Review Section 2/9



Big O notation



Main ldea

Focus on how the runtime scales with n (the input size).

Some examples...

(Only pay attention to the largest

function of n that appears.)

Number of operations

Asymptotic Running Time

We say this algorithm is
_— “asymptotically faster”

— than the others.

‘@ 10n” O(e")

+ o’ + 7 O(n’)

0.16/n)- 100" (Vi)
11 1 O(log(n))




Informal definition for O(...)

* Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

* We say “T(n) is 0(g(n))” if:
for large enough n,
T (n) is at most some constant multiple of g(n).



Formal definition of O(...)

* Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

* Formally,
T(n) =0(g(n))
“If and only if” P / “For all”
/Elc,no >0 s.t, Vn = n,,

Tn)<c-g

“There exists”
“such that”



T(n) = 0(g(n))

Example e
2 — 2 C, Ny s.t. Vn =2 n,,

2n“ + 10 = 0(n*) = e o
250

= T(n)=2x"2 + 10
—— - gn)=x/\2

200 A

150 -

100

10



T(n) = 0(g(n))

Example -
? L 2 dc,nyg >0 s.t. Vn = n,,
Zn T 10 o O(n ) T(n)<c-gn)
no=4
250
— T(n)=2x"2 + 10 //
=== g(n)=x"2 _2n2 S
200 1 === 3*g(n) = 3x"2 3g(n) =3n J
x=n0=4 (c=3) F

150 -

100 H

10




T(n) = 0(g(n))

Example -
2 . 2 3c,ng >0 s.t. Vn = ny,
2n®+10 =0(n%) T(n) <c-g(n)
no=4
0 p Formally:
—— T(n)=2x"2 + 10 e
- gni=x . 3g(n) =3n e * Choosec=3
v e S * Choose ny=14
* Then:
150 A
vn = 4,

. 2n% + 10 < 3 - n?




Same example

2n% + 10 = 0(n?)

250

200 -

150 A

100 A

= T(n)=2x"2 + 10

=== g(n)=x"2

—== J¥*g(n) = 7x"2
x=n0=2

T(n) =0(g(n))
=
dc,ng >0 s.t. Vn = n,,

T(n)<c-g(n)

Formally:

* Choosec=7
* Chooseny=2
* Then:

vn = 2,
2n% +10 < 7 - n?




()(...) means lower bound

* We say “T'(n) is Q(g (n))” if, for large enough n,
T (n) is at least as big as a constant multiple of g(n).

* Formally,

T(n) =Q(gn))
=
dc,ng > 0 s.t. Vn = n,,
c-gn) <T(n)
N/

Switched these!!



T(n) = Q(g(m))
Example >

dc,nyg > 0 s.t. Vn = n,,

nlogz (Tl) — Q(Bn) c-g(n) <T(n)

T(n) = Omegalg(n))

—— T(n) = n log(n)
20 - — g(?\) —n  Choosec=1/3
— = « Choose n, =2
n=2
15 - * Then
vn = 2,
10 -
3n

5 3 < nlog,(n)
0 4




©(...) means both!

* Wesay “T'(n) is ©(g(n))” iff both:

T(n)=0(gm))

and

T(n) =Q(g(n))



Induction



Background on Induction
o Type of mathematical proof

o Typically used to establish a given statement for all natural numbers (e.g.
integers > 0)

e Proofis asequence of deductive steps

o Show the statement is true for the first number.

o Show that if the statement is true for any one number, this implies the statement is true
for the next number.

o If so, we can infer that the statement is true for all numbers.



Components of Inductive Proof

Inductive proof is composed of 3 major parts :

o Base Case : One or more particular cases that represent the most basic
case. (e.g. n=1 to prove a statement in the range of positive integer)

o Induction Hypothesis : Assumption that we would like to be based on.
(e.g. Let’s assume that P(k) holds)

o Inductive Step : Prove the next step based on the induction hypothesis.
(i.e. Show that Induction hypothesis P(k) implies P(k+1))

Weak Induction vs Strong Induction:

e In weak induction, we only assume that particular statement holds at k-

th step,
e Instronginduction, we assume that the particular statement holds at all

the steps from the base case to k-th step



Example: Integer Summation

Claim:
Let S(n) =Y i Then S(n) = ﬂ%ll

Base Case:

We show the statement is true forn = 1. As S(1) =1 = 5232, the statement holds.

