
Review Section 2/9



Big O notation



Focus on how the runtime scales with n (the input size). 

Number of operations Asymptotic Running Time

We say this algorithm is 
“asymptotically faster” 

than the others.

(Only pay attention to the largest 
function of n that appears.)Some examples…

Main Idea



Informal definition for O(…)

“constant” means “some number that 
doesn’t depend on n.”



Formal definition of O(…)

“There exists”

“For all”

“such that”

“If and only if”



T(n) = 2n2 + 10

g(n) = n2



T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

n0=4

(c=3)



Formally:
• Choose c = 3
• Choose n0 = 4
• Then:

T(n) = 2n2 + 10

g(n) = n2

3g(n) = 3n2

n0=4



Formally:
• Choose c = 7
• Choose n0 = 2
• Then:

T(n) = 2n2 + 10

g(n) = n2

7g(n) = 7n2

n0=2

There is not a 

“correct” choice 

of c and n0



Ω(…) means lower bound

Switched these!!



• Choose c = 1/3
• Choose n0 = 2
• Then

g(n)/3 = n

T(n) =
 nlog(n)g(n) = 3n



Θ(…) means both!



Induction



Background on Induction

● Type of mathematical proof

● Typically used to establish a given statement for all natural numbers (e.g. 
integers > 0)

● Proof is a sequence of deductive steps
○ Show the statement is true for the first number.
○ Show that if the statement is true for any one number, this implies the statement is true 

for the next number. 
○ If so, we can infer that the statement is true for all numbers.



Components of Inductive Proof

Inductive proof is composed of 3 major parts :
● Base Case : One or more particular cases that represent the most basic 

case. (e.g. n=1 to prove a statement in the range of positive integer)
● Induction Hypothesis : Assumption that we would like to be based on. 

(e.g. Let’s assume that P(k) holds)
● Inductive Step : Prove the next step based on the induction hypothesis. 

(i.e. Show that Induction hypothesis P(k) implies P(k+1))
Weak Induction vs Strong Induction:
● In weak induction, we only assume that particular statement holds at k-

th step, 
● In strong induction, we assume that the particular statement holds at all 

the steps from the base case to k-th step



Example: Integer Summation

Claim:

Base Case:

Induction Hypothesis:



Example: Integer Summation

Inductive Step:



Substitution Method



The Substitution Method

• Another way to solve recurrence relations.
• More general than the master method.

• Step 1: Generate a guess at the correct answer.
• Step 2: Try to prove that your guess is correct.
• (Step 3: Profit.)



• Consider the following problem:

𝑇 𝑛 = 2 ⋅ 𝑇 !
"
+ 𝑛, with 𝑇 0 = 0, 𝑇 1 = 1.

• The Master Method says 𝑇 𝑛 = 𝑂 𝑛 log 𝑛 .
• We will prove this via the Substitution Method.

First Example



Step 1: Guess the answer
• 𝑇 𝑛 = 2 ⋅ 𝑇 !

" + 𝑛

• 𝑇 𝑛 = 2 ⋅ 2 ⋅ 𝑇 !
#
+ !

"
+ 𝑛

• 𝑇 𝑛 = 4 ⋅ 𝑇 !
#
+ 2𝑛

• 𝑇 𝑛 = 4 ⋅ 2 ⋅ 𝑇 !
$
+ !

#
+ 2𝑛

• 𝑇 𝑛 = 8 ⋅ 𝑇 !
$ + 3𝑛

• …

Expand 𝑇 !
"

Expand 𝑇 !
#

Simplify

Simplify

Guessing the pattern: 𝑇 𝑛 = 2& ⋅ 𝑇 !
"! + 𝑡 ⋅ 𝑛

Plug in 𝑡 = log 𝑛 , and get 
𝑇 𝑛 = 𝑛 ⋅ 𝑇 1 + log 𝑛 ⋅ 𝑛 = 𝑛 log 𝑛 + 1

You can guess the answer 
however you want: meta-
reasoning, a little bird told 
you, wishful thinking, etc.  
One useful way is to try to 
“unroll” the recursion, like 

we’re doing here.



