Lecture 9

Graphs, BFS and DFS

Announcements!

- Homework 4 due today.
- No new homework this week: use the time to study for the midterm!

More detailed schedule on the website!

Roadmap

Outline

- Part 0: Graphs and terminology
- Part 1: Depth-first search
 - Application: topological sorting
 - Application: in-order traversal of BSTs
- Part 2: Breadth-first search
 - Application: shortest paths
 - Application (if time): is a graph bipartite?

Part 0: Graphs

Cavel Stanley 1969

7

Theoretical Computer Science academic communities

The Godfather Characters Interaction Network

Graphs debian dependency (sub)graph libbz2-1.0 libselinux1 (>= 1.32)(>= 1.32)(>= 1:2.4.46-5) multiarch-support timeout coreutils (>= 1.15.4)libattr1 [dpkg] (>= 2.4.46-3) (>= 5.93-1) (>= 2.2.51-5) install-info libacl1 libacl1-kerberos4kth dpkg (>= 1.23)bzip2 liblzma5 tar (>= 5.1.1alpha+20110809) ncompress xz-utils xz-lzma · · · · · apt

Immigration flows

Potato trade

Graphs

Graphical models

What eats what in the Atlantic ocean?

Neural connections in the brain

• There are a lot of graphs.

- We want to answer questions about them.
 - Efficient routing?
 - Community detection/clustering?
 - From pre-lecture exercise:
 - Computing Bacon numbers
 - Signing up for classes without violating pre-req constraints
 - How to distribute fish in tanks so that none of them will fight.
- This is what we'll do for the next several lectures.

Undirected Graphs

- Has vertices and edges
 - V is the set of vertices
 - E is the set of edges
 - Formally, a graph is G = (V,E)

- Example
 - V = {1,2,3,4}
 - $E = \{ \{1,3\}, \{2,4\}, \{3,4\}, \{2,3\} \}$
 - The **degree** of vertex 4 is 2.
 - There are 2 edges coming out
 - Vertex 4's neighbors are 2 and 3

Directed Graphs

- Has vertices and edges
 - V is the set of vertices
 - E is the set of **DIRECTED** edges
 - Formally, a graph is G = (V,E)
- Example
 - V = {1,2,3,4}
 - E = { (1,3), (2,4), (3,4), (4,3), (3,2) }

- The **in-degree** of vertex 4 is 2.
- The **out-degree** of vertex 4 is 1.
- Vertex 4's incoming neighbors are 2,3
- Vertex 4's outgoing neighbor is 3.

• Option 1: adjacency matrix

• Option 1: adjacency matrix

• Option 1: adjacency matrix

• Option 2: adjacency lists.

L

In either case

- Vertices can store other information
 - Attributes (name, IP address, ...)
 - Helper info for algorithms that we will perform on the graph
- Want to be able to do the following operations:
 - Edge Membership: Is edge e in E?
 - **Neighbor Query**: What are the neighbors of vertex v?

T			° C -
Trad	e^{-}	OT	TS

Generally better for **sparse** graphs (where $m \ll n^2$)

Say there are n vertices and m edges.	$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Edge membership Is e = {v,w} in E?	O(1)	O(deg(v)) or O(deg(w))
Neighbor query Give me a list of v's neighbors.	O(n)	O(deg(v))
Space requirements	O(n²)	O(n + m)
See Lecture 9 Python notebook for an actual implementation!		We'll assume this representation for the rest of the class

Part 1: Depth-first search

How do we explore a graph?

At each node, you can get a list of neighbors, and choose to go there if you want.

5

6

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, have explored all the paths out.

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, have explored all the paths out.

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Exploring a labyrinth with pseudocode

- Each vertex keeps track of whether it is:
 - Unvisited 🤇
 - In progress
 - All done 🔵

- Each vertex will also keep track of:
 - The time we first enter it.
 - The time we finish with it and mark it **all done**.

You might have seen other ways to implement DFS than what we are about to go through. This way has more bookkeeping – the bookkeeping will be useful later!

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime += 1
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime += 1
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime += 1
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime += 1
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime += 1
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime += 1
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime += 1
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime += 1
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime += 1
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is **unvisited**:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime += 1
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime += 1
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime += 1
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime += 1
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime += 1
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime += 1
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime += 1
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

This is not the only way to write DFS!

- See the lecture notes for an iterative version (using stacks)! If your graph is large and stack overflow a concern, use this version.
- (Or figure out how to do it yourself!)