Induction Hypothesis:

We assume S(n) = ﬂnzill



Example: Integer Summation

Inductive Step:

We show S(n+1) = (”J’l)z(””) . Note that S(n+ 1) = S(n) +n+ 1. Hence

Sn+1) = Sh)+n+1




Substitution Method



The Substitution Method

* Another way to solve recurrence relations.
* More general than the master method.

: Generate a guess at the correct answer.
: Try to prove that your guess is correct.
: Profit.)



First Example

* Consider the following problem:
, With

* The Master Method says
* We will prove this via the Substitution Method.



Step 1: Guess the answer
You can guess the answer

j Expand T (E)
n n g
(2:7()+3)
however you want: meta-
reasoning, a little bird told
n n Expand T (%) you, wishful thinking, etc.
(2:7(5)+3)

One useful way is to try to

“unroll” the recursion, like
we’re doing here.

Guessing the pattern:

Plugint = log(n)  and get



Step 2: Prove the guess is correct.

* Inductive Hypothesis:
* Base Case (n=1):

* Inductive Step:
* Assume Inductive Hyp.for1 < n < k:

* Suppose that for all
* Prove Inductive Hyp. for n=k:
by definition
by induction.
by simplifying.

* So Inductive Hyp. holds for n=k.
* Conclusion: For all

We’re being sloppy here about floors and
ceilings...what would you need to do to be less sloppy?



Step 3: Profit

* Pretend like you never did Step 1, and just write down:

* Theorem: T(n) = 0(nlog(n))
* Proof: [Whatever you wrote in Step 2]



Second Example

°T(n)ST()+T( )+nforn>10

* Basecase: T(n) =1whenl1l<n<10

Apply here, the
Master Theorem does
NOT.

Jedi master Yoda



Step 1: guess the answer

n m
T(n) < T(g) + T(l_O) + n forn > 10.

Basecase:T(n) = 1when1<n<10

* Trying to work backwards gets gross fast...

T(n) = n 4+ T(n/5) + T(7n/10)

* We can also just try it out. .
* Let’s guess O(n) and try to prove it. .

10000 +

0 2000 4000 6000 8000 10000



T(n) <T (n)+T(7n>+nforn>10
- 5 10 '
Base case: T(n) = 1when1l <n <10

Step 2: prove our guessisright

what C should be
. . yet! Let’s go
* Inductive Hypothesis: C

through the proof

| H 't ((C’)
* Base case: Cnforalll <n <10 ol then fiure

out what works...

* Inductive step:
e Let k> 10. Assume that the IH holds for all n's

*TU) =k + T( 2 + T (10)k Whatever we |
=) e (o) S
=k+§k+wk

< Ck??
* (aka, want to show that IH holds for n=k). Let’s solve for C and make this true!

] C =10 works.
* Conclusion:

* Thereissome (C sothatforalln = 1, C
* By the definition of big-Oh, T(n) = O(n).



n mn
T(n) < n+T(§) +T<E) forn > 10.

Base case: T(n) = 1whenl1l <n <10

Step 3: profit

Theorem: T(n) = 0(n)
Proof:

* Inductive Hypothesis: T(n) < 10n.
*Basecase:1 =T(n) <10nforalll <n <10

* Inductive step:
e Let k> 10. Assume that the IH holds forallnsothat1 < n < k.

. T(k)Sk+T(§)+T(ﬁ)

<kt 10-(£) +10- (7
= k + 2k + 7k = 10k

* Thus, IH holds for n=k.

* Conclusion:
 Foralln>1,T(n) < 10n
* Then, T(n) = O(n), using the definition of big-Oh withny, = 1,¢c = 10.



Linear Time Selection



The k select problem

(A, k):

e Return the k-th smallest element of A.