Step 2: Prove the guess is correct.
• Inductive Hypothesis: 𝑇 𝑛 = 𝑛 log 𝑛 + 1 .
• Base Case (n=1): 𝑇 1 = 1 = 1 ⋅ log 1 + 1
• Inductive Step:
• Assume Inductive Hyp. for 1 ≤ 𝑛 < 𝑘 :
• Suppose that 𝑇 𝑛 = 𝑛 log 𝑛 + 1 for all 1 ≤ 𝑛 < 𝑘.

• Prove Inductive Hyp. for n=k:
• 𝑇 𝑘 = 2 ⋅ 𝑇 !

"
+ 𝑘 by definition

• 𝑇 𝑘 = 2 ⋅ !
"
log !

"
+ 1 + 𝑘 by induction.

• 𝑇 𝑘 = 𝑘 log 𝑘 + 1 by simplifying.
• So Inductive Hyp. holds for n=k.

• Conclusion: For all 𝑛 ≥ 1, 𝑇 𝑛 = 𝑛 log 𝑛 + 1
We’re being sloppy here about floors and 

ceilings…what would you need to do to be less sloppy?



Step 3: Profit

• Pretend like you never did Step 1, and just write down:

• Theorem: 𝑇 𝑛 = 𝑂(𝑛 log 𝑛 )
• Proof: [Whatever you wrote in Step 2]



Second Example

• 𝑇 𝑛 ≤ 𝑇 !
-
+ 𝑇 .!

/0
+ 𝑛 for 𝑛 > 10.

• Base case: 𝑇 𝑛 = 1 when 1 ≤ 𝑛 ≤ 10

Apply here, the 
Master Theorem does 

NOT.  

Jedi master Yoda



• Trying to work backwards gets gross fast…
• We can also just try it out.
• Let’s guess 𝑂(𝑛) and try to prove it.  

𝑇 𝑛 ≤ 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑛	for 𝑛 > 10.
Base case: 𝑇 𝑛 = 	1	when	1 ≤ 𝑛 ≤ 10

Looks pretty lin
ear?

Step 1: guess the answer



• Inductive Hypothesis: 𝑇 𝑛 ≤ 𝑪𝑛
• Base case: 1 = 𝑇 𝑛 ≤ 𝑪𝑛 for all 1 ≤ n ≤ 10
• Inductive step:  

• Let k > 10. Assume that the IH holds for all n so that 1 ≤ 𝑛 < 𝑘.
• 𝑇 𝑘 ≤ 𝑘 + 𝑇 !

"
+ 𝑇 #!

$%
≤ 𝑘 + 𝑪 ⋅ !

"
+ 𝑪 ⋅ #!

$%
= 𝑘 + 𝑪

"
𝑘 + #𝑪

$%
𝑘

≤ 𝑪𝑘 ??
• (aka, want to show that IH holds for n=k).

• Conclusion:
• There is some 𝑪 so that for all 𝑛 ≥ 1, 𝑇 𝑛 ≤ 𝑪𝑛
• By the definition of big-Oh, T(n) = O(n).

We don’t know 
what C should be 

yet!  Let’s go 
through the proof 
leaving it as “C” 
and then figure 

out what works…

Whatever we 
choose C to be, it 
should have C≥1

Let’s solve for C and make this true!
C = 10 works. 

𝑇 𝑛 ≤ 𝑇
𝑛
5 + 𝑇

7𝑛
10 + 𝑛	for 𝑛 > 10.

