Review Section 2/9

Big O notation

Main Idea

Focus on how the runtime scales with n (the input size).

Some examples...

(Only pay attention to the largest function of n that appears.)

Number of operations	Asymptotic Running Time
$\left.\frac{1}{1} e^{n}\right)+10 n^{2}$	$O\left(e^{n}\right)$
$\left.n^{3}\right)+2 n^{2}+7$	$O\left(n^{3}\right)$
$0.1 \sqrt{n}-10^{9} n^{0.05}$	$O(\sqrt{n})$
$11 \log (n)+1$	$O(\log (n))$

We say this algorithm is "asymptotically faster"
than the others.

Informal definition for O(...)

- Let $T(n), g(n)$ be functions of positive integers.
- Think of $T(n)$ as a runtime: positive and increasing in n.
- We say " $T(n)$ is $O(g(n))$ " if: for large enough n,
$T(n)$ is at most some constant multiple of $g(n)$.

Formal definition of O(...)

- Let $T(n), g(n)$ be functions of positive integers.
- Think of $T(n)$ as a runtime: positive and increasing in n.
- Formally,

$$
\begin{aligned}
& T(n)=O(g(n)) \\
& \text { "If and only if" } \quad \text { "For all" } \\
& \text { "There exists" } \\
& \begin{array}{c}
\exists c, n_{0}>0 s . t_{2} \forall n \geq n_{0}, \\
T(n) \leq c \cdot g(n)
\end{array} \\
& \text { "such that" }
\end{aligned}
$$

Example
$2 n^{2}+10=O\left(n^{2}\right)$

$$
T(n)=O(g(n))
$$

$$
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}
$$

$$
T(n) \leq c \cdot g(n)
$$

Example
$2 n^{2}+10=O\left(n^{2}\right)$

$$
T(n)=O(g(n))
$$

$$
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}
$$

$$
T(n) \leq c \cdot g(n)
$$

Example $2 n^{2}+10=O\left(n^{2}\right)$

$$
T(n)=O(g(n))
$$

$$
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}
$$

$$
T(n) \leq c \cdot g(n)
$$

Formally:

- Choose c = 3
- Choose $\mathrm{n}_{0}=4$
- Then:

$$
\begin{gathered}
\forall n \geq 4 \\
2 n^{2}+10 \leq 3 \cdot n^{2}
\end{gathered}
$$

Same example

$2 n^{2}+10=O\left(n^{2}\right)$

$$
T(n)=O(g(n))
$$

$$
\Leftrightarrow
$$

$\exists c, n_{0}>0$ s.t. $\forall n \geq n_{0}$,
$T(n) \leq c \cdot g(n)$

Formally:

- Choose c = 7
- Choose $\mathrm{n}_{0}=2$
- Then:
$\forall n \geq 2$, $2 n^{2}+10 \leq 7 \cdot n^{2}$

There is not a
"correct" choice of c and n_{0}

$\Omega(\ldots)$ means lower bound

- We say " $T(n)$ is $\Omega(g(n))$ " if, for large enough n , $T(n)$ is at least as big as a constant multiple of $g(n)$.
- Formally,

$$
\begin{gathered}
T(n)=\Omega(g(n)) \\
\Leftrightarrow \\
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}, \\
c \cdot g(n) \leq T(n) \\
\text { Switched these!! }
\end{gathered}
$$

Example $n \log _{2}(n)=\Omega(3 n)$

$$
\begin{gathered}
T(n)=\Omega(g(n)) \\
\Leftrightarrow \\
\exists c, n_{0}>0 \text { s.t. } \forall n \geq n_{0}, \\
c \cdot g(n) \leq T(n)
\end{gathered}
$$

- Choose c=1/3
- Choose $\mathrm{n}_{0}=2$
- Then

$$
\forall n \geq 2
$$

$$
\frac{3 n}{3} \leq n \log _{2}(n)
$$

$\Theta(\ldots)$ means both!

