CS 161 - Section 2

CA : [Name of the CA]
Section 2 agenda

• Recap lectures:
 - Recurrence Relations
 • The Master Method
 • The Substitution Method

• Space complexity

• Handout
Recurrence Relations

• Divide and conquer algorithms are often recursive in nature – need to know how to solve recurrence relations for runtime analysis

• Two methods:
 • Master Method
 • Substitution Method
The Master Method

• Suppose \(T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d) \). Then

\[
T(n) = \begin{cases}
O(n^d \log(n)) & \text{if } a = b^d \\
O(n^d) & \text{if } a < b^d \\
O\left(n^{\log_b(a)}\right) & \text{if } a > b^d
\end{cases}
\]

Three parameters:

- \(a \): number of subproblems
- \(b \): factor by which input size shrinks
- \(d \): need to do \(n^d \) work to create all the subproblems and combine their solutions.

Requires all subproblems to be the same size!

Remember that we can (mostly) ignore floors and ceilings in this class: \(\left\lfloor \frac{n}{b} \right\rfloor \) or \(\left\lceil \frac{n}{b} \right\rceil \) work too.
The Substitution Method

1. Guess what the answer is.
 • Try a few levels of recursion and see if you spot a pattern

2. Formally prove that that’s what the answer is.
 • Often using induction. You may have to leave some constants unspecified till the end – then see what they need to be for the proof to work

3. Profit
 • Pretend you didn’t do Steps 1 and 2 and write down a nice proof.
k-SELECT
Main idea: Divide and Conquer

- **Merge sort** – divide and conquer algorithm for sorting an array
- **SELECT** – divide and conquer algorithm for finding the kth smallest element of an array
SELECT

- **getPivot(A)** returns some pivot for us.
- **Partition(A, p)** splits up A into L, A[p], R.

Select(A,k):

- **If** len(A) <= 50:
 - A = **MergeSort**(A)
 - **Return** A[k-1]
- p = **getPivot**(A)
- L, pivotVal, R = **Partition**(A,p)
- **if** len(L) == k-1:
 - return pivotVal
- **Else if** len(L) > k-1:
 - return **Select**(L, k)
- **Else if** len(L) < k-1:
 - return **Select**(R, k – len(L) – 1)

Base Case: If the len(A) = O(1), then any sorting algorithm runs in time O(1).

Case 1: We got lucky and found exactly the k’th smallest value!

Case 2: The k’th smallest value is in the first part of the list

Case 3: The k’th smallest value is in the second part of the list
Partitioning

Say we want to find $\text{SELECT}(A, k)$

$L = \text{array with things smaller than } A[\text{pivot}]$

$R = \text{array with things larger than } A[\text{pivot}]$

- If $k = 5 = \text{len}(L) + 1$:
 - We should return $A[\text{pivot}]$
- If $k < 5$:
 - We should return $\text{SELECT}(L, k)$
- If $k > 5$:
 - We should return $\text{SELECT}(R, k - 5)$

Partitioning like this takes time $O(n)$ since we don’t care about sorting each half.
Choosing the pivot

- **CHOOSEPIVOT(A):**
 - Split A into \(m = \left\lfloor \frac{n}{5} \right\rfloor \) groups, of size \(\leq 5 \) each.
 - **For** \(i = 1, \ldots, m \):
 - Find the median within the \(i \)'th group, call it \(p_i \)
 - \(p = \text{SELECT}([p_1, p_2, p_3, \ldots, p_m], m/2) \)
 - **return** \(p \)

This takes time \(O(1) \), for each group, since each group has size 5. So that’s \(O(m) = O(n) \) total in the for loop.

Pivot is \(\text{SELECT}(8, 4, 5, 6, 12, 3) = 6 \):

PARTITION around that 6:

This part is \(L \)

This part is \(R \): it’s almost the same size as \(L \).
SELECT

- Select(A,k):
 - If len(A) <= 50:
 - A = MergeSort(A)
 - Return A[k-1]
 - p = getPivot(A)
 - L, pivotVal, R = Partition(A,p)
 - if len(L) == k-1:
 - return pivotVal
 - Else if len(L) > k-1:
 - return Select(L, k)
 - Else if len(L) < k-1:
 - return Select(R, k – len(L) – 1)

Running time:

\[T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + \Theta(n) \]
Why 70%/30% split worst case?
The most lopsided split that can happen after partitioning around the median of medians is 70/30.

At least ½ of the groups have medians <= pivot

At least \(\frac{3}{5} \) of each group is <= the group's median.