/ 4 3 8 1 5 9 14

(A, 1)=1 (A, 1) = MIN(A)
(A, 2)=3 (A, n/2) = MEDIAN(A)
(A, 3)=4 (A, n) = MAX(A)

(A, 8) = 14

:}/J



|dea: divide and conquer!

Say we want to find 9 8 3 6 1 4 2

‘ How about this pivot?

First, pick a “pivot.”
We’'ll see how to do this later.

Next, partition the array into “bigger
than 6” or “less than 6”

L = array with things smaller than A[pivot] R = array with things larger than A[pivot]



|dea: divide and conquer!

Say we want to find 6

‘ How about this pivot?

First, pick a “pivot.”
We’'ll see how to do this later.

This PARTITION step takes time O(n).

e, . . o M
Next, partition the array into “bigger (Notice that we don’t sort each half).

than 6” or “less than 6”

3 1 4 2 9 3

L = array with things smaller than A[pivot] R = array with things larger than A[pivot]



ldea continued...

Say we want to find

L = array with things A R = array with things
smaller than A[pivot] pivot larger than A[pivot]

 We should return
This suggests a recursive algorithm

* We should return (still need to figure out how to pick the pivot...)

e We should return



Pse u d OCOd e * getPivot (A) returns some pivot for us.

e How?? We'll see later...

e Partition (A, p) splitsup Ainto L, A[p], R.

e Select(Ak):
e Iflen(A) <=50:

 A=MergeSort(A) 'ﬁ;cﬁe If len(A) = O(1),
y sorting algorithm
* Return A[k-1] runs in time O(1).

p=getPivot(A)
L, pivotVal, R =Partition(A,p)

if len(l‘) - k._l' Case 1: We got lucky and found
* return pIVOtV3| exactly the k’th smallest value!

i > K-1:
Else if Ien(l‘) k-1 Case 2: The k’th smallest value
* return Select(L, k) is in the first part of the list

Else if len(L) < k-1:
Case 3: The k’th smallest value
° return SeleCt(Rf k — Ien(l-) o 1) is in the second part of the list



What is the running time?

(T( )+ 0(n) >k —1
* T(n) = T(len(R)) + 0(n) <k -1
 What are and len(R)?

* That depends on how we pick the pivot...

The best way would be to always pick the pivot so that len(L) = k-1.
But say we don’t have control over k, just over how we pick the pivot.



The ideal pivot

EXIT 211 A

* We split the input exactly in half:

What happens in that case?

& -

In case it’s

* SupposeT

T(n) = <«

helpful...
M) =a-T (g) + 0(n%). Then

:
0(n?log(n)) ifa = b?
0(n%) if a < b

LO(‘nlogb(‘“)) ifa > b



The idea pivot

* We split the input exactly in half:

* Let’s pretend that’s the case and use the
Master Theorem!

e SupposeT(n) =a-T (%) + 0(n?). Then

T(n) = <

(O(nd log(n))
0(n%)

k 0O (nlogb (Cl))

ifa = b?
if a < b?
ifa > b¢



The worst pivot

e Say our choice of pivot doesn’t depend on A.

* A bad guy who
gets to come up with A.




The distinction matters!

Selection

— SELECT with random pivot
- MergeSort SELECT
SELECT with worst pivot

~J
o

For this one | chose the worst

8 & &8 8

E possible pivot. Looks like O(n?).
DY)
E
=
20 -
" This one is a random
| pivot, so it splits the
0 - e array about in half.
. T . . T . T Looks fast!
0 500 1000 1500 2000 2500 300 J5UU

n

See Lecture 4 Python notebook for code that generated this picture.



How do we pick our ideal pivot?

e We'd like to live in the ideal world.

EXIT 211 A

* Pick the pivot to divide the input in half.

* Aka, pick the median!
* Aka, pick



How about a good enough pivot?

e We'd like to the ideal world.

o 1

* Pick the pivot to divide the input in half!
* Maybe this is easier!