- We say " $T(n)$ is $\Theta(g(n))$ " iff both:

$$
\begin{gathered}
T(n)=O(g(n)) \\
\text { and }
\end{gathered}
$$

$$
T(n)=\Omega(g(n))
$$

Induction

Background on Induction

- Type of mathematical proof
- Typically used to establish a given statement for all natural numbers (e.g. integers >0)
- Proof is a sequence of deductive steps
- Show the statement is true for the first number.
- Show that if the statement is true for any one number, this implies the statement is true for the next number.
- If so, we can infer that the statement is true for all numbers.

Components of Inductive Proof

Inductive proof is composed of 3 major parts :

- Base Case : One or more particular cases that represent the most basic case. (e.g. $\mathrm{n}=1$ to prove a statement in the range of positive integer)
- Induction Hypothesis : Assumption that we would like to be based on. (e.g. Let's assume that $\mathrm{P}(\mathrm{k})$ holds)
- Inductive Step : Prove the next step based on the induction hypothesis. (i.e. Show that Induction hypothesis $\mathrm{P}(\mathrm{k})$ implies $\mathrm{P}(\mathrm{k}+1)$)

Weak Induction vs Strong Induction:

- In weak induction, we only assume that particular statement holds at kth step,
- In strong induction, we assume that the particular statement holds at all the steps from the base case to k-th step

Example: Integer Summation

Claim:

$$
\text { Let } S(n)=\sum_{i=1}^{n} i \text {. Then } S(n)=\frac{n(n+1)}{2} \text {. }
$$

Base Case:

We show the statement is true for $n=1$. As $S(1)=1=\frac{1(2)}{2}$, the statement holds.

Induction Hypothesis:

We assume $S(n)=\frac{n(n+1)}{2}$.

Example: Integer Summation

Inductive Step:

We show $S(n+1)=\frac{(n+1)(n+2)}{2}$. Note that $S(n+1)=S(n)+n+1$. Hence

$$
\begin{aligned}
S(n+1) & =S(n)+n+1 \\
& =\frac{n(n+1)}{2}+n+1 \\
& =(n+1)\left(\frac{n}{2}+1\right) \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

Substitution Method

The Substitution Method

- Another way to solve recurrence relations.
- More general than the master method.
- Step 1: Generate a guess at the correct answer.
- Step 2: Try to prove that your guess is correct.
- (Step 3: Profit.)

First Example

- Consider the following problem:

$$
T(n)=2 \cdot T\left(\frac{n}{2}\right)+n, \text { with } T(0)=0, T(1)=1 .
$$

- The Master Method says $T(n)=O(n \log (n))$.
- We will prove this via the Substitution Method.

Step 1: Guess the answer

- $T(n)=2 \cdot T\left(\frac{n}{2}\right)+n$
- $T(n)=2 \cdot\left(2 \cdot T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n^{2}$ Expand $T\left(\frac{n}{2}\right)$
- $T(n)=4 \cdot T\left(\frac{n}{4}\right)+2 n$
- $T(n)=4 \cdot\left(2 \cdot T\left(\frac{n}{8}\right)+\frac{n}{4}\right)+2 n$

Simplify

- $T(n)=8 \cdot T\left(\frac{n}{8}\right)+3 n$

You can guess the answer however you want: metareasoning, a little bird told you, wishful thinking, etc. One useful way is to try to "unroll" the recursion, like we're doing here.

Guessing the pattern: $T(n)=2^{t} \cdot T\left(\frac{n}{2^{t}}\right)+t \cdot n$
Plug in $t=\log (n)$, and get

$$
T(n)=n \cdot T(1)+\log (n) \cdot n=n(\log (n)+1)
$$

Step 2: Prove the guess is correct.

