0

currentTime = 1

w
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime
• currentTime += 1
• Mark w as .
• for v in w.neighbors:
• if v is :
• currentTime

= DFS(v, currentTime)
• currentTime += 1

• w.finishTime = currentTime
• Mark w as 
• return currentTime

unvisited

in progress

all done

Start:0

currentTime = 1

w
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime
• currentTime += 1
• Mark w as .
• for v in w.neighbors:
• if v is :
• currentTime

= DFS(v, currentTime)
• currentTime += 1

• w.finishTime = currentTime
• Mark w as 
• return currentTime

unvisited

in progress

all done

Start:0

Start: 1

currentTime = 2

w
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime
• currentTime += 1
• Mark w as .
• for v in w.neighbors:
• if v is :
• currentTime

= DFS(v, currentTime)
• currentTime += 1

• w.finishTime = currentTime
• Mark w as 
• return currentTime

unvisited

in progress

all done

Start:0

Start: 1

Takes until 
currentTime = 20

currentTime = 20
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime
• currentTime += 1
• Mark w as .
• for v in w.neighbors:
• if v is :
• currentTime

= DFS(v, currentTime)
• currentTime += 1

• w.finishTime = currentTime
• Mark w as 
• return currentTime

unvisited

in progress

all done

Start:0

Start: 1

Takes until 
currentTime = 20

currentTime = 21

52



Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime
• currentTime += 1
• Mark w as .
• for v in w.neighbors:
• if v is :
• currentTime

= DFS(v, currentTime)
• currentTime += 1

• w.finishTime = currentTime
• Mark w as 
• return currentTime

unvisited

in progress

all done

Start:0

Start: 1
End: 21

Takes until 
currentTime = 20

currentTime = 21

w
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Depth First Search 

A

C

D

• DFS(w, currentTime):
• w.startTime = currentTime
• currentTime += 1
• Mark w as .
• for v in w.neighbors:
• if v is :
• currentTime

= DFS(v, currentTime)
• currentTime += 1

• w.finishTime = currentTime
• Mark w as 
• return currentTime

unvisited

in progress

all done

Start:0

Start: 1
End: 21

Takes until 
currentTime = 20

currentTime = 22

w

54
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This is not the only way to write DFS!

• See the lecture notes for an iterative version (using 
stacks)! If your graph is large and stack overflow a 
concern, use this version.
• (Or figure out how to do it yourself!)
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DFS finds all the nodes reachable 
from the starting point

start

One application of DFS: finding 
connected components.

In an undirected graph, this is 
called a connected component.
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To explore the whole graph

• Do it repeatedly!

start

start

57



Why is it called depth-first?
• We are implicitly building a tree:

• First, we go as deep as we can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

Call this the 
“DFS tree”
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Running time
To explore just the connected component we started in

• We look at each edge at most twice.
• Once from each of its endpoints

• And basically, we don’t do anything else.
• So…

O(m)
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Running time
To explore just the connected component we started in

• Assume we are using the linked-list format for G.
• Say C = (V’, E’) is a connected component.
• We visit each vertex in V’ exactly once.

• Here, “visit” means “call DFS on”
• At each vertex w, we:

• Do some book-keeping: O(1) 
• Loop over w’s neighbors and check if they are visited (and 

then potentially make a recursive call): O(1) per neighbor or 
O(deg(w)) total.

• Total time:
• ∑!∈#"(𝑂 deg 𝑤 + 𝑂 1 )
• = 𝑂 |𝐸$| + 𝑉′
• = 𝑂(|𝐸$|)

In a connected graph, 
|𝑉’| ≤ 	 |𝐸’| + 1. 60



Running time
To explore the whole graph

• Explore the connected components one-by-one.
• This takes time O(n + m)
• Same computation as before: 

∑.∈0(𝑂 deg 𝑤 + 𝑂 1 ) = 𝑂 |𝐸| + 𝑉 = 𝑂(𝑛 +𝑚)

or

Here the running time is 
O(m) like before

Here m=0 but it still takes time 
O(n) to explore the graph.
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You check:

Siggi the studious stork

DFS works fine on directed graphs too!

A

C

B

Only walk to C, not to B.
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Pre-lecture exercise

• How can you sign up for classes so that you never 
violate the pre-req requirements?

• More practically, how can you install packages 
without violating dependency requirements?
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Application of DFS: topological sorting

• Find an ordering of vertices so that all of the 
dependency requirements are met.
• Aka, if v comes before w in the ordering, there is not an 

edge from w to v.