A good enough pivot

a_»

g

* We split the input not quite in half: ﬁ

* If we could do that (let’s say, in time O(n)), the Master
Theorem would say:

e SupposeT(n) =a-T (%) + 0(n?). Then

( O(nlog(n)) ifa=b"
4) if a < b?

T(n)=1< O(n
L O(n'o8r(@))  if g > bd




Goal

* Efficiently pick the pivot so that

6
A
3.1 4 2 e 9 8
L = array with things R = array with things
smaller than A[pivot] larger than A[pivot]
3n n 3n n
E < len(L) < E 1—0 < len(R) < 1—0



Another divide-and-conquer alg!

* We can’t solve (yet)

e But we can divide and conquer and solve for smaller
values of m (where len(B) = m).

* Lemma®*: The median of sub-medians is close to the median.

Ideal pivot
What we’ll use as the pivot ———, medianof _ median ofthe
sub-medians whole thing
A
[ |
sub-median  syb-median  sub-median sub-median  sub-median
A A A A A

| [ \l \ | \

*we will make this a bit
more precise.



How to pick the pivot

 CHOOSEPIVOT(A):

Fori=1, .., m:
* Find the median within th
p = SELECT(

return the index of pin A

Split Ainto m =[ﬂ groups, of size <=5 each.

i"th group, call it

8

Pivot is SELECT( | 8 | 4 | 5 | 6 |12

1 8 9 3 15 5 9 1 3 4

PARTITION around that 6:

1 3 5 1 3 4 2 1 2 4
This partis L

This takes time O(1) for each group, since each group
has size 5. So that’s O(m)=0(n) total in the for loop.

6
3)=6
,3) "
6
12 2 1 5 20 15 13 2 4 12 1 15
6
1 3 5 8 9 15 9 12 20 15 13 12

22 3
22 3
15 22

This part is R: it’s almost the same size as L.



This divides the array approximately in half

* Formally, we have:



Why 70%/30% split worst case?

The most lopsided split that can happen after partitioning
around the median of medians is 70/30.

At least % of each
group is <= the
group’s median.

If we group into groups of 5 and sort by the groups’ medians,
At least % of the groups the gray stuff (at least % * % = 3/10) all lies in one side of the
have medians <= inOt partition_



How about the running time?

e Suppose the Lemma is true. (ltis).

* Recurrence relation:

The call to CHOOSEPIVOT makes \

Outside of CHOOSEPIVOT, there’s at most one
recursive call to SELECT on array of size 7n/10 + 5.

one further recursive call to
SELECT on an array of size n/5.

We’re going to drop the “+5” for convenience,
but it does not change the final answer. Why?
Hint: Define T’(n) := T(n+1000) and write recurrence for T’

Siggi the Studious Stork



This sounds like a job for...

The Substitution Method!

Step 1: generate a guess
Step 2: try to prove that your guess is correct

Step 3: profit

That’s convenient! We did this at the

beginni f lecture! Technically we only did it for
eginning of lecture!

n n
not when the last term
has a big-Oh...

Plucky the Pedantic Penguin




Practice example

* Input:
* Array A containing n possibly very large integers
* kranks 1y, ..., 7, Wwhich are integers in the range {1, ..., n}
* Output:
* Array B which contains the 7j-th smallest of the n integers, for everyjin 1,...,k

* Requirement:
* An O(nlogk) algorithm



Practice example

* Find the median rank 7;,, using the Select algorithm
* Run Select algorithm to find a,,,, the 7;,,-th smallest integer in A

* Recurse separately on
* (i) the ranks and integers greater than r;,, and a,,, (respectively);
* (ii) the ones smaller than 7;,, and a,,

* Runtime:
* The recursion tree has a depth of log(k)
* At each level, the time spentif O(n + k) = 0(n)
* Sointotal O(nlogk)



Practice example

* We have an array of positive numbers hy, h,, -, h,
* Thesumis };;h; = C
* The weighted median is defined as k such that:

C
* Lich<h Mi 5
C
* Liingsh hi S5

* Goal: compute the weighted median in O(n) worst case time



Practice example

* Find median hy from hy, h,, -, h,
* Compute the sum of each side:
* Hy, = X ny<n, i
* Hgp = X nysny, i
C

C
e If HL < —and Hp < -, return
2 2

C
o |f HL > E:
* Change hy to hy, + Hp, recurse on the elements smaller than hy,

* Else:
* Change hy, to hy, + H;, recurse on the elements larger than hy,



Quicksort



Quicksort

We want to sort this array.