- Inductive Hypothesis: $T(n)=n(\log (n)+1)$.
- Base Case $(\mathrm{n}=1): T(1)=1=1 \cdot(\log (1)+1)$
- Inductive Step:
- Assume Inductive Hyp. for $1 \leq n<k$:
- Suppose that $T(n)=n(\log (n)+1)$ for all $1 \leq n<k$.
- Prove Inductive Hyp. for $\mathrm{n}=\mathrm{k}$:
- $T(k)=2 \cdot T\left(\frac{k}{2}\right)+k$ by definition
- $T(k)=2 \cdot\left(\frac{k}{2}\left(\log \left(\frac{k}{2}\right)+1\right)\right)+k$ by induction.
- $T(k)=k(\log (k)+1)$ by simplifying.
- So Inductive Hyp. holds for $n=k$.
- Conclusion: For all $n \geq 1, T(n)=n(\log (n)+1)$

Step 3: Profit

- Pretend like you never did Step 1, and just write down:
- Theorem: $T(n)=O(n \log (n))$
- Proof: [Whatever you wrote in Step 2]

Second Example

- $T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+n$ for $n>10$.
- Base case: $T(n)=1$ when $1 \leq n \leq 10$

Apply here, the
Master Theorem does
NOT.

Step 1: guess the answer

$$
\begin{aligned}
& T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+n \text { for } n>10 \\
& \text { Base case: } T(n)=1 \text { when } 1 \leq n \leq 10
\end{aligned}
$$

- Trying to work backwards gets gross fast...
- We can also just try it out.
- Let's guess $O(n)$ and try to prove it.

$$
T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+n \text { for } n>10
$$

Step 2: prove our guess is right

We don't know what C should be yet! Let's go

- Inductive Hypothesis: $T(n) \leq C n$ through the proof
- Base case: $1=T(n) \leq \boldsymbol{C} n$ for all $1 \leq \mathrm{n} \leq 10$
leaving it as "C" and then figure
- Inductive step:
- Let $\mathrm{k}>10$. Assume that the IH holds for all n so that $1 \leq n<k$.
- $T(k) \leq k+T\left(\frac{k}{5}\right)+T\left(\frac{7 k}{10}\right)$

Whatever we

$$
\begin{aligned}
& \leq k+C \cdot\left(\frac{k}{5}\right)+C \cdot\left(\frac{7 k}{10}\right) \\
& =k+\frac{C}{5} k+\frac{7 C}{10} k \\
& \leq C k ? ?
\end{aligned}
$$

choose C to be, it

$$
\text { should have } \mathrm{C} \geq 1
$$

- (aka, want to show that IH holds for $\mathrm{n}=\mathrm{k}$).
- Conclusion:

$$
\mathrm{C}=10 \text { works. }
$$

- There is some C so that for all $n \geq 1, T(n) \leq C n$
- By the definition of big-Oh, $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})$.

Step 3: profit

$T(n) \leq n+T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)$ for $n>10$.

Theorem: $T(n)=O(n)$ Proof:

- Inductive Hypothesis: $T(n) \leq 10 n$.
- Base case: $1=T(n) \leq 10 n$ for all $1 \leq \mathrm{n} \leq 10$
- Inductive step:
- Let $\mathrm{k}>10$. Assume that the IH holds for all n so that $1 \leq n<k$.
- $T(k) \leq k+T\left(\frac{k}{5}\right)+T\left(\frac{7 k}{10}\right)$

$$
\begin{aligned}
& \leq k+10 \cdot\left(\frac{k}{5}\right)+10 \cdot\left(\frac{7 k}{10}\right) \\
& =k+2 k+7 k=10 k
\end{aligned}
$$

- Thus, lH holds for $\mathrm{n}=\mathrm{k}$.
- Conclusion:
- For all $n \geq 1, T(n) \leq \mathbb{1} 0 n$
- Then, $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})$, using the definition of big-Oh with $n_{0}=1, c=10$.