Base case: 𝑇 𝑛 = 	1	when	1 ≤ 𝑛 ≤ 10

Step 2: prove our guess is right



• Inductive Hypothesis: 𝑇 𝑛 ≤ 𝟏𝟎𝑛.
• Base case: 1 = 𝑇(𝑛) ≤ 𝟏𝟎𝑛 for all 1 ≤ n ≤ 10
• Inductive step:

• Let k > 10. Assume that the IH holds for all n so that 1 ≤ 𝑛 < 𝑘.
• 𝑇 𝑘 ≤ 𝑘 + 𝑇 !

"
+ 𝑇 #!

$%
≤ 𝑘 + 𝟏𝟎 ⋅ !

"
+ 𝟏𝟎 ⋅ #!

$%
= 𝑘 + 2𝑘 + 7𝑘 = 𝟏𝟎𝑘

• Thus, IH holds for n=k.
• Conclusion:

• For all 𝑛 ≥ 1, 𝑇 𝑛 ≤ 𝟏𝟎𝑛
• Then, T(n) = O(n), using the definition of big-Oh with 𝑛% = 1, 𝑐 = 10.

Theorem: 𝑇 𝑛 = 𝑂 𝑛
Proof:

𝑇 𝑛 ≤ 𝑛 + 𝑇
𝑛
5 + 𝑇

7𝑛
10  for 𝑛 > 10.

Base case: 𝑇 𝑛 = 	1	when	1 ≤ 𝑛 ≤ 10Step 3: profit



Linear Time Selection



• A is an array of size n, k is in {1,…,n}
• SELECT(A, k):
• Return the k-th smallest element of A.

7 4 3 8 1 5 9 14

• SELECT(A, 1) = MIN(A)
• SELECT(A, n/2) = MEDIAN(A)
• SELECT(A, n) = MAX(A)

• SELECT(A, 1) = 1
• SELECT(A, 2) = 3
• SELECT(A, 3) = 4
• SELECT(A, 8) = 14

Being sloppy about 
floors and ceilings!

The k select problem



Idea: divide and conquer!

9 8 3 6 1 4 2Say we want to find SELECT(A, k)

First, pick a “pivot.”
We’ll see how to do this later.

How about this pivot?

Next, partition the array into “bigger 
than 6” or “less than 6”

9 8 3 6 1 4 2

L = array with things smaller than A[pivot] R = array with things larger than A[pivot]



Idea: divide and conquer!

6Say we want to find SELECT(A, k)

First, pick a “pivot.”
We’ll see how to do this later.

Next, partition the array into “bigger 
than 6” or “less than 6”

9 83

6

1 4 2
L = array with things smaller than A[pivot] R = array with things larger than A[pivot]

This PARTITION step takes time O(n).  
(Notice that we don’t sort each half).

How about this pivot?



9 83 61 4 2

pivot
L = array with things 
smaller than A[pivot]

R = array with things 
larger than A[pivot]

Say we want to find SELECT(A, k)

• If k = 5 = len(L) + 1:
• We should return A[pivot]

• If k < 5: 
• We should return SELECT(L, k)

• If k > 5:
• We should return SELECT(R, k – 5)

This suggests a recursive algorithm

(still need to figure out how to pick the pivot…)

Idea continued...



• getPivot(A)returns some pivot for us.
• How?? We’ll see later…

• Partition(A,p) splits up A into L, A[p], R. 

• Select(A,k):
• If len(A) <= 50:
• A = MergeSort(A)
• Return A[k-1]  

• p = getPivot(A)
• L, pivotVal, R = Partition(A,p)
• if len(L) == k-1:
• return pivotVal

• Else if len(L) > k-1:
• return Select(L, k)

• Else if len(L) < k-1:
• return Select(R, k – len(L) – 1)

Base Case: If  len(A) = O(1), 
then any sorting algorithm 

runs in time O(1).

Case 1: We got lucky and found 
exactly the k’th smallest value!