DFS finds all the nodes reachable from the starting point

To explore the whole graph

• Do it repeatedly!

Why is it called depth-first?

• We are implicitly building a tree:

59

Running time

To explore just the connected component we started in

- We look at each edge at most twice.
 - Once from each of its endpoints
- And basically, we don't do anything else.
- So...

O(m)

Running time

To explore just the connected component we started in

- Assume we are using the linked-list format for G.
- Say C = (V', E') is a connected component.
- We visit each vertex in V' exactly once.
 - Here, "visit" means "call DFS on"
- At each vertex w, we:
 - Do some book-keeping: O(1)
 - Loop over w's neighbors and check if they are visited (and then potentially make a recursive call): O(1) per neighbor or O(deg(w)) total.
- Total time:
 - $\sum_{w \in V'} (O(\deg(w)) + O(1))$
 - = O(|E'| + |V'|)
 - $\bullet = O(|E'|)$

In a connected graph, $|V'| \leq |E'| + 1.$ 60

Running time To explore the whole graph

- Explore the connected components one-by-one.
- This takes time O(n + m)
 - Same computation as before:

 $\sum_{w \in V} (O(\deg(w)) + O(1)) = O(|E| + |V|) = O(n + m)$

O(m) like before

You check:

DFS works fine on directed graphs too!

Only walk to C, not to B.

Siggi the studious stork $_{62}$

Pre-lecture exercise

- How can you sign up for classes so that you never violate the pre-req requirements?
- More practically, how can you install packages without violating dependency requirements?

Application of DFS: topological sorting

- Find an ordering of vertices so that all of the dependency requirements are met.
 - Aka, if v comes before w in the ordering, there is not an edge from w to v.

Can't always eyeball it.

Let's do DFS

What do you notice about the finish times? Any ideas for how we should do topological sort?

Suppose the underlying graph has no cycles graph has no cycles

Claim: In general, we'll always have:

To understand why, let's go back to that DFS tree.

- A more general statement (this holds even if there are cycles)
- (check this statement carefully!) W W
- If v is a descendant of w in this tree:

• If w is a descendant of v in this tree:

v.start v.finish w.start

w.start v.start

timeline

v.start w.start w.finish v.finish

v.finish

If neither are descendants of each other:

(or the other way around)

w.finish

w.finish

So to prove this \rightarrow

Then B.finishTime < A.finishTime

B

Suppose the underlying graph has no cycles

lf

Α

• **Case 1**: B is a descendant of A in the DFS tree.

- Then
 B.startTime
 A.finishTime
 A.startTime
 B.finishTime
- aka, B.finishTime < A.finishTime.

So to prove this \rightarrow

Then B.finishTime < A.finishTime

Α

В

Suppose the underlying graph has no cycles

- **Case 2**: B is a NOT descendant of A in the DFS tree.
 - Notice that A can't be a descendant of B in the DFS tree or else there'd be a cycle; so it looks like this —

lf

А

- Then we must have explored B before A.
 - Otherwise we would have gotten to B from A, and B would have been a descendant of A in the DFS tree.
- Then

aka, B.finishTime < A.finishTime.

Theorem

• If we run DFS on a directed acyclic graph,

Back to topological sorting

Then B.finishTime < A.finishTime

- In what order should I install packages?
- In reverse order of finishing time in DFS!

Topological Sorting (on a DAG)

- Do DFS
- When you mark a vertex as **all done**, put it at the **beginning** of the list.

- dpkg
- coreutils
- tar
- libbz2
- libselinux1
- multiarch_support

For implementation, see Python notebook

```
print(G)
In [69]:
         CS161Graph with:
                  Vertices:
                 dkpg,coreutils,multiarch support,libselinux1,libbz2,tar,
                  Edges:
                  (dkpg,multiarch support) (dkpg,coreutils) (dkpg,tar) (dkpg,libbz2
         ) (coreutils, libbz2) (coreutils, libselinux1) (libselinux1, multiarch suppo
         rt) (libbz2,libselinux1)
In [71]: V = topoSort(G)
         for v in V:
             print(v)
         dkpg
         tar
         coreutils
         libbz2
         libselinux1
         multiarch support
```

74

What did we just learn?

- DFS can help you solve the topological sorting problem
 - That's the fancy name for the problem of finding an ordering that respects all the dependencies
- Thinking about the DFS tree is helpful.

Another use of DFS that we've already seen

• In-order enumeration of binary search trees

Do DFS and print a node's label when you are done with the left child and before you begin the right child.