Linear Time Selection

The k select problem

- A is an array of size n, k is in $\{1, \ldots, n\}$
- SELECT(A, k):
- Return the k-th smallest element of A.

$$
\begin{array}{l|l|l|l|l|l|l|l|}
\hline 7 & 4 & 3 & 8 & 1 & 5 & 9 & 14 \\
\hline
\end{array}
$$

- $\operatorname{SELECT}(\mathrm{A}, 1)=1 \quad \operatorname{SELECT}(\mathrm{~A}, 1)=\operatorname{MIN}(\mathrm{A})$

Being sloppy about

- $\operatorname{SELECT}(A, 2)=3 \quad \operatorname{SELECT}(A, n / 2)=\operatorname{MEDIAN}(A)$
- $\operatorname{SELECT}(A, 3)=4 \quad \operatorname{SELECT}(A, n)=\operatorname{MAX}(A)$
- $\operatorname{SELECT}(\mathrm{A}, 8)=14$

Idea: divide and conquer!

Say we want to find $\operatorname{SELECT}(A, k)$

First, pick a "pivot."

We'll see how to do this later.

Next, partition the array into "bigger than 6 " or "less than 6"

Idea: divide and conquer!

Say we want to find $\operatorname{SELECT}(A, k)$

First, pick a "pivot."
We'll see how to do this later.

Next, partition the array into "bigger than 6 " or "less than 6 "

$\mathrm{L}=$ array with things smaller than A [pivot]

This PARTITION step takes time O(n). (Notice that we don't sort each half).

Idea continued...

Say we want to find $\operatorname{SELECT}(A, k)$

- If $\mathrm{k}=5=\operatorname{len}(\mathrm{L})+1$:
- We should return A[pivot]
- If k <5 :
- We should return $\operatorname{SELECT}(\mathrm{L}, \mathrm{k})$
- If $\mathrm{k}>5$:
- We should return $\operatorname{SELECT}(\mathrm{R}, \mathrm{k}-5)$

This suggests a recursive algorithm

(still need to figure out how to pick the pivot...)

Pseudocode

- Select(A,k):
- If len(A) <= 50:
- $A=\operatorname{MergeSort(A)~}$
- Return A[k-1]
- $p=\operatorname{getPivot}(A)$
- L, pivotVal, R = Partition(A,p)
- if len(L) == $k-1$:
- return pivotVal
- Else if len $(\mathrm{L})>\mathrm{k}-1$:
- return Select(L, k)

Case 1: We got lucky and found exactly the k^{\prime} th smallest value!

Case 2: The k'th smallest value is in the first part of the list

- Else if len $(\mathrm{L})<k-1$:
- return Select(R, $k-\operatorname{len}(\mathrm{L})-1)$

Base Case: If len $(A)=O(1)$,
then any sorting algorithm
then any sorting algorithm
runs in time $O(1)$.

- Partition (A, P) splits up A into L, A[p], R.
- getPivot (A) returns some pivot for us.
- How?? We'll see later...

Case 3: The k'th smallest value is in the second part of the list

What is the running time?

$T(n)= \begin{cases}T(\operatorname{len}(\mathbb{L}))+O(n) & \operatorname{len}(\mathbb{L})>k-1 \\ T(\operatorname{len}(\mathbb{R}))+O(n) & \operatorname{len}(\mathbb{L})<k-1 \\ O(n) & \operatorname{len}(\mathbb{L})=k-1\end{cases}$

- What are len (L) and len(R$)$?
- That depends on how we pick the pivot...

The best way would be to always pick the pivot so that len $(\mathrm{L})=k-1$.
But say we don't have control over k, just over how we pick the pivot.

The ideal pivot

Utopia

- We split the input exactly in half:
- $\operatorname{len}(\mathrm{L})=\operatorname{len}(\mathrm{R})=(\mathrm{n}-1) / 2$

What happens in that case?

In case it's helpful...

