Lecture 9

Graphs, BFS and DFS

Announcements!

- Homework 4 due today.
- No new homework this week: use the time to study for the midterm!

Roadmap

Outline

- Part 0: Graphs and terminology
- Part 1: Depth-first search
- Application: topological sorting
- Application: in-order traversal of BSTs
- Part 2: Breadth-first search
- Application: shortest paths
- Application (if time): is a graph bipartite?

Part 0: Graphs

Graphs

Graph of the internet
(circa 1999...it's a lot bigger now...)

Graphs

Citation graph of literary theory academic papers

Graphs

Theoretical Computer Science academic communities

> Example from DBLP:

Communities within the co-authors of Christos H. Papadimitriou

Graphs

The Godfather Characters Interaction Network

Graphs

jetblue flights

Graphs

Complexity Zoo containment graph

Graphs

debian dependency (sub)graph

Graphs

Immigration
flows

Graphs

Potato trade

World trade in fresh potatoes, flows over 0.1 m US\$ average 2005-2009

Graphs

Graphs

Graphical models

Graphs

What eats what in the Atlantic ocean?

Graphs

Neural connections in the brain

k-core
6.
5.
4.
3.
1.
0.

Graphs

- There are a lot of graphs.
- We want to answer questions about them.
- Efficient routing?
- Community detection/clustering?
- From pre-lecture exercise:
- Computing Bacon numbers
- Signing up for classes without violating pre-req constraints
- How to distribute fish in tanks so that none of them will fight.
- This is what we'll do for the next several lectures.

Undirected Graphs

- Has vertices and edges
- V is the set of vertices
- E is the set of edges
- Formally, a graph is $G=(V, E)$
- Example

- $\mathrm{V}=\{1,2,3,4\}$
- $E=\{\{1,3\},\{2,4\},\{3,4\},\{2,3\}\}$
- The degree of vertex 4 is 2 .
- There are 2 edges coming out
- Vertex 4's neighbors are 2 and 3

Directed Graphs

- Has vertices and edges
- V is the set of vertices
- E is the set of DIRECTED edges
- Formally, a graph is $G=(V, E)$
- Example

- $\mathrm{V}=\{1,2,3,4\}$
- $E=\{(1,3),(2,4),(3,4),(4,3),(3,2)\}$
- The in-degree of vertex 4 is 2 .
- The out-degree of vertex 4 is 1 .
- Vertex 4's incoming neighbors are 2,3
- Vertex 4's outgoing neighbor is 3.

How do we represent graphs?

- Option 1: adjacency matrix

How do we represent graphs?

- Option 1: adjacency matrix
$\left.\stackrel{\rightharpoonup}{\sim} \stackrel{\begin{array}{cccc}1 & 2 & 3 & 4 \\ \sim \\ \sim & 0 & 1 & 0 \\ \sim & 0 & 1 & 1 \\ 0 & 0 & 1 & 0\end{array}}{1} \begin{array}{l}1 \\ 1\end{array}\right]$

How do we represent graphs?

- Option 1: adjacency matrix

How do we represent graphs?

- Option 2: adjacency lists.

How would you modify this for directed graphs?

In either case

- Vertices can store other information
- Attributes (name, IP address, ...)
- Helper info for algorithms that we will perform on the graph
- Want to be able to do the following operations:
- Edge Membership: Is edge e in E?
- Neighbor Query: What are the neighbors of vertex v?

Trade-offs

Say there are n vertices and m edges.

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Edge membership
Is $e=\{v, w\}$ in E ?

O(1)

O(deg(v)) or O(deg(w))

O(deg(v))

Give me a list of v's
O(n)
Neighbor query neighbors.

Space requirements

See Lecture 9 Python notebook for an actual implementation!

Generally better for sparse graphs (where $m \ll n^{2}$)

Part 1: Depth-first search

How do we explore a graph?

At each node, you can get a list of neighbors, and choose to go there if you want.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yetBeen there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search
 Exploring a labyrinth with pseudocode

- Each vertex keeps track of whether it is:
- Unvisited

- In progress
- All done
- Each vertex will also keep track of:
- The time we first enter it.

- The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what we are about to go through. This way has more bookkeeping - the bookkeeping will be useful later!

Depth First Search

currentTime $=0$

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime += 1
- Mark w as iin progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime += 1
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

currentTime $=1$

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime += 1
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime += 1
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime += 1
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime += 1
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime += 1
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime += 1
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime += 1
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime += 1
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime += 1
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime += 1
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime += 1
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime += 1
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

currentTime $=22$

unvisited End: 21
unvisited
in progress
Takes until currentTime $=20$
all done

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime += 1
- Mark w as iin progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime += 1
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

This is not the only way to write DFS!

- See the lecture notes for an iterative version (using stacks)! If your graph is large and stack overflow a concern, use this version.
- (Or figure out how to do it yourself!)