Case 2: The k’th smallest value 
is in the first part of the list

Case 3: The k’th smallest value 
is in the second part of the list

Pseudocode



• 𝑇 𝑛 =
𝑇 𝐥𝐞𝐧 𝐋 + 𝑂 𝑛 𝐥𝐞𝐧 𝐋 > 𝑘 − 1
𝑇 𝐥𝐞𝐧 𝐑 + 𝑂 𝑛 𝐥𝐞𝐧 𝐋 < 𝑘 − 1
𝑂 𝑛 𝐥𝐞𝐧 𝐋 = 𝑘 − 1

• What are len(L) and len(R)?
• That depends on how we pick the pivot…

The best way would be to always pick the pivot so that len(L) = k-1.  
But say we don’t have control over k, just over how we pick the pivot.

What is the running time?



• We split the input exactly in half:
• len(L) = len(R) = (n-1)/2

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 !
$
+ 𝑂 𝑛% .  Then

𝑇 𝑛 =
O 𝑛% log 𝑛 	 if	𝑎 = 𝑏%

O 𝑛% 	 if	𝑎 < 𝑏%

O 𝑛&'(! ) 	 if	𝑎 > 𝑏%

What happens in that case?

In case it’s helpful…

The ideal pivot



• We split the input exactly in half:
• len(L) = len(R) = (n-1)/2

• Let’s pretend that’s the case and  use the 
Master Theorem!

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 !
B + 𝑂 𝑛C .  Then

• 𝑇 𝑛 ≤ 𝑇 !
" + 𝑂(𝑛)

• So a = 1, b = 2, d = 1

• 𝑇 𝑛 ≤ 𝑂 𝑛C = 𝑂 𝑛

𝑇 𝑛 =
O 𝑛C log 𝑛 	 if	𝑎 = 𝑏C

O 𝑛C 	 if	𝑎 < 𝑏C

O 𝑛DEF" G 	 if	𝑎 > 𝑏C

That would be great!

The idea pivot



• Say our choice of pivot doesn’t depend on A.
• A bad guy who knows what pivots we will choose

gets to come up with A.  

pivot

The worst pivot

7 4 3 8 1 5 9 14



The distinction matters!

See Lecture 4 Python notebook for code that generated this picture.

This one is a random 
pivot, so it splits the 
array about in half.

Looks fast!

For this one I chose the worst 
possible pivot.  Looks like O(n2).

MergeSort-based solution



How do we pick our ideal pivot?

• We’d like to live in the ideal world.

• Pick the pivot to divide the input in half.
• Aka, pick the median!
• Aka, pick SELECT(A, n/2)!



How about a good enough pivot?

• We’d like to approximate the ideal world.

• Pick the pivot to divide the input about in half!
• Maybe this is easier!



• We split the input not quite in half:
• 3n/10 < len(L) < 7n/10
• 3n/10 < len(R) < 7n/10

• If we could do that (let’s say, in time O(n)), the Master 
Theorem would say:

• Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇 !
$
+ 𝑂 𝑛% .  Then

We still don’t know that we 
can get such a pivot, but at 
least it gives us a goal and a 

direction to pursue!

Lucky the lackadaisical lemur

• 𝑇 𝑛 ≤ 𝑇 H!
IJ + 𝑂(𝑛)

• So a = 1, b = 10/7, d = 1

• 𝑇 𝑛 ≤ 𝑂 𝑛C = 𝑂 𝑛

STILL GOOD!

A good enough pivot



Goal

• Efficiently pick the pivot so that

9 83

6

1 4 2 pivot

L = array with things 
smaller than A[pivot]

R = array with things 
larger than A[pivot]

𝟑𝒏
𝟏𝟎

	< 	𝐥𝐞𝐧 𝑳 <
𝟕𝒏
𝟏𝟎

𝟑𝒏
𝟏𝟎

	< 	𝐥𝐞𝐧 𝑹 <
𝟕𝒏
𝟏𝟎



• We can’t solve SELECT(A,n/2) (yet)
• But we can divide and conquer and solve SELECT(B,m/2) for smaller 

values of m (where len(B) = m). 
• Lemma*: The median of sub-medians is close to the median.