- Suppose $T(n)=a \cdot T\left(\frac{n}{b}\right)+O\left(n^{d}\right)$. Then

$$
T(n)= \begin{cases}\mathrm{O}\left(n^{d} \log (n)\right) & \text { if } a=b^{d} \\ \mathrm{O}\left(n^{d}\right) & \text { if } a<b^{d} \\ \mathrm{O}\left(n^{\log _{b}(a)}\right) & \text { if } a>b^{d}\end{cases}
$$

The idea pivot

- We split the input exactly in half:
- $\operatorname{len}(\mathrm{L})=\operatorname{len}(\mathrm{R})=(\mathrm{n}-1) / 2$
- Let's pretend that's the case and use the Master Theorem!
- Suppose $T(n)=a \cdot T\left(\frac{n}{b}\right)+O\left(n^{d}\right)$. Then
- $T(n) \leq T\left(\frac{n}{2}\right)+O(n)$
- So $a=1, b=2, d=1$
- $T(n) \leq O\left(n^{d}\right)=O(n)$

$$
T(n)= \begin{cases}\mathrm{O}\left(n^{d} \log (n)\right) & \text { if } a=b^{d} \\ \mathrm{O}\left(n^{d}\right) & \text { if } a<b^{d} \\ \mathrm{O}\left(n^{\log _{b}(a)}\right) & \text { if } a>b^{d}\end{cases}
$$

The worst pivot

- Say our choice of pivot doesn't depend on A.
- A bad guy who knows what pivots we will choose gets to come up with A.

The distinction matters!

Selection

See Lecture 4 Python notebook for code that generated this picture.

How do we pick our ideal pivot?

- We'd like to live in the ideal world.

- Pick the pivot to divide the input in half.
- Aka, pick the median!
- Aka, pick SELECT(A, n/2)!

How about a good enough pivot?

- We'd like to approximate the ideal world.

- Pick the pivot to divide the input about in half!
- Maybe this is easier!

A good enough pivot

- We split the input not quite in half:
- 3n/10<len(L) < 7n/10
- $3 n / 10<\operatorname{len}(R)<7 n / 10$

- If we could do that (let's say, in time $O(n)$), the Master Theorem would say:
- $T(n) \leq T\left(\frac{7 n}{10}\right)+O(n)$
- So $\mathrm{a}=1, \mathrm{~b}=10 / 7, \mathrm{~d}=1$
- $T(n) \leq O\left(n^{d}\right)=O(n)$
- Suppose $T(n)=a \cdot T\left(\frac{n}{b}\right)+O\left(n^{d}\right)$. Then

$$
T(n)= \begin{cases}O\left(n^{d} \log (n)\right) & \text { if } a=b^{d} \\ O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{\log _{b}(a)}\right) & \text { if } a>b^{d}\end{cases}
$$

Goal

- Efficiently pick the pivot so that

$$
\frac{3 n}{10}<\operatorname{len}(L)<\frac{7 n}{10} \quad \frac{3 n}{10}<\operatorname{len}(R)<\frac{7 n}{10}
$$

Another divide-and-conquer alg!

- We can't solve $\operatorname{SELECT}(A, n / 2)$ (yet)
- But we can divide and conquer and solve $\operatorname{SELECT}(B, m / 2)$ for smaller values of m (where len $(B)=m$).
- Lemma*: The median of sub-medians is close to the median.

*we will make this a bit more precise.

How to pick the pivot

- CHOOSEPIVOT(A):

- Split A into $m=\left\lceil\frac{n}{5}\right]$ groups, of size $<=5$ each.
- For $\mathrm{i}=1, . ., \mathrm{m}$:
- Find the median within the i'th group, call it p_{i}
- $p=\operatorname{SELECT}\left(\left[p_{1}, p_{2}, p_{3}, \ldots, p_{m}\right], m / 2\right)$
- return the index of p in A

This takes time O(1) for each group, since each group has size 5 . So that's $O(m)=O(n)$ total in the for loop.

PARTITION around that 6:

| 1 | 3 | 5 | 1 | 3 | 4 | 2 | 1 | 2 | 4 | 1 | 3 | 5 | | 8 | 9 | 15 | 9 | 12 | 20 | 15 | 13 | 12 | 15 | 22 |
| :--- |

This divides the array approximately in half

- Formally, we have:

Lemma: If we choose the pivots like this, then

$$
|L| \leq \frac{7 n}{10}+5
$$

and

$$
|R| \leq \frac{7 n}{10}+5
$$

Why 70\%/30\% split worst case?