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles: 
it is a Directed Acyclic Graph (DAG) 64



Can’t always eyeball it.
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Let’s do DFS

tar

coreutils

dpkg

libbz2

libselinux1

multiarch
-support

start:2

start:0

start:1

start:3
finish:4

finish:5
finish:6

finish:8
start:7

start:9
finish:10

finish:11

What do you notice about the 
finish times?  Any ideas for how 
we should do topological sort?
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Finish times seem useful

A B

Claim: In general, we’ll always have:

Suppose the underlying 
graph has no cycles

finish: [smaller]finish: [larger]

To understand why, let’s go back to that DFS tree.
67



A more general statement 
(this holds even if there are cycles)

• If v is a descendant of w in this tree:

• If w is a descendant of v in this tree:

• If neither are descendants of each other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or the other way around)

(check this 
statement 
carefully!)

w

v

w

v

timeline

68



So to prove this →
If

Then B.finishTime < A.finishTime

A B

Suppose the underlying 
graph has no cycles

• Case 1: B is a descendant of A in the 
DFS tree.

• Then

• aka, B.finishTime < A.finishTime.

A.startTime
A.finishTimeB.startTime

B.finishTime

A

B
69



So to prove this →
If

Then B.finishTime < A.finishTime

A B

Suppose the underlying 
graph has no cycles

• Case 2: B is a NOT descendant of A in the 
DFS tree.
• Notice that A can’t be a descendant of B in the DFS 

tree or else there’d be a cycle; so it looks like this
• Then we must have explored B before A.

• Otherwise we would have gotten to B from A, and B 
would have been a descendant of A in the DFS tree.

• Then

• aka, B.finishTime < A.finishTime.

A.startTime
A.finishTime

B.startTime
B.finishTime

B

A
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Theorem

• If we run DFS on a directed acyclic graph,

71

If

Then B.finishTime < A.finishTime

A B



Back to 
topological sorting

• In what order should I install packages?
• In reverse order of finishing time in DFS!

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

Suppose the dependency graph has no cycles: 
it is a Directed Acyclic Graph (DAG) 72

If

Then B.finishTime < A.finishTime

A B

start:2start:0
start:1 finish:5
finish:6

finish:8
start:7

start:9
finish:10

finish:11

start:3
finish:4



Topological Sorting (on a DAG)
• Do DFS
• When you mark a vertex as all done, 

put it at the beginning of the list.

• dpkg
• coreutils
• tar
• libbz2
• libselinux1
• multiarch_support

73

tar

coreutils

dpkg

libbz2

libselinux1

multiarch-
support

start:2start:0
start:1 finish:5
finish:6

finish:8
start:7

start:9
finish:10

finish:11

start:3
finish:4



For implementation, 
see Python notebook
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What did we just learn?

• DFS can help you solve the topological sorting 
problem
• That’s the fancy name for the problem of finding an 

ordering that respects all the dependencies

• Thinking about the DFS tree is helpful.
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Another use of DFS 
that we’ve already seen
• In-order enumeration of binary search trees

42 8

7

1

3

5

Do DFS and print a node’s 
label when you are done with 
the left child and before you 

begin the right child.
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Part 2: breadth-first search

85



How do we explore a graph?

1

If we can fly

2

3

4

8 6

5

9

7
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Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

Can reach there in 
three steps

Can reach there in 
zero steps

start
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Breadth-First Search
Exploring the world with a bird’s-eye view

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
Exploring the world with a bird’s-eye view

start

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

Can reach there in 
three steps

Can reach there in 
zero steps

World: 

explored!
91



Breadth-First Search
Exploring the world with pseudocode
• Set Li = [] for i=1,…,n
• L0 = [w], where w is the start node
• Mark w as visited
• For i = 0, …, n-1:
• For u in Li:
• For each v which is a neighbor of u:
• If v isn’t yet visited:
• mark v as visited, and put it in Li+1

Li is the set of nodes 
we can reach in i 

steps from w

Go through all the nodes 
in Li and add their 
unvisited neighbors to Li+1

-

L1
L2
L3

L0

Same disclaimer as for DFS: you may have seen other ways to implement this, 
this will be convenient for us.
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BFS also finds all the nodes 
reachable from the starting point

start

It is also a good way to find all 
the connected components.

93



Running time and
extension to directed graphs
• To explore the whole graph, explore the connected 

components one-by-one.
• Same argument as DFS: BFS running time is O(n + m)

• Like DFS, BFS also works fine on directed graphs.

Siggi the Studious Stork

Verify these!
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Why is it called breadth-first?
• We are implicitly building a tree:

• First we go as broadly as we can.