Part 2: breadth-first search

How do we explore a graph?

If we can fly

Same disclaimer as for DFS: you may have seen other ways to implement this, this will be convenient for us.

Breadth-First Search

Exploring the world with pseudocode

- Set L_i = [] for i=1,...,n
- L₀ = [w], where w is the start node
- Mark w as visited
- For i = 0, ..., n-1:
 - **For** u in L_i:
 - For each v which is a neighbor of u:
 - If v isn't yet visited:
 - mark v as visited, and put it in L_{i+1}

Go through all the nodes in L_i and add their unvisited neighbors to L_{i+1} L_i is the set of nodes we can reach in i steps from w

BFS also finds all the nodes reachable from the starting point

It is also a good way to find all the **connected components.**

Running time and extension to directed graphs

- To explore the whole graph, explore the connected components one-by-one.
 - Same argument as DFS: BFS running time is O(n + m)
- Like DFS, BFS also works fine on directed graphs.

Verify these!

Siggi the Studious₄Stork

Why is it called breadth-first?

• We are implicitly building a tree:

• First we go as broadly as we can.

Pre-lecture exercise

• What Samuel L. Jackson's Bacon number?

(Answer: 2)

An example with distance 3

It is really hard to find people with Bacon ⁹⁷ number 3!

Application of BFS: shortest path

• How long is the shortest path between w and v?

Application of BFS: shortest path

• How long is the shortest path between w and v?

To find the distance between w and all other vertices v The distance between w

- Do a BFS starting at w
- For all v in L_i
 - The shortest path between w and v has length i.
 - A shortest path between w and v is given by the path in the BFS tree.
- If we never found v, the distance is infinite.

Modify the BFS pseudocode to return shortest paths! Prove that this indeed returns shortest paths!

Gauss has no Bacon number

The **distance** between two vertices is the number of edges in the shortest path between them.

What have we learned?

- The BFS tree is useful for computing distances between pairs of vertices.
- We can find the shortest path between u and v in time O(m).

Another application of BFS (if time)

• Testing bipartite-ness

Pre-lecture exercise: fish

- You have a bunch of fish and two fish tanks.
- Some pairs of fish will fight if put in the same tank.
 - Model this as a graph: connected fish will fight.
- Can you put the fish in the two tanks so that there is no fighting?

Bipartite graphs

• A bipartite graph looks like this:

Can color the vertices red and orange so that there are no edges between any same-colored vertices

Example: are students are classes if the student is enrolled in the class

Is this graph bipartite?

How about this one?

How about this one?

This one?

Application of BFS: **Testing Bipartiteness**

- Color the levels of the BFS tree in alternating colors.
- If you never color two connected nodes the same color, then it is bipartite.
- Otherwise, it's not.

here too?

Hang on now.

 Just because this coloring doesn't work, why does that mean that there is no coloring that works?

I can come up with plenty of bad colorings on this legitimately bipartite graph...

Plucky the pedantic penguin

Some proof required

Ollie the over-achieving ostrich

• If BFS colors two neighbors the same color, then it's found a cycle of odd length in the graph.

Some proof required

Ollie the over-achieving ostrich

- If BFS colors two neighbors the same color, then it's found a cycle of odd length in the graph.
- But you can never color an odd cycle with two colors so that no two neighbors have the same color.
 - [Fun exercise!]
- So you can't legitimately color the whole graph either.
- Thus it's not bipartite.

What have we learned?

BFS can be used to detect bipartite-ness in time O(n + m).

Outline

- Part 0: Graphs and terminology
- Part 1: Depth-first search
 - Application: topological sorting
 - Application: in-order traversal of BSTs
- Part 2: Breadth-first search
 - Application: shortest paths
 - Application (if time): is a graph bipartite?

Recap

- Depth-first search
 - Useful for topological sorting
 - Also in-order traversals of BSTs
- Breadth-first search
 - Useful for finding shortest paths
 - Also for testing bipartiteness
- Both DFS, BFS:
 - Useful for exploring graphs, finding connected components, etc

Still open (next few lectures)

- We can now find components in undirected graphs...
 - What if we want to find strongly connected components in directed graphs?
- How can we find shortest paths in weighted graphs?
- What is Samuel L. Jackson's Erdos number?
 - (Or, what if I want everyone's everyone-else number?)

Next Time

Strongly Connected Components

Before Next Time

• Pre-lecture exercise: Strongly Connected What-Now?