*we will make this a bit 
more precise.

sub-mediansub-mediansub-mediansub-mediansub-median

median of 
sub-medians

median of the 
whole thing

≈What we’ll use as the pivot
Ideal pivot

Another divide-and-conquer alg!



How to pick the pivot
• CHOOSEPIVOT(A):

• Split A into m = !
"

groups, of size <=5 each.
• For i=1, .., m:

• Find the median within the i’th group, call it pi

• p = SELECT( [ p1, p2, p3, …, pm ] , m/2 ) 
• return the index of p in A

5 9 1 3 41 8 9 3 15 12 2 1 5 20 15 13 2 4 6 12 1 15 22 3

This takes time O(1) for each group, since each group 
has size 5.  So that’s O(m)=O(n) total in the for loop.

8

4

5

6

12
Pivot is SELECT(                                      , 3  ) = 6: 8 4 5 6 12

5 9 1 3 41 8 9 3 15 12 2 1 5 20 15 13 2 4
6

12 1 15 22 3

5 91 3 41 8 93 15 122 1 5 20 15 132 4
6

121 15 223

PARTITION around that 6:

This part is L This part is R: it’s almost the same size as L.



• Formally, we have:

Lemma: If we choose the pivots like this, then

𝐿 ≤
7𝑛
10

+ 5
and

𝑅 ≤
7𝑛
10

+ 5

This divides the array approximately in half



The most lopsided split that can happen after partitioning 
around the median of medians is 70/30.

1

2

3

101

102

4

5

6

103

104

7

8

9

105

106

10

107

108

11

12

13

16

17

14

15

18

21

22

19

20

23

26

27

24

25

At least ½ of the groups 
have medians <= pivot

At least ⅗ of each 
group is <= the 
group’s median.

If we group into groups of 5 and sort by the groups’ medians, 
the gray stuff (at least ⅗ * ½ = 3/10) all lies in one side of the 
partition.

Why 70%/30% split worst case?



How about the running time?

• Suppose the Lemma is true.  (It is).
• 𝐿 ≤ H!

IJ + 5 and 𝑅 ≤ H!
IJ + 5

• Recurrence relation:

𝑇 𝑛 ≤ 𝑇 !
-
+ 𝑇 .!

/0
+ 𝑂 𝑛

Outside of CHOOSEPIVOT, there’s at most one 
recursive call to SELECT on array of size 7n/10 + 5.  

The call to CHOOSEPIVOT makes 
one further recursive call to 

SELECT on an array of size n/5.
We’re going to drop the “+5” for convenience,
but it does not change the final answer. Why?
Hint: Define T’(n) := T(n+1000) and write recurrence for T’

Siggi the Studious Stork



This sounds like a job for…

The Substitution Method!

𝑇 𝑛 ≤ 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑂(𝑛)

Conclusion: 𝑇 𝑛 = 𝑂 𝑛  

Step 1: generate a guess
Step 2: try to prove that your guess is correct
Step 3: profit

Technically we only did it for 
𝑇 𝑛 ≤ 𝑇 !

"
+ 𝑇 #!

$%
+ 𝑛, 

not when the last term 
has a big-Oh…

 

Plucky the Pedantic Penguin

That’s convenient!  We did this at the 
beginning of lecture!



Practice example

• Input:
• Array A containing n possibly very large integers
• k ranks 𝑟J, ..., 𝑟L, which are integers in the range {1, ..., n}

• Output:
• Array B which contains the 𝑟M-th smallest of the n integers, for every j in 1,...,k

• Requirement: 
• An 𝑂(𝑛 log 𝑘) algorithm



Practice example

• Find the median rank 𝑟1 using the Select algorithm
• Run Select algorithm to find 𝑎1, the 𝑟1-th smallest integer in A
• Recurse separately on 
• (i) the ranks and integers greater than 𝑟N and 𝑎N (respectively); 
• (ii) the ones smaller than 𝑟N and 𝑎N

