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Section 2 agenda

•Recap lectures:
- Recurrence Relations

• The Master Method

• The Substitution Method 

• Space complexity

•Handout



Recurrence Relations

•Divide and conquer algorithms are often recursive in 
nature – need to know how to solve recurrence 
relations for runtime analysis

•Two methods:
•Master Method
•Substitution Method



The Master Method

•  

Three parameters:
a : number of subproblems
b : factor by which input size shrinks
d : need to do nd work to create all the 
subproblems and combine their solutions. 

 

Requires all 
subproblems to be the 

same size!
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The Substitution Method

1. Guess what the answer is.
• Try a few levels of recursion and see if you spot a pattern

2. Formally prove that that’s what the answer is.
• Often using induction. You may have to leave some 

constants unspecified till the end – then see what they 
need to be for the proof to work 

3. Profit
• Pretend you didn’t do Steps 1 and 2 and write down a nice 

proof. 
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k-SELECT



Main idea: Divide and Conquer

•Merge sort – divide and conquer algorithm for 
sorting an array
•SELECT – divide and conquer algorithm for finding the 

kth smallest element of an array

Big problem

Smaller 
problem

Smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem



SELECT
• getPivot(A) returns some pivot for us.

• Partition(A,p) splits up A into L, A[p], R. 

• Select(A,k):
• If len(A) <= 50:

• A = MergeSort(A)
• Return A[k-1]  

• p = getPivot(A)
• L, pivotVal, R = Partition(A,p)
• if len(L) == k-1:

• return pivotVal
• Else if len(L) > k-1:

• return Select(L, k)
• Else if len(L) < k-1:

• return Select(R, k – len(L) – 1)

Base Case: If the len(A) = O(1), 
then any sorting algorithm runs 

in time O(1).

Case 1: We got lucky and found 
exactly the k’th smallest value!

Case 2: The k’th smallest value 
is in the first part of the list

Case 3: The k’th smallest value 
is in the second part of the list
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Partitioning

9 83

6

1 4 2
pivot

L = array with things 
smaller than A[pivot]

R = array with things 
larger than A[pivot]

Say we want to 
find SELECT(A, k)

• If k = 5 = len(L) + 1:
• We should return A[pivot]

• If k < 5: 
• We should return SELECT(L, k)

• If k > 5:
• We should return SELECT(R, k – 5)

Partitioning like this takes 
time O(n) since we don’t care 

about sorting each half.
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Choosing the pivot
•  

5 9 1 3 41 8 9 3 15 12 2 1 5 20 15 13 2 4 6 12 1 15 22 3

This takes time O(1), for each group, since each group 
has size 5.  So that’s O(m)=O(n) total in the for loop.
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12
Pivot is SELECT(                                      , 3  ) = 6: 8 4 5 6 12

5 9 1 3 41 8 9 3 15 12 2 1 5 20 15 13 2 4
6

12 1 15 22 3

5 91 3 41 8 93 15 122 1 5 20 15 132 4
6

121 15 223

PARTITION around that 6:

This part is L This part is R: it’s almost the same size as L.
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SELECT
• getPivot(A) returns some pivot for us.

• How?? Median of sub-medians!

• Partition(A,p) splits up A into L, A[p], R. 

• Select(A,k):
• If len(A) <= 50:

• A = MergeSort(A)
• Return A[k-1]  

• p = getPivot(A)
• L, pivotVal, R = Partition(A,p)
• if len(L) == k-1:

• return pivotVal
• Else if len(L) > k-1:

• return Select(L, k)
• Else if len(L) < k-1:

• return Select(R, k – len(L) – 1)

Base Case: If the len(A) = O(1), 
then any sorting algorithm runs 

in time O(1).

Case 1: We got lucky and found 
exactly the k’th smallest value!

Case 2: The k’th smallest value 
is in the first part of the list

Case 3: The k’th smallest value 
is in the second part of the list
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Why 70%/30% split worst case?
The most lopsided split that can happen after 
partitioning around the median of medians is 70/30.
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At least ½ of the groups 
have medians <= pivot

At least 
⅗ of 
each 
group is 
<= the 
group’s 
median.

If we group into groups of 5 and sort by the groups’ medians, 
the gray stuff (at least ⅗ * ½ = 3/10) all lies in one side of the 
partition.