DFS finds all the nodes reachable from the starting point

To explore the whole graph

- Do it repeatedly!

Why is it called depth-first?

- We are implicitly building a tree:

- First, we go as deep as we can.

Running time

To explore just the connected component we started in

- We look at each edge at most twice.
- Once from each of its endpoints
- And basically, we don't do anything else.
- So...

$\mathrm{O}(\mathrm{m})$

Running time

To explore just the connected component we started in

- Assume we are using the linked-list format for G .
- Say $\mathrm{C}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ is a connected component.
- We visit each vertex in V^{\prime} exactly once.
- Here, "visit" means "call DFS on"
- At each vertex w, we:

- Do some book-keeping: O(1)
- Loop over w's neighbors and check if they are visited (and then potentially make a recursive call): O(1) per neighbor or O(deg(w)) total.
- Total time:
- $\sum_{w \in V^{\prime}}(O(\operatorname{deg}(w))+O(1))$
- $=O\left(\left|E^{\prime}\right|+\left|V^{\prime}\right|\right)$
- $=O\left(\left|E^{\prime}\right|\right)$
$\left|V^{\prime}\right| \leq\left|E^{\prime}\right|+1$.

Running time

 To explore the whole graph

- Explore the connected components one-by-one.
- This takes time O(n + m)
- Same computation as before:

$$
\sum_{w \in V}(O(\operatorname{deg}(w))+O(1))=O(|E|+|V|)=O(n+m)
$$

Here the running time is
$\mathrm{O}(\mathrm{m})$ like before

You check:

DFS works fine on directed graphs too!

Only walk to C, not to B.

Siggi the studious stork

Pre-lecture exercise

- How can you sign up for classes so that you never violate the pre-req requirements?
- More practically, how can you install packages without violating dependency requirements?

Application of DFS: topological sorting

- Find an ordering of vertices so that all of the dependency requirements are met.
- Aka, if v comes before w in the ordering, there is not an edge from w to v .

Can't always eyeball it.

Let's do DFS

What do you notice about the finish times? Any ideas for how we should do topological sort?

Finish times seem useful

 graph has no cycles
Claim: In general, we'll always have:

finish: [larger]
finish: [smaller]

To understand why, let's go back to that DFS tree.

A more general statement (this holds even if there are cycles)

(check this statement carefully!)

- If v is a descendant of w in this tree:
w.start v.start v.finish w.finish timeline
- If w is a descendant of v in this tree:
v.start w.start w.finish v.finish

- If neither are descendants of each other: v.start v.finish w.start w.finish

So to prove this \rightarrow

Then B.finishTime < A.finishTime
Suppose the underlying graph has no cycles

- Case 1: B is a descendant of A in the DFS tree.
- Then

B.startTime
 A.finishTime

 A.startTime -- aka, B.finishTime < A.finishTime.

So to prove this \rightarrow

Then B.finishTime < A.finishTime
Suppose the underlying graph has no cycles

- Case 2: B is a NOT descendant of A in the DFS tree.
- Notice that A can't be a descendant of B in the DFS tree or else there'd be a cycle; so it looks like this -
- Then we must have explored B before A.
- Otherwise we would have gotten to B from A, and B would have been a descendant of A in the DFS tree.
- Then
B.finishTime A.finishTime
B.startTime

- aka, B.finishTime < A.finishTime.

Theorem

- If we run DFS on a directed acyclic graph,

Back to topological sorting

${ }^{i f}$ (
 B

Then B.finishTime < A.finishTime

- In what order should I install packages?
- In reverse order of finishing time in DFS!

Topological Sorting (on a DAG)

- Do DFS
- When you mark a vertex as all done, put it at the beginning of the list.
- dpkg
- coreutils
- tar
- libbz2
- libselinux1
- multiarch_support

libbz2

For implementation, see Python notebook

```
In [69]: print(G)
CS161Graph with:
            Vertices:
            Edges:
rt) (libbz2,libselinux1)
```

```
In [71]: V = topoSort(G)
```

In [71]: V = topoSort(G)
for v in V:
for v in V:
print(v)

```
    print(v)
```

```
dkpg
```

dkpg
tar
tar
coreutils
coreutils
libbz2
libbz2
libselinux1
libselinux1
multiarch_support

```
multiarch_support
```

 dkpg, coreutils,multiarch_support,libselinux1,libbz2,tar,
 (dkpg, multiarch_support) (dkpg, coreutils) (dkpg,tar) (dkpg,libbz2
) (coreutils,libbz2) (coreutils,libselinux1) (libselinux1,multiarch_suppo

What did we just learn?

- DFS can help you solve the topological sorting problem
- That's the fancy name for the problem of finding an ordering that respects all the dependencies
- Thinking about the DFS tree is helpful.

Another use of DFS
 that we've already seen

- In-order enumeration of binary search trees

Do DFS and print a node's
label when you are done with the left child and before you begin the right child.