The most lopsided split that can happen after partitioning around the median of medians is $70 / 30$.

How about the running time?

- Suppose the Lemma is true. (It is).
- $|L| \leq \frac{7 n}{10}+5$ and $|R| \leq \frac{7 n}{10}+5$
- Recurrence relation:

$$
T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+O(n)
$$

The call to CHOOSEPIVOT makes
one further recursive call to SELECT on an array of size $n / 5$.

Outside of CHOOSEPIVOT, there's at most one recursive call to SELECT on array of size $7 \mathrm{n} / 10+5$.

We're going to drop the " +5 " for convenience, but it does not change the final answer. Why?
Hint: Define $T^{\prime}(n):=T(n+1000)$ and write recurrence for T^{\prime}

This sounds like a job for...

The Sulbstifutrion Method!

Step 1: generate a guess
Step 2: try to prove that your guess is correct
Step 3: profit

$$
T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+O(n)
$$

That's convenient! We did this at the beginning of lecture!

Conclusion: $T(n)=O(n)$

Technically we only did it for $T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+n$, not when the last term has a big-Oh...

Plucky the Pedantic Penguin

Practice example

- Input:
- Array A containing n possibly very large integers
- k ranks r_{0}, \ldots, r_{k}, which are integers in the range $\{1, \ldots, \mathrm{n}\}$
- Output:
- Array B which contains the r_{j}-th smallest of the n integers, for every j in $1, \ldots, \mathrm{k}$
- Requirement:
- An $O(n \log k)$ algorithm

Practice example

- Find the median rank r_{m} using the Select algorithm
- Run Select algorithm to find a_{m}, the r_{m}-th smallest integer in A
- Recurse separately on
- (i) the ranks and integers greater than r_{m} and a_{m} (respectively);
- (ii) the ones smaller than r_{m} and a_{m}
- Runtime:
- The recursion tree has a depth of $\log (k)$
- At each level, the time spent if $O(n+k)=O(n)$
- So in total $O(n \log k)$

Practice example

- We have an array of positive numbers $h_{1}, h_{2}, \cdots, h_{n}$
- The sum is $\sum_{i} h_{i}=C$
- The weighted median is defined as k such that:
- $\sum_{i: h_{i}<h_{k}} h_{i} \leq \frac{c}{2}$
- $\sum_{i: h_{i}>n_{k}} h_{i} \leq \frac{c}{2}$
- Goal: compute the weighted median in $O(n)$ worst case time

Practice example

- Find median h_{k} from $h_{1}, h_{2}, \cdots, h_{n}$
- Compute the sum of each side:
- $H_{L}=\sum_{i: h_{i}<h_{k}} h_{i}$
- $H_{R}=\sum_{i: h_{i}>h_{k}} h_{i}$
- If $H_{L} \leq \frac{C}{2}$ and $H_{R} \leq \frac{C}{2}$, return
- If $H_{L}>\frac{C}{2}$:
- Change h_{k} to $h_{k}+H_{R}$, recurse on the elements smaller than h_{k}
- Else:
- Change h_{k} to $h_{k}+H_{L}$, recurse on the elements larger than h_{k}

Quicksort

Quicksort

First, pick a "pivot."
Do it at random.

Next, partition the array into
"bigger than 5" or "less than 5"
We want to sort this array.

7	6	3	5	1	2	4

Arrange them like so:
$\mathrm{L}=$ array with things
smaller than A[pivot]

Recurse on L and R :

1	2	3	4	5	6 7	

PseudoPseudoCode for what we just saw

- QuickSort(A):
- If $\operatorname{len}(\mathrm{A})$ <= 1 :
- return
- Pick some $x=A[i]$ at random. Call this the pivot.
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)

Running time?