Space Complexity



Space complexity of an algorithm

•Definition: the space complexity of an algorithm is 
how much memory the algorithm needs to run, 
excluding the input and output.

•Expressed as a function of input size
• Could vary based on language, compiler, etc. -> Big-O 

notation!
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Example: Insertion Sort

• Input: array of size n

• All operations are done in-place -> no extra space needed

• Space complexity = O(1)

def InsertionSort(A):    
   for i in range(1,len(A)):  
      current = A[i]
      j = i-1
      while j >= 0 and A[j] > current:
         A[j+1] = A[j]
         j -= 1
      A[j+1] = current

64 3 8 5

43 6 8 5



1

Example: Merge sort

6 4 3 8 1 5 2 7

6 4 3 8 1 5 2 7

3 4 6 8 1 2 5 7

2 3 4 5 6 7 8

Recursive magic!Recursive magic!

MERGE!



Example: Merge sort

•Merging two arrays of size k/2 into a new array of size k 
requires extra space of size k

•The top level of merge sort needs space n, so merge 
sort has space complexity O(n)
• Merge sort has log(n) levels of merges, why is it not n log(n)?

•Can we do better?
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3 4 6 8 1 2 5 7

• If the left element is smaller, move the left pointer to the 
right.

• If the right element is smaller, move it to the position of the 
left element and shift everything in between to the right. 
Then move both pointers to the right.

• Now requires no extra space -> space complexity is O(1)!

In-place merging



•What happened to time complexity?
• “Shift everything to the right” is O(n), in the worst case 

we need to do it O(n) times

•This merge takes time O(n2)!

•Often there is a trade-off between time and space 
complexity.
• In what situations is having a small space complexity 

more important?

In-place merging



Quick Sort



•QuickSort(A):
• If len(A) <= 1:

• return 

• Pick pivot x with pivot.
• PARTITION the rest of A into: 

• L (less than x) and 
• R (greater than x)

• Rearrange A as [L, x, R]  
• QuickSort(L) 
• QuickSort(R) 
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QuickSort



• Recall the Naïve memory complexity of Quick Sort is O(n logn)
• Why? Think about storing an ordering of n elements for log(n) levels

• We can improve it to O(n)
• Why? Can use a single array to represent the ordering and update at each level

• Can we do even better?
• Let these happy Hungarians show you the answer!

https://www.youtube.com/watch?v=ywWBy6J5gz8&ab_channel=AlgoRythmics 

In-Place [O(1) memory!] Quick Sort
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8 7 1 3 5 6 4

8 7 1 3 5 6 4

1 7 8 3 5 6 4

1 3 8 7 5 6 4

1 3 8 7 5 6 4

1 3 4 7 5 6 8

Pivot

Swap!

Initialize       and 

Step    forward.

When    sees something 
smaller than the pivot, 
swap the things ahead 
of the bars and 
increment both bars.

Repeat till the end, then 
put the pivot in the 
right place.

Choose it randomly, then swap it 
with the last one, so it’s at the end.
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Quick Sort vs Merge Sort

QuickSort (random pivot)
MergeSort 
(deterministic)

Running time
• Worst-case: O(n2)

• Expected: O(n log(n))
• Worst-case: O(n 

log(n))

In-Place?
 (With O(log(n)) 
extra memory)

Yes, can be implemented 
in-place (relatively) easily

Not as easily since you’d 
have to sacrifice stability 

and runtime, but it can be 
done

Stable? No Yes
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stable sorting algorithms sort 
identical elements in the same 

order as they appear in the input



Because for large n the Law of Large Numbers kicks in, we can reasonably expect both 
algorithms to run in O(n log n).  It then becomes a choice between stability and memory 
overhead.

Which one would you use for a small array?

Which one would you use for an array with millions of elements?

Which one would you use in a security-critical situation?

Quick Sort vs Merge Sort

Given the small size it mostly does not matter. At this scale the difference will be in the 
order of ns or µs, so the only way to be sure which is better is to write implementations 
and test it in practice. In fact, insertion sort can often be the fastest for very small arrays.

We value the predictability and consistency of a deterministic algorithm in these 
situations, so merge sort would be preferred. Some pitfalls of quicksort are:
● Randomized algorithms are harder to log, debug, and reproduce than 

deterministic algorithms.
● If an adversary can guess which seed you start with, they may be able to craft a 

worst-case n^2 input!



Thank You!