• Runtime:
• The recursion tree has a depth of log(𝑘)
• At each level, the time spent if 𝑂 𝑛 + 𝑘 = 𝑂(𝑛)
• So in total 𝑂(𝑛 log 𝑘)



Practice example

• We have an array of positive numbers ℎ/, ℎ", ⋯ , ℎ!
• The sum is ∑2 ℎ2 = 𝐶
• The weighted median is defined as k such that:
• ∑O: Q#RQ$ ℎO ≤

S
"

• ∑O: Q#TQ$ ℎO ≤
S
"

• Goal: compute the weighted median in 𝑂(𝑛) worst case time



Practice example

• Find median ℎ3 from ℎ/, ℎ", ⋯ , ℎ!
• Compute the sum of each side:
• 𝐻U = ∑O: Q#RQ$ ℎO
• 𝐻V = ∑O: Q#TQ$ ℎO

• If 𝐻4 ≤
5
"

and 𝐻6 ≤
5
"
, return

• If 𝐻4 >
5
"
:

• Change ℎL to ℎL +𝐻V, recurse on the elements smaller than ℎL
• Else: 
• Change ℎL to ℎL +𝐻U, recurse on the elements larger than ℎL



Quicksort



7 6 3 5 1 2 4

We want to sort this array.

First, pick a “pivot.”
Do it at random.

random pivot!Next, partition the array into 
“bigger than 5” or “less than 5”

7 6 3

This PARTITION step 
takes time O(n).  
(Notice that we 

don’t sort each half).
[same as in SELECT]

5 1 2 4

L = array with things 
smaller than A[pivot]

R = array with things 
larger than A[pivot]

Arrange them like so:

Recurse on L and R: 763 51 42

Quicksort



• QuickSort(A):
• If len(A) <= 1:
• return

• Pick some x = A[i] at random.  Call this the pivot.
• PARTITION the rest of A into: 
• L (less than x) and 
• R (greater than x)

• Replace A with  [L, x, R]  (that is, rearrange A in this order)
• QuickSort(L) 
• QuickSort(R) 

PseudoPseudoCode for what we just saw



Running time?

• 𝑇 𝑛 = 𝑇 |𝐿| + 𝑇 𝑅 + 𝑂 𝑛

• In an ideal world…
• if the pivot splits the array exactly in half…

𝑇 𝑛 = 2 ⋅ 𝑇
𝑛
2
+ 𝑂 𝑛

• We’ve seen that a bunch:
𝑇(𝑛) = 𝑂(𝑛 log(𝑛)).



*

The expected running time of QuickSort is 
O(nlog(n)).

• 𝐸 𝐿 = 	𝐸 𝑅 = !WI
"

.
• The expected number of items on each side of the pivot is half of the things.

• If that occurs, the running time is 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).
• Since the relevant recurrence relation is 𝑇 𝑛 = 2𝑇 '($

)
+ 𝑂(𝑛)

• Therefore, the expected running time is 𝑂(𝑛 log(𝑛)).

Proof:

*Disclaimer: this proof is WRONG.



• 𝐸 𝐿 = 𝐸 𝑅 = !WI
" .

• The expected number of items on each side of the pivot is half of the things.

• If that occurs, the running time is 𝑇(𝑛) = 𝑂(𝑛 log(𝑛)).
• Since the relevant recurrence relation is 𝑇 𝑛 = 2𝑇 '($

)
+ 𝑂(𝑛)

• Therefore, the expected running time is 𝑂(𝑛 log(𝑛)).

Plucky the Pedantic Penguin

That’s not how 
expectations work!

• The running time in the “expected” situation is 
not the same as the expected running time.

• Sort of like how E[X2] is not the same as (E[X])2

What’s wrong?