A

D

B

C

E

G

F

YOINK! A

B

C

G

F
D

E

Call this the 
“BFS tree”

L3

L1

L2

L0

95



Pre-lecture exercise

• What Samuel L. Jackson’s Bacon number?

Samuel L.
JacksonKevin

Bacon

Ariana Richards

Jurassic
 

Park

Tremors

(Answer: 2)96



An example with distance 3

Kevin
Bacon

Oliver Sacks It is really hard to find 
people with Bacon 

number 3!

When Bjork Met 

Attenborough

Narnia

X-men

Tilda 
Swinton

James 
McAvoy

97



Application of BFS: shortest path

w

v

• How long is the shortest path between w and v?

98



Application of BFS: shortest path

w

v

• How long is the shortest path between w and v?

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

Can reach there in 
three steps

Can reach there in 
zero steps

It’s three!
99



To find the distance between w 
and all other vertices v
• Do a BFS starting at w
• For all v in Li
• The shortest path between w and v 

has length i.
• A shortest path between w and v is 

given by the path in the BFS tree.

• If we never found v, the distance 
is infinite.

The distance between two 
vertices is the number of edges in 
the shortest path between them.

w

v Call this the 
“BFS tree”

L3

L1

L2

L0

Gauss has no 
Bacon number

Modify the BFS pseudocode 
to return shortest paths!
Prove that this indeed 
returns shortest paths!
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• The BFS tree is useful for computing distances 
between pairs of vertices.
• We can find the shortest path between u and v in 

time O(m).

What have we learned?
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Another application of BFS (if 
time)
• Testing bipartite-ness

103



Pre-lecture exercise: fish
• You have a bunch of fish and two fish tanks.
• Some pairs of fish will fight if put in the same tank.

• Model this as a graph: connected fish will fight.

• Can you put the fish in the two tanks so that there is no fighting?

104



Bipartite graphs

• A bipartite graph looks like this:
Can color the vertices red 
and orange so that there 

are no edges between any 
same-colored vertices

Example:
are students

are classes
if the student is 

enrolled in the class

Example:
are in tank A
are in tank B

if the fish fight

105



Is this graph bipartite?

106



How about this one?

107



How about this one?

108



This one?
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Application of BFS: 
Testing Bipartiteness
• Color the levels of the BFS tree in 

alternating colors.
• If you never color two connected 

nodes the same color, then it is 
bipartite.
• Otherwise, it’s not.

A

B

C

G

F
D

E

110

Does DFS work 
here too?



Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps

CLEARLY BIPARTITE!
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps
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Breadth-First Search
For testing bipartite-ness

Not been there yet

Can reach there in 
one step

Can reach there in 
two steps

start

Can reach there in 
three steps

Can reach there in 
zero steps

WHOA NOT 

BIPARTITE!
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Hang on now.
• Just because this coloring doesn’t 

work, why does that mean that 
there is no coloring that works?

Plucky the 
pedantic penguin

I can come up 
with plenty of bad 
colorings on this 
legitimately 
bipartite graph…
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Some proof required

• If BFS colors two neighbors the same color, then it’s 
found a cycle of odd length in the graph.

start

Ollie the over-achieving ostrich

Make this proof 
sketch formal!

A

B

C

G

F
D

E

There must 
be an even 
number of 
these edges

This one extra 
makes it odd 122



Some proof required

• If BFS colors two neighbors the same color, then it’s 
found a cycle of odd length in the graph.
• But you can never color an odd cycle with two colors 

so that no two neighbors have the same color.
• [Fun exercise!]

Ollie the over-achieving ostrich

Make this proof 
sketch formal!

• So you can’t legitimately color 
the whole graph either.

• Thus it’s not bipartite.
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What have we learned?

BFS can be used to detect 
bipartite-ness in time O(n + m).
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Outline

• Part 0: Graphs and terminology

• Part 1: Depth-first search 
• Application: topological sorting
• Application: in-order traversal of BSTs

• Part 2: Breadth-first search
• Application: shortest paths
• Application (if time): is a graph bipartite?

Recap
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Recap

• Depth-first search
• Useful for topological sorting
• Also in-order traversals of BSTs

• Breadth-first search
• Useful for finding shortest paths
• Also for testing bipartiteness

• Both DFS, BFS:
• Useful for exploring graphs, finding connected 

components, etc
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Still open (next few lectures)

• We can now find components in undirected graphs…
• What if we want to find strongly connected components 

in directed graphs?

• How can we find shortest paths in weighted graphs?

• What is Samuel L. Jackson’s Erdos number?
• (Or, what if I want everyone’s everyone-else number?)
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Next Time

• Strongly Connected Components

• Pre-lecture exercise: Strongly Connected What-Now?

Before Next Time
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