First, pick a “pivot.” 7 6 3 5 1 2 4

A

Do it at random.

Next, partition the array into random pivot!
“bigger than 5” or “less than 5”

Arrange them like so:

R = array with things

L = array with things .
larger than A[pivot]

smaller than A[pivot]

Recurse on L and R: 1 2 3 4 5 6 7



PseudoPseudoCode for what we just saw

e QuickSort(A):
* If len(A) <=1:
* return
* Pick some x = A[i] at random. Call this the
the rest of A into:

* Replace A with [L, x, R]
* QuickSort(L)
e QuickSort(R)



Running time?

*T(n) =T(LD + TR + 0(n)

* |n an ideal world...

EXIT 211 A

* if the pivot splits the array exactly in half...
n
) = 2:7(3) + 0

 \We’ve seen that a bunch:
T(n) = O(nlog(n)).



The expected running time of QuickSort is
O(nlog(n)).

n-—1

+ E[IL[] = E[IRI] =

* If that occurs, the running time isT(n) = O(nlog(n)).

* Therefore, the expected running time is O(n log(n)).



What’s wrong?

n—1

+ E[ILI] = E[RI] =

* If that occurs, the running timeis T(n) = 0(nlog(n)).

* Therefore, the expected running time is O(n log(n)).

That’s not how * The running time in the “expected” situation is
expectations work! not the same as the expected running time.

 Sort of like how E[X?] is not the same as (E[X])?

Plucky the Pedantic Penguin



Example of recursive calls

Recurse on [3142]
and pick 3 as a pivot.

Partition
around 3.

Recurse on
[12] and
pick 2 as a
pivot.

partition
around 2.

Recurse on
[1] (done).

7 6 3 1 2 4 Pick 5 as a pivot

3124

1 213 4

1 3|4 |

1112113114
1 12134

E124

5 7 6 Partition on either side of 5

Recurse on [76] and
5 7 pick 6 as a pivot.
Partition on

5 6 7 either side of 6

5 6 7 Recurse on [7], it has
size 1 so we’re done.



How long does this take to run?

e We will count the number of that the
algorithm does.

 How many times are any two items compared?

7 6 3 1 2 4 In the example before,

everything was compared
to 5 once in the first

3 1 4 2 5 7 6 step....and never again.

E 1 2 4 5 7 E But not everything was
compared to 3.

5 was, and so were 1,2 and 4.

1 2 3 4 5 6 7 But not 6 or 7.



Each pair of items is compared either O or 1
times. Which is it?

/ 6 3 5 1 2 4

Of course this doesn’t have to be the case! It’s a good
exercise to convince yourself that the analysis will still go
through without this assumption.

is @ random variable, that depends on
the choice of pivots. Let’s say

* Inthe previous example , because item 1 and item 5 were compared.
* But , because item 3 and item 6 were NOT compared.



Counting comparisons

* The number of comparisons total during the algorithm is

* The expected number of comparisons is

]z

by using linearity of expectations.



Counting comparisons

e So we just need to figure out

(by the definition of expectation)
* So we need to figure out:

v v

Say thata =2 and b =6. What is the probability
7 6 3 5 1 2 4 that 2 and 6 are ever compared?

This is exactly the probability that either 2 or 6 is first
7 6 3 5 1 2 4 picked to be a pivot out of the highlighted entries.

3124 5 7 6 If, say, 5 were picked first, then 2 and 6 would be
separated and never see each other again.



Counting comparisons

P(Xep=1)
= probability a,b are ever compared
= probability that one of a,b are picked first out of
all of the numbers between them.