If we group into groups of 5 and sort by the groups’ medians, the gray stuff (at least \(\frac{3}{5} \times \frac{1}{2} = 3/10 \)) all lies in one side of the partition.
Space Complexity
Space complexity of an algorithm

• Definition: the **space complexity** of an algorithm is how much memory the algorithm needs to run, excluding the input and output.

• Expressed as a function of input size
 • Could vary based on language, compiler, etc. -> Big-O notation!
Example: Insertion Sort

- Input: array of size n
- All operations are done in-place -> no extra space needed
- Space complexity = \(O(1)\)

```python
def InsertionSort(A):
    for i in range(1, len(A)):
        current = A[i]
        j = i - 1
        while j >= 0 and A[j] > current:
            j -= 1
        A[j+1] = current
```
Example: Merge sort

Recursive magic!

MERGE!
Example: Merge sort

- Merging two arrays of size k/2 into a new array of size k requires extra space of size k
- The top level of merge sort needs space n, so merge sort has space complexity O(n)
 - Merge sort has log(n) levels of merges, why is it not n log(n)?
- Can we do better?
In-place merging

- If the left element is smaller, move the left pointer to the right.
- If the right element is smaller, move it to the position of the left element and shift everything in between to the right. Then move both pointers to the right.
- Now requires no extra space -> space complexity is O(1)!
In-place merging

• What happened to time complexity?
 • “Shift everything to the right” is \(O(n) \), in the worst case we need to do it \(O(n) \) times

• This merge takes time \(O(n^2) \)!

• Often there is a trade-off between time and space complexity.
 • In what situations is having a small space complexity more important?
Quick Sort
QuickSort

• **QuickSort(A):**
 • **If** `len(A) <= 1:

 • return
 • Pick pivot x with *pivot.*
 • **PARTITION** the rest of A into:
 • L (less than x) and
 • R (greater than x)
 • Rearrange A as [L, x, R]
 • QuickSort(L)
 • QuickSort(R)

Running time:

\[T(n) = T(|L|) + T(|R|) + \Theta(n) \]

\[T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n) \]

\[T(n) = O(n \log(n)) \]
In-Place [O(1) memory!] Quick Sort

• Recall the Naïve memory complexity of Quick Sort is O(n logn)
 • Why? Think about storing an ordering of n elements for log(n) levels

• We can improve it to O(n)
 • Why? Can use a single array to represent the ordering and update at each level

• Can we do even better?
 • Let these happy Hungarians show you the answer!

https://www.youtube.com/watch?v=ywWBey6J5gz8&ab_channel=AlgoRythmics
A better way to do Partition

Choose it randomly, then swap it with the last one, so it’s at the end.

Initialize and Step forward.

When sees something smaller than the pivot, swap the things ahead of the bars and increment both bars.

Repeat till the end, then put the pivot in the right place.
Quick Sort vs Merge Sort

<table>
<thead>
<tr>
<th></th>
<th>QuickSort (random pivot)</th>
<th>MergeSort (deterministic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running time</td>
<td>• Worst-case: $O(n^2)$</td>
<td>• Worst-case: $O(n \log(n))$</td>
</tr>
<tr>
<td></td>
<td>• Expected: $O(n \log(n))$</td>
<td></td>
</tr>
<tr>
<td>In-Place?</td>
<td>Yes, can be implemented in-place (relatively) easily</td>
<td>Not as easily since you’d have to sacrifice stability and runtime, but it can be done</td>
</tr>
<tr>
<td>(With $O(\log(n))$ extra memory)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable?</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

stable sorting algorithms sort identical elements in the same order as they appear in the input
Quick Sort vs Merge Sort

Which one would you use for a small array?

Given the small size it mostly does not matter. At this scale the difference will be in the order of ns or μs, so the only way to be sure which is better is to write implementations and test it in practice. In fact, insertion sort can often be the fastest for very small arrays.

Which one would you use for an array with millions of elements?

Because for large n the Law of Large Numbers kicks in, we can reasonably expect both algorithms to run in $O(n \log n)$. It then becomes a choice between stability and memory overhead.

Which one would you use in a security-critical situation?

We value the predictability and consistency of a deterministic algorithm in these situations, so merge sort would be preferred. Some pitfalls of quicksort are:

- Randomized algorithms are harder to log, debug, and reproduce than deterministic algorithms.
- If an adversary can guess which seed you start with, they may be able to craft a worst-case n^2 input!
Thank You!