Example of recursive calls

7 6 3 5 1 2 4

7 63 51 2 4

3 1 2 4 7 6

31 42

5

5 76

1 2 3 4 5 76

Pick 5 as a pivot

Partition on either side of 5

Recurse on [76] and 
pick 6 as a pivot.

Partition on 
either side of 6

Recurse on [3142] 
and pick 3 as a pivot.

Recurse on [7], it has 
size 1 so we’re done.

Partition 
around 3.

Recurse on 
[4] (done).

Recurse on 
[12] and 
pick 2 as a 
pivot.

partition 
around 2.

1 2
Recurse on 
[1] (done). 1

3 4 5 76

2 3 4 5 76



How long does this take to run?
• We will count the number of comparisons that the 

algorithm does.
• This turns out to give us a good idea of the runtime. (Not obvious, 

but we can “charge” all operations to comparisons).
• How many times are any two items compared?

7 6 3 5 1 2 4

7 63 51 4 2

In the example before, 
everything was compared 
to 5 once in the first 
step….and never again.

3 1 2 4 7 6

31 42

5

5 76

But not everything was 
compared to 3.  
5 was, and so were 1,2 and 4.  
But not 6 or 7.



Each pair of items is compared either 0 or 1 
times.  Which is it?

7 6 3 5 1 2 4 Let’s assume that the numbers 
in the array are actually the 

numbers 1,…,n

• Whether or not a, b are compared is a random variable, that depends on 
the choice of pivots.  Let’s say 

𝑿𝒂,𝒃 = 3 𝟏	 if	𝒂	and	𝒃	are	ever	compared
	 𝟎	 if	𝒂	and	𝒃	are	never	compared	

• In the previous example X1,5 = 1, because item 1 and item 5 were compared.
• But X3,6 = 0, because item 3 and item 6 were NOT compared.

Of course this doesn’t have to be the case!  It’s a good 
exercise to convince yourself that the analysis will still go 

through without this assumption.



• The number of comparisons total during the algorithm is

L
GXI

!WI

L
BXGYI

!

𝑋G,B

• The expected number of comparisons is

𝐸 L
GXI

!WI

L
BXGYI

!

𝑋G,B = L
GXI

!WI

L
BXGYI

!

𝐸[ 𝑋G,B]

by using linearity of expectations.

Counting comparisons



• So we just need to figure out E[ Xa,b ]
• 𝐸 𝑋G,B = 𝑃(𝑋G,B = 1) ⋅ 1 + 𝑃(𝑋G,B = 0) ⋅ 0 = 𝑃(𝑋G,B = 1)

(by the definition of expectation)

• So we need to figure out:
P(Xa,b = 1) = the probability that a and b are ever compared.

7 6 3 5 1 42 Say that a = 2 and b = 6.  What is the probability 
that 2 and 6 are ever compared?

7 6 3 5 1 42 This is exactly the probability that either 2 or 6 is first 
picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be 
separated and never see each other again.7 63 51 2 4

expected	number	of	comparisons:

f
)*+

!,+

f
$*)-+

!

𝐸[	𝑋),$]	
Counting comparisons



Counting comparisons

𝑃 𝑋;,= = 1
= probability a,b are ever compared
= probability that one of a,b are picked first out of 

all of the b – a +1 numbers between them.

= "
= >;?/

7 6 3 5 1 42

2 choices out of b-a+1…



All together now…

Expected number of comparisons
• 𝐸 ∑;@/!>/∑=@;?/! 𝑋;,=
• = ∑;@/!>/∑=@;?/! 𝐸[ 𝑋;,=]
• = ∑;@/!>/∑=@;?/! 𝑃( 𝑋;,= = 1)

• = ∑;@/!>/∑=@;?/! "
= >;?/

• This is a big nasty sum, but we can do it.
• We get that this is less than 2n ln(n).

linearity of expectation

definition of expectation

the reasoning we just did

This is the expected number of 
comparisons throughout the algorithm



8 7 1 3 5 6 4

8 7 1 3 5 6 4

1 7 8 3 5 6 4

1 3 8 7 5 6 4

1 3 8 7 5 6 4

1 3 4 7 5 6 8

Pivot

Swap!