Part 2: breadth-first search

How do we explore a graph?

If we can fly

Breadth-First Search Exploring the world with a bird's-eye view

Not been there yet
Can reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search Exploring the world with a bird's-eye view

Not been there yet
Can reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search Exploring the world with a bird's-eye view

Not been there yet
Can reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search Exploring the world with a bird's-eye view

Not been there yet
Can reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search Exploring the world with a bird's-eye view

Not been there yet
Can reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps
World:

Breadth-First Search

Exploring the world with pseudocode

- Set $L_{i}=[]$ for $i=1, \ldots, n$
L_{i} is the set of nodes
- $\mathrm{L}_{0}=[\mathrm{w}]$, where w is the start node
- Mark w as visited we can reach in i steps from w
- For $i=0, \ldots, n-1$:
- For u in L_{i} :
- For each v which is a neighbor of u :
- If v isn't yet visited:
- mark v as visited, and put it in L_{i+1}

BFS also finds all the nodes reachable from the starting point

It is also a good way to find all the connected components.

Running time and extension to directed graphs

- To explore the whole graph, explore the connected components one-by-one.
- Same argument as DFS: BFS running time is $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Like DFS, BFS also works fine on directed graphs.

Verify these!

Why is it called breadth-first?

- We are implicitly building a tree:

YOINK!

- First we go as broadly as we can.

Pre-lecture exercise

- What Samuel L. Jackson's Bacon number?

An example with distance 3

It is really hard to find people with Bacon number 3!

Application of BFS: shortest path

- How long is the shortest path between w and v ?

Application of BFS: shortest path

- How long is the shortest path between w and v ?

To find the distance between w

and all other vertices v

- Do a BFS starting at w
- For all v in L_{i}
- The shortest path between w and v has length i .
- A shortest path between w and v is given by the path in the BFS tree.
- If we never found v, the distance is infinite.
Modify the BFS pseudocode
to return shortest paths!
Prove that this indeed
returns shortest paths!
Gauss has no Bacon number

What have we learned?

- The BFS tree is useful for computing distances between pairs of vertices.
- We can find the shortest path between u and v in time $O(m)$.

Another application of BFS (if time)

- Testing bipartite-ness

Pre-lecture exercise: fish

- You have a bunch of fish and two fish tanks.
- Some pairs of fish will fight if put in the same tank.
- Model this as a graph: connected fish will fight.
- Can you put the fish in the two tanks so that there is no fighting?

Bipartite graphs

- A bipartite graph looks like this:

Can color the vertices red and orange so that there are no edges between any same-colored vertices

Example:

Ore in tank A
O are in $\operatorname{tank} B$ if the fish fight

Example:

O are students
O are classes
if the student is enrolled in the class

Is this graph bipartite?

How about this one?

How about this one?

This one?

Application of BFS:
 Testing Bipartiteness

- Color the levels of the BFS tree in alternating colors.
- If you never color two connected nodes the same color, then it is bipartite.
- Otherwise, it's not.

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero stepsCan reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search

 For testing bipartite-nessNot been there yetCan reach there in zero stepsCan reach there in one step

Can reach there in two steps

Can reach there in three steps

Hang on now.

- Just because this coloring doesn't work, why does that mean that there is no coloring that works?

I can come up with plenty of bad colorings on this legitimately bipartite graph...

Plucky the pedantic penguin

Some proof required

Make this proof sketch formal!

Ollie the over-achieving ostrich

- If BFS colors two neighbors the same color, then it's found a cycle of odd length in the graph.

Some proof required

Make this proof
sketch formal!

Ollie the over-achieving ostrich

- If BFS colors two neighbors the same color, then it's found a cycle of odd length in the graph.
- But you can never color an odd cycle with two colors so that no two neighbors have the same color.
- [Fun exercise!]
- So you can't legitimately color the whole graph either.
- Thus it's not bipartite.

What have we learned?

BFS can be used to detect bipartite-ness in time $O(n+m)$.

Outline

- Part 0: Graphs and terminology
- Part 1: Depth-first search
- Application: topological sorting
- Application: in-order traversal of BSTs
- Part 2: Breadth-first search
- Application: shortest paths
- Application (if time): is a graph bipartite?

Recap

- Depth-first search
- Useful for topological sorting
- Also in-order traversals of BSTs
- Breadth-first search
- Useful for finding shortest paths
- Also for testing bipartiteness
- Both DFS, BFS:
- Useful for exploring graphs, finding connected components, etc

Still open (next few lectures)

- We can now find components in undirected graphs...
- What if we want to find strongly connected components in directed graphs?
- How can we find shortest paths in weighted graphs?
- What is Samuel L. Jackson's Erdos number?
- (Or, what if I want everyone's everyone-else number?)

Next Time

- Strongly Connected Components

Before Next Time

- Pre-lecture exercise: Strongly Connected What-Now?

