
CS 161 - Section 2
CA : [Name of the CA]

Section 2 agenda

•Recap lectures:
- Recurrence Relations

• The Master Method

• The Substitution Method

• Space complexity

•Handout

Recurrence Relations

•Divide and conquer algorithms are often recursive in
nature – need to know how to solve recurrence
relations for runtime analysis

•Two methods:
•Master Method
•Substitution Method

The Master Method

•

Three parameters:
a : number of subproblems
b : factor by which input size shrinks
d : need to do nd work to create all the
subproblems and combine their solutions.

Requires all
subproblems to be the

same size!

4

The Substitution Method

1. Guess what the answer is.
• Try a few levels of recursion and see if you spot a pattern

2. Formally prove that that’s what the answer is.
• Often using induction. You may have to leave some

constants unspecified till the end – then see what they
need to be for the proof to work

3. Profit
• Pretend you didn’t do Steps 1 and 2 and write down a nice

proof.

5

k-SELECT

Main idea: Divide and Conquer

•Merge sort – divide and conquer algorithm for
sorting an array
•SELECT – divide and conquer algorithm for finding the

kth smallest element of an array

Big problem

Smaller
problem

Smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

SELECT
• getPivot(A) returns some pivot for us.

• Partition(A,p) splits up A into L, A[p], R.

• Select(A,k):
• If len(A) <= 50:

• A = MergeSort(A)
• Return A[k-1]

• p = getPivot(A)
• L, pivotVal, R = Partition(A,p)
• if len(L) == k-1:

• return pivotVal
• Else if len(L) > k-1:

• return Select(L, k)
• Else if len(L) < k-1:

• return Select(R, k – len(L) – 1)

Base Case: If the len(A) = O(1),
then any sorting algorithm runs

in time O(1).

Case 1: We got lucky and found
exactly the k’th smallest value!

Case 2: The k’th smallest value
is in the first part of the list

Case 3: The k’th smallest value
is in the second part of the list

8

Partitioning

9 83

6

1 4 2
pivot

L = array with things
smaller than A[pivot]

R = array with things
larger than A[pivot]

Say we want to
find SELECT(A, k)

• If k = 5 = len(L) + 1:
• We should return A[pivot]

• If k < 5:
• We should return SELECT(L, k)

• If k > 5:
• We should return SELECT(R, k – 5)

Partitioning like this takes
time O(n) since we don’t care

about sorting each half.

9

Choosing the pivot
•

5 9 1 3 41 8 9 3 15 12 2 1 5 20 15 13 2 4 6 12 1 15 22 3

This takes time O(1), for each group, since each group
has size 5. So that’s O(m)=O(n) total in the for loop.

8

4

5

6

12
Pivot is SELECT(, 3) = 6: 8 4 5 6 12

5 9 1 3 41 8 9 3 15 12 2 1 5 20 15 13 2 4
6

12 1 15 22 3

5 91 3 41 8 93 15 122 1 5 20 15 132 4
6

121 15 223

PARTITION around that 6:

This part is L This part is R: it’s almost the same size as L.

10

SELECT
• getPivot(A) returns some pivot for us.

• How?? Median of sub-medians!

• Partition(A,p) splits up A into L, A[p], R.

• Select(A,k):
• If len(A) <= 50:

• A = MergeSort(A)
• Return A[k-1]

• p = getPivot(A)
• L, pivotVal, R = Partition(A,p)
• if len(L) == k-1:

• return pivotVal
• Else if len(L) > k-1:

• return Select(L, k)
• Else if len(L) < k-1:

• return Select(R, k – len(L) – 1)

Base Case: If the len(A) = O(1),
then any sorting algorithm runs

in time O(1).

Case 1: We got lucky and found
exactly the k’th smallest value!

Case 2: The k’th smallest value
is in the first part of the list

Case 3: The k’th smallest value
is in the second part of the list

11

Why 70%/30% split worst case?
The most lopsided split that can happen after
partitioning around the median of medians is 70/30.

1

2

3

101

102

4

5

6

103

104

7

8

9

105

106

10

107

108

11

12

13

16

17

14

15

18

21

22

19

20

23

26

27

24

25

At least ½ of the groups
have medians <= pivot

At least
⅗ of
each
group is
<= the
group’s
median.