Initialize       and 

Step    forward.

When    sees something 
smaller than the pivot, 
swap the things ahead 
of the bars and 
increment both bars.

Repeat till the end, then 
put the pivot in the 
right place.

Choose it randomly, then swap it 
with the last one, so it’s at the end.

In-Place Partition for Quick Sort



Practice example

• Input: n distinct ordered pairs of integers (𝑥/, 𝑦/), (𝑥", 𝑦"), ..., 
(𝑥! , 𝑦!), where for all 𝑖, 𝑗, 𝑥2 ≠ 𝑥A and 𝑦2 ≠ 𝑦A

• A set of points S is collinear if they all fall on the same line
• That is, for all (𝑥O, 𝑦O) ∈ 𝑆, 𝑦O = 𝑚𝑥O + 𝑏 for fixed m and b

• Output: maximum integer N such that we can find N of the given 
points the same line 

• Requirement: 𝑂(𝑛" log 𝑛)



Practice example

• For all pairs of points, compute their slope and intercept (m, b)
• QuickSort these pairs in increasing order of m, and then in increasing 

order of b as a tiebreaker.
• Iterate through the pairs, and note where the longest run of identical 

(m, b) pairs occurs
• Return a list of the points in this run of pairs

• Runtime: 
• there are 𝑂(𝑛") pairs of points
• Quicksort takes 𝑂(𝑛" log 𝑛") = 𝑂(𝑛" log 𝑛) time



Practice example

• CautiousQuickSort is the following:
• the pivot is chosen by repeatedly randomly
• stop if it partitions an array of n elements into two subarrays each with at 

least  n/3 elements
• Use partition to determine this condition

• Questions:
• What is the probability of selecting a good pivot after a single trial?

• 1/3
• What is the maximum recursion depth of CautiousQuickSort?

• O(log n)



Practice example

• What is the expected runtime?
• Testing whether a pivot is good takes O(n) time
• On each level of recursion, the expected number of random selections until a 

good pivot is found is 3
• So, the expected amount of work done on each recursive level is O(n)
• The depth is O(log n)
• Thus, in total O(n log n) runtime



Lower bound for sorting



Lower bound of Ω(n log(n)). 
• Theorem:

• Any deterministic comparison-based sorting algorithm must take Ω(n log(n)) steps.

• Proof recap:
• Any deterministic comparison-based algorithm can be represented as a decision 

tree with n! leaves.

• The worst-case running time is at least the depth of the decision tree.

• All decision trees with n! leaves have depth Ω(n log(n)).

• So any comparison-based sorting algorithm must have worst-case running time at 
least Ω(n log(n)).



YES NO
?

??
YES NOYES NO

????

If we take this path through 
the tree, the runtime is 
Ω(length of the path).

A: At least the length of 
the path from the root to 
the corresponding leaf.



How long is the longest path?

YES NO

?

??
YES NOYES NO

????

• This is a binary tree with at 
least _____ leaves.

• The shallowest tree with n! 
leaves is the completely 
balanced one, which has 
depth ______.

• So in all such trees, the 
longest path is at least log(n!).

n!

log(n!)

Conclusion: the longest path 
has length at least Ω(n log(n)).

We want a statement: in all such trees, 
the longest path is at least _____

• n! is about (n/e)n (Stirling’s approximation).
• log(n!) is about n log(n/e) = Ω(n log(n)).



Some “bad” news

• Theorem:
• Any deterministic comparison-based sorting algorithm must take Ω(n log(n)) 

steps.

• Theorem:
• Any randomized comparison-based sorting algorithm must take Ω(n log(n)) 

steps in expectation.

Bad Side: we can’t improve on n*log(n)
Bright Side: we know we’re done and can focus on other problems


