
CS 161 (Stanford, Winter 2024) Section 4

1 Warm-up: Binary Search Trees vs Heaps

For each of the following, choose the corresponding data structure.

1. With this data structure you can efficiently find the element with key value 2020.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

2. With this data structure you can efficiently find the smallest element.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

3. With this data structure you can efficiently find the median element.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

4. This data structure is fast on average, but will be slow in the worst-case.

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

For each of the following, choose the corresponding data structure.

5.

1

2

3

8

9 11

19

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

6.

1



8

5

3

11

9 14

19

(A) Red-black binary search trees (B) Heaps (C) Both (D) Neither

2 Randomly Built BSTs

In this problem, we prove that the average depth of a node in a randomly built binary search
tree with n nodes is O(log n). A randomly built binary search tree with n nodes is one that
arises from inserting the n keys in random order into an initially empty tree, where each of
the n! permutations of the input keys is equally likely. Let d(x, T ) be the depth of node x in
a binary tree T (The depth of the root is 0). Then, the average depth of a node in a binary
tree T with n nodes is

1

n

∑
x∈T

d(x, T ).

1. Let the total path length P (T ) of a binary tree T be defined as the sum of the depths
of all nodes in T , so the average depth of a node in T with n nodes is equal to 1

n
P (T ).

Show that P (T ) = P (TL) + P (TR) + n − 1, where TL and TR are the left and right
subtrees of T , respectively.

2. Let P (n) be the expected total path length of a randomly built binary search tree with
n nodes. Show that P (n) = 1

n

∑n−1
i=0 (P (i) + P (n − i − 1) + n − 1).

3. Show that P (n) = O(n log n). You may cite a result previously proven in the context
of other topics covered in class.

4. Design a sorting algorithm based on randomly building a binary search tree. Show that
its (expected) running time is O(n log n). Assume that a random permutation of n keys
can be generated in time O(n).

3 More Sorting!

We are given an unsorted array A with n numbers between 1 and M where M is a large but
constant positive integer. We want to find if there exist two elements of the array that are
within T of one another.

2



1. Design a simple algorithm that solves this in O(n2).

2. Design a simple algorithm that solves this in O(nlogn).

3. How could you solve this in O(n)? (Hint: modify bucket sort.)

4 Grade inflation

Prof. Toon Ice used to grade on a 1, . . . , 10 basis. But to keep up with grade inflation,
Prof. Ice decided to automatically update the grading rubric every year to output grades in
the range 2y + 1, . . . , 2y + 10 (where y is the year). At the end of the quarter, Prof. Ice
needs to report the sorted class grades to the registrar’s office as soon as possible. Can you
propose an appropriate algorithm?

Assumption: all the grades are integers.

3


	Warm-up: Binary Search Trees vs Heaps
	Randomly Built BSTs
	More Sorting!
	Grade inflation