If we group into groups of 5 and sort by the groups’ medians,
the gray stuff (at least ⅗ * ½ = 3/10) all lies in one side of the
partition.

Space Complexity

Space complexity of an algorithm

•Definition: the space complexity of an algorithm is
how much memory the algorithm needs to run,
excluding the input and output.

•Expressed as a function of input size
• Could vary based on language, compiler, etc. -> Big-O

notation!

14

Example: Insertion Sort

• Input: array of size n

• All operations are done in-place -> no extra space needed

• Space complexity = O(1)

def InsertionSort(A):
 for i in range(1,len(A)):
 current = A[i]
 j = i-1
 while j >= 0 and A[j] > current:
 A[j+1] = A[j]
 j -= 1
 A[j+1] = current

64 3 8 5

43 6 8 5

1

Example: Merge sort

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Recursive magic!Recursive magic!

MERGE!

Example: Merge sort

•Merging two arrays of size k/2 into a new array of size k
requires extra space of size k

•The top level of merge sort needs space n, so merge
sort has space complexity O(n)
• Merge sort has log(n) levels of merges, why is it not n log(n)?

•Can we do better?

17

18

3 4 6 8 1 2 5 7

• If the left element is smaller, move the left pointer to the
right.

• If the right element is smaller, move it to the position of the
left element and shift everything in between to the right.
Then move both pointers to the right.

• Now requires no extra space -> space complexity is O(1)!

In-place merging

•What happened to time complexity?
• “Shift everything to the right” is O(n), in the worst case

we need to do it O(n) times

•This merge takes time O(n2)!

•Often there is a trade-off between time and space
complexity.
• In what situations is having a small space complexity

more important?

In-place merging

Quick Sort

•QuickSort(A):
• If len(A) <= 1:

• return

• Pick pivot x with pivot.
• PARTITION the rest of A into:

• L (less than x) and
• R (greater than x)

• Rearrange A as [L, x, R]
• QuickSort(L)
• QuickSort(R)

21

QuickSort

• Recall the Naïve memory complexity of Quick Sort is O(n logn)
• Why? Think about storing an ordering of n elements for log(n) levels

• We can improve it to O(n)
• Why? Can use a single array to represent the ordering and update at each level

• Can we do even better?
• Let these happy Hungarians show you the answer!

https://www.youtube.com/watch?v=ywWBy6J5gz8&ab_channel=AlgoRythmics

In-Place [O(1) memory!] Quick Sort

A
 b

et
te

r
w

ay
 t

o
 d

o
 P

ar
ti

ti
o

n
8 7 1 3 5 6 4

8 7 1 3 5 6 4

1 7 8 3 5 6 4

1 3 8 7 5 6 4

1 3 8 7 5 6 4

1 3 4 7 5 6 8

Pivot

Swap!

Initialize and

Step forward.

When sees something
smaller than the pivot,
swap the things ahead
of the bars and
increment both bars.

Repeat till the end, then
put the pivot in the
right place.

Choose it randomly, then swap it
with the last one, so it’s at the end.

23

Quick Sort vs Merge Sort

QuickSort (random pivot)
MergeSort
(deterministic)

Running time
• Worst-case: O(n2)

• Expected: O(n log(n))
• Worst-case: O(n

log(n))

In-Place?
 (With O(log(n))
extra memory)

Yes, can be implemented
in-place (relatively) easily

Not as easily since you’d
have to sacrifice stability

and runtime, but it can be
done

Stable? No Yes

24

stable sorting algorithms sort
identical elements in the same

order as they appear in the input

Because for large n the Law of Large Numbers kicks in, we can reasonably expect both
algorithms to run in O(n log n). It then becomes a choice between stability and memory
overhead.

Which one would you use for a small array?

Which one would you use for an array with millions of elements?

Which one would you use in a security-critical situation?

Quick Sort vs Merge Sort

Given the small size it mostly does not matter. At this scale the difference will be in the
order of ns or µs, so the only way to be sure which is better is to write implementations
and test it in practice. In fact, insertion sort can often be the fastest for very small arrays.

We value the predictability and consistency of a deterministic algorithm in these
situations, so merge sort would be preferred. Some pitfalls of quicksort are:
● Randomized algorithms are harder to log, debug, and reproduce than

deterministic algorithms.
● If an adversary can guess which seed you start with, they may be able to craft a

worst-case n^2 input!

Thank You!