_ 2
b—-a+1

v v
/7:6|3|5/112}4



All together now...

Expected number of comparisons

o F [Z b _ ] 12:, is the expected number of |
parisons throughout the algorithm

* — n-1 b=a+1 linearity of expectation

o — n-1 b=a+1 definition of expectation

°« — n:l n the reasoning we just did

b=a+1

* This is a big nasty sum, but we can do it.
* We get that this is less than



In-Place Partition for Quick Sort

Pivot
8 7 1 3 5 6 4 Choose it randomly, then swap it
with the last one, so it’s at the end.

8 701 3 5 6 14 / \
Initialize § and
( ) Swap!
Stepf§l forward.
/71843 S5 6 4 Whenl sees something
smaller than the pivot,
swap the things ahead
| 1 | 3 8 / | > 6 4 of the bars and
increment both bars.
| 1 | 3 8 / > 6 | 4 Repeat till the end, then
put the pivot in the
right place.
3lal7]l5]6]s8 \ " )




Practice example

* Input: n distinct ordered pairs of integers (x{,v1), (X2,V2), ...,
(Xn,Yn), where for all i, j, x; # xj and y; # y;

* A set of points S is collinear if they all fall on the same line
* Thatis, forall (x;,y;) €S, y; = mx; + b for fixed mand b

e Qutput: maximum integer N such that we can find N of the given
points the same line

* Requirement: 0(n*logn)



Practice example

* For all pairs of points, compute their slope and intercept (m, b)

* QuickSort these pairs in increasing order of m, and then in increasing
order of b as a tiebreaker.

* [terate through the pairs, and note where the longest run of identical
(m, b) pairs occurs

e Return a list of the points in this run of pairs

* Runtime:
e there are 0(n?) pairs of points
e Quicksort takes 0(n?logn?) = 0(n?logn) time



Practice example

e CautiousQuickSort is the following:
* the pivot is chosen by repeatedly randomly

 stop if it partitions an array of n elements into two subarrays each with at
least n/3 elements
e Use partition to determine this condition

* Questions:
 What is the probability of selecting a good pivot after a single trial?
 1/3
* What is the maximum recursion depth of CautiousQuickSort?
* O(logn)



Practice example

* What is the expected runtime?
» Testing whether a pivot is good takes O(n) time

* On each level of recursion, the expected number of random selections until a
good pivot is found is 3

* So, the expected amount of work done on each recursive level is O(n)
e The depth is O(log n)
e Thus, in total O(n log n) runtime



Lower bound for sorting



_ower bound of Q(n log(n)).

* Theorem:
* Any deterministic comparison-based sorting algorithm must take Q(n log(n)) steps.

* Proof recap:

* Any deterministic comparison-based algorithm can be represented as a decision
tree with n! leaves.

* The worst-case running time is at least the depth of the decision tree.

* All decision trees with n! leaves have depth Q(n log(n)).

* So any comparison-based sorting algorithm must have worst-case running time at
least Q(n log(n)).



A: At least the length of
the path from the root to If we take this path through

the tree, the runtime is
the corresponding leaf. / Q(length of the path).
Ve

28~ ~ < [E&s) Be&l

B

R




How long is the longest path?

We want a statement: in all such trees,
g the longest path is at least

* This is a binary tree with at

Q G least Nn! |eaves.

* The shallowest tree with n!
Q Q 0 Q leaves is the completely
balanced one, which has
depth log(n!)

Eos|jiEs ol * Soin all such trees, the
longest path is at least log(n!).

* n!isabout (n/e)" (Stirling’s approximation).

* log(n!) is about n log(n/e) = Q(n log(n)). Conclusion: the longest path

has length at least Q(n log(n)).




Some “bad” news

e Theorem:

* Any deterministic|comparison-based sorting|a|gorithm must take Q(n log(n))
steps.

e Theorem:

* Any randomized|comparison-based sorting|a|gorithm must take Q(n log(n))
steps in expectation.

Bad Side: we can’t improve on n*log(n)
Bright Side: we know we’re done and can focus on other problems