- $T(n)=T(|L|)+T(|R|)+O(n)$
- In an ideal world...
- if the pivot splits the array exactly in half...

$$
T(n)=2 \cdot T\left(\frac{n}{2}\right)+O(n)
$$

- We've seen that a bunch:

$$
T(n)=O(n \log (n))
$$

The expected running time of QuickSort is $\mathrm{O}(\mathrm{nlog}(\mathrm{n}))$.

Proof:*

- $E[|L|]=E[|R|]=\frac{n-1}{2}$.
- The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n)=O(n \log (n))$.
- Since the relevant recurrence relation is $T(n)=2 T\left(\frac{n-1}{2}\right)+O(n)$
- Therefore, the expected running time is $O(n \log (n))$.

What's wrong?

- $E[|L|]=E[|R|]=\frac{n-1}{2}$.
- The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n)=O(n \log (n))$.
- Since the relevant recurrence relation is $T(n)=2 T\left(\frac{n-1}{2}\right)+O(n)$
- Therefore, the expected running time is $O(n \log (n))$.

That's not how

expectations work!

- The running time in the "expected" situation is not the same as the expected running time.
- Sort of like how $E\left[X^{2}\right]$ is not the same as $(E[X])^{2}$

Example of recursive calls

			6	5	1	2			ick 5 as a pivot
	3	1	24	5		6			tion on either side of 5
Recurse on [3142] and pick 3 as a pivot.	3	1	24	5					curse on [7] and
$\begin{aligned} & \text { Partition } \\ & \text { around } 3 . \\ & \text { ars } \end{aligned}$	3	4		5		6	6	7	Partition on either side of 6
	3	4		5		6	6	7	Recurse on [7], it has size 1 so we're done
	3	4		5			6	7	
	3	4		5			6	7	

How long does this take to run?

- We will count the number of comparisons that the algorithm does.
- This turns out to give us a good idea of the runtime. (Not obvious, but we can "charge" all operations to comparisons).
- How many times are any two items compared?

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 6 & 3 & 5 & 1 & 2 & 4 \\
\hline 3 & 1 & 4 & 2 & 5 & 7 & 6 \\
\hline
\end{array}
$$

In the example before, everything was compared to 5 once in the first step....and never again.

But not everything was
compared to 3 .
5 was, and so were 1,2 and 4.
But not 6 or 7.

Each pair of items is compared either 0 or 1 times. Which is it?

Let's assume that the numbers
in the array are actually the numbers $1, \ldots, n$

- Whether or not a, b are compared is a random variable, that depends on the choice of pivots. Let's say

$$
X_{a, b}= \begin{cases}\mathbb{1} & \text { if } a \text { and } b \text { are ever compared } \\ 0 & \text { if } a \text { and } b \text { are never compared }\end{cases}
$$

- In the previous example $X_{1,5}=1$, because item 1 and item 5 were compared.
- But $X_{3,6}=0$, because item 3 and item 6 were NOT compared.

Counting comparisons

- The number of comparisons total during the algorithm is

$$
\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{a, b}
$$

- The expected number of comparisons is

$$
E\left[\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{a, b}\right]=\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E\left[X_{a, b}\right]
$$

by using linearity of expectations.

Counting comparisons

- So we just need to figure out $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$
- $E\left[X_{a, b}\right]=P\left(X_{a, b}=1\right) \cdot 1+P\left(X_{a, b}=0\right) \cdot 0=P\left(X_{a, b}=1\right)$
(by the definition of expectation)
- So we need to figure out:

$P\left(X_{a, b}=1\right)=$ the probability that a and b are ever compared.

7	6	3	5	1	2

| 7 | 6 | 3 | 5 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | 4

3	1	2	4	5	7

Say that $\mathrm{a}=2$ and $\mathrm{b}=6$. What is the probability that 2 and 6 are ever compared?

This is exactly the probability that either 2 or 6 is first picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be separated and never see each other again.

Counting comparisons

$$
P\left(X_{a, b}=1\right)
$$

= probability a,b are ever compared
$=$ probability that one of a, b are picked first out of all of the $b-a+1$ numbers between them.

$$
=\frac{2}{b-a+1}
$$

All together now...

Expected number of comparisons

- $E\left[\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{a, b}\right]$
-= $\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E\left[X_{a, b}\right]$
This is the expected number of comparisons throughout the algorithm
linearity of expectation
-= $\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P\left(X_{a, b}=1\right)$
- $=\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \frac{2}{b-a+1}$
definition of expectation
the reasoning we just did
- This is a big nasty sum, but we can do it.
- We get that this is less than $2 n \ln (\mathrm{n})$.

In-Place Partition for Quick Sort

Pivot

Choose it randomly, then swap it with the last one, so it's at the end.

Practice example

- Input: n distinct ordered pairs of integers $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, $\left(x_{n}, y_{n}\right)$, where for all $i, j, x_{i} \neq x_{j}$ and $y_{i} \neq y_{j}$
- A set of points S is collinear if they all fall on the same line
- That is, for all $\left(x_{i}, y_{i}\right) \in S, y_{i}=m x_{i}+b$ for fixed m and b
- Output: maximum integer N such that we can find N of the given points the same line
- Requirement: $O\left(n^{2} \log n\right)$

Practice example

- For all pairs of points, compute their slope and intercept (m, b)
- QuickSort these pairs in increasing order of m, and then in increasing order of b as a tiebreaker.
- Iterate through the pairs, and note where the longest run of identical (m, b) pairs occurs
- Return a list of the points in this run of pairs
- Runtime:
- there are $O\left(n^{2}\right)$ pairs of points
- Quicksort takes $O\left(n^{2} \log n^{2}\right)=O\left(n^{2} \log n\right)$ time

Practice example

- CautiousQuickSort is the following:
- the pivot is chosen by repeatedly randomly
- stop if it partitions an array of n elements into two subarrays each with at least $n / 3$ elements
- Use partition to determine this condition
- Questions:
- What is the probability of selecting a good pivot after a single trial?
- $1 / 3$
- What is the maximum recursion depth of CautiousQuickSort?
- $O(\log n)$

Practice example

- What is the expected runtime?
- Testing whether a pivot is good takes $\mathrm{O}(\mathrm{n})$ time
- On each level of recursion, the expected number of random selections until a good pivot is found is 3
- So, the expected amount of work done on each recursive level is $\mathrm{O}(\mathrm{n})$
- The depth is $\mathrm{O}(\log n)$
- Thus, in total $O(n \log n)$ runtime

Lower bound for sorting

Lower bound of $\Omega(\mathrm{n} \log (\mathrm{n}))$.

- Theorem:
- Any deterministic comparison-based sorting algorithm must take $\Omega(\mathrm{n} \log (\mathrm{n}))$ steps.

- Proof recap:

- Any deterministic comparison-based algorithm can be represented as a decision tree with n ! leaves.
- The worst-case running time is at least the depth of the decision tree.
- All decision trees with n ! leaves have depth $\Omega(n \log (n))$.
- So any comparison-based sorting algorithm must have worst-case running time at least $\Omega(\mathrm{n} \log (\mathrm{n}))$.

How long is the longest path?

We want a statement: in all such trees,

the longest path is at least \qquad

- This is a binary tree with at least n! leaves.
- The shallowest tree with n ! leaves is the completely balanced one, which has depth $\underline{\log (n!)}$.
- So in all such trees, the longest path is at least $\log (\mathrm{n}!)$.

Conclusion: the longest path has length at least $\Omega(\mathrm{n} \log (\mathrm{n}))$.

Some "bad" news

- Theorem:
- Any deterministic comparison-based sorting algorithm must take $\Omega(\mathrm{n} \log (\mathrm{n})$) steps.
- Theorem:
- Any randomized comparison-based sorting algorithm must take $\Omega(\mathrm{n} \mathrm{log}(\mathrm{n})$) steps in expectation.

Bad Side: we can't improve on $\mathrm{n}^{*} \log (\mathrm{n})$
Bright Side: we know we're done and can focus on other problems

