
CS 161 (Stanford, Winter 2024) Section 6

1 Algorithm Practice

1. In the given graph, the node labels represent the finish times from running depth-first
search. Which node would the next DFS call begin from when running Kosaraju’s algo-
rithm? Perform this DFS (with edges reversed) to find the find the strongly connected
components of the graph.

6

10

9

4

5

2. Perform Dijkstra’s shortest path algorithm from source S on the graph below, and
update the d [v] values for each iteration in the table.

S

A

B

C

D

11

3

8

3

6

2

4

1

Vertex v d [v] d [v] d [v] d [v] d [v]

S 0
A ∞
B ∞
C ∞
D ∞

1

3. Given the directed graph below, run the Floyd-Warshall Algorithm, processing vertices
in alphabetical order. Fill in the table below which keeps track of the shortest paths.
Ordered of vertices with no directed path (such as (B,A)) are omitted and their distance
can be taken as ∞ for updates.

A

B

C

D

20

4

5

12

6

(u, v) (A,A) (A,B) (A,C) (A,D) (B,B) (B,C) (B,D) (C,C) (C,D) (D,D)

D(0) 0 4 12 20 0 5 ∞ 0 6 0
D(1)

D(2)

D(3)

D(4)

2 Strongly Connected Components

Consider the directed graph below for parts 1 and 2:

A B

CDE

F

1. How many strongly connected components does this graph have?

2. What is the minimum number of directed edges to add to this graph to make all the
vertices strongly connected?

3. Assume you have two vertices u and v in a directed graph where there exists an edge
from u to v . Which one of the following is incorrect about u and v?

(A) u and v can be in the same SCC.

(B) u and v can be in different SCCs.

2

(C) If u’s DFS finish time is less than v ’s DFS finish time then u and v are in the same
SCC.

(D) u’s DFS finish time is always greater than v ’s DFS finish time.

3 Hyperlinks can go backward?

On the internet, many pages have links pointing to other pages, but sometimes it’s not
possible to reach a site you were on previously without clicking the “back” button in your
browser. Elgoog can model their website as a directed graph G with n pages, and each page
has some number of links to other pages. There are a total of m links over all these pages.
Currently, it’s not possible to get from some pages to some other pages without clicking
the back button, and sometimes not possible at all! They want your help in designing an
algorithm which can output the minimum total number of extra links they need to add so
that every page is reachable from every other page.

1. In the given graph, find the minimum number of links that Elgoog must add.

A

B

C

D

E

F

G

H

2. Suppose G is a directed, acyclic graph (DAG) where every sink is reachable from every
source. Define S ⊆ V as the set of source nodes: those vertices with no incoming
edges and T ⊆ V as the set of sink nodes: those vertices with no outgoing edges.
Prove that the minimum number of links which have to be added is max(|S|, |T |).

3. Suppose G is a weakly connected directed, acyclic graph (DAG) with at least two
vertices. Weakly connected means that every node is reachable from every other node
by traversing edges in some direction (not necessarily the direction they point). In other
words, replacing directed edges with undirected ones will produce a connected graph.
ABEFG are weakly connected and CD are weakly connected, for example. Write an
algorithm which runs in time O(m+ n) and computes the minimum number of links to
be added in G.

3

4. Suppose G is a general directed graph which is not necessarily connected. Prove an
expression for the minimum number of links which must be added.

Hint: You will have to case on whether G has exactly one vertex or not.

4 Edsger’s Apfelstrudel

You are eating at a cozy little restaurant which serves a prix fixe menu of k + 1 courses,
with several available choices for each course. Each dish belongs to exactly one course (e.g.,
risotto can only be ordered as an appetizer, not a main), and you are effectively indifferent
between most of the items on the menu (because they are all so tasty), but the main draw
of this particular restaurant is that they serve a delicious ‘bottomless’ dessert: their world-
famous Viennese-style apple strudel. They have an unlimited supply of this apple strudel, but
each serving will still cost you $1. The restaurant also has a few interesting rules:

1. You must finish your current dish before ordering another.

2. Each dish after the first course depends on what you ordered in the previous course,
e.g., you can only order salmon for your main if you ordered a Caesar salad or chicken
noodle soup for the previous course. You are told on the menu exactly what these
restrictions are before you order anything.

3. Most importantly, you are not allowed to have their unlimited dessert unless you finish
one dish from each of the first k courses!

You are told the cost of each item in each course on the menu, and you plan your meal with
a twofold goal: to be able to order the strudel, but also to save as much money as possible
throughout the first k courses so that you have more money to spend on the unlimited
dessert. Design an algorithm to find the smallest amount of money you can spend on the
first k courses and still order the ‘bottomless’ strudel. If you would like, you may assume
the very first course has exactly one choice (e.g., a single complimentary leaf of spinach that
costs 0 dollars).

5 High Speed Cable Internet

Algorithmia, an internet service provider, has a new high speed cable internet technology that
will require new cable installation. They will install these new cables on the currently existing
network of cables but it will be costly.

This can be modelled with a weighted undirected graph G = (V, E) with non-negative edge
weights. The nodes represent neighborhoods, edges represent the existing cables between
the neighborhoods, and edge weights represent the cost to install a new cable.

Because of limited resources and to minimize costs, Algorithmia has chosen to start with
the neighborhoods with highest demand for this high speed internet access that will lead to

4

the highest profit, creating a set T ⊂ V of terminals which includes the neighborhood with
Algorithmia’s headquarters along with the high demand neighborhoods.

To connect all these neighborhoods, we can model this with a Steiner tree, a tree (aka
graph with no cycles) that contains all of the terminals and possibly some other vertices.
Algorithmia wants to find the minimum weight Steiner tree to find the lowest cost to install
new cables that connect Algorithmia’s headquarters and the high demand neighborhoods.

1. If there are only two terminals (Algorithmia’s headquarters and another high demand
neighborhood), give an O(n log(n) +m)-time algorithm for finding a minimum weight
Steiner tree. [We are expecting: English description and brief running time analysis]

2. For terminals T1, T2, T3, draw the minimum weight Steiner tree in each of the following
graphs: [We are expecting: A drawing of the Steiner trees.] (You can use copy+paste
the tikz code on tex and delete the lines corresponding to edges that do not participate
in the Steiner tree.)

(a)

T1

N2

T1

T3

T2

N3

N1

10

1

2

6
3

8

1

5

11

5

(b)

T1

N2

T1

T3

T2

N3

N1

8

3

8

6
3

3

18

1

2

3. Give anO(n2 log(n)+nm)-time algorithm for finding a minimum weight Steiner tree with
three terminals. [We are expecting: English description, pseudocode, and running
time analysis]

4. Bonus: Give an O(n2 log(n)+nm)-time algorithm for finding a minimum weight Steiner
tree with four terminals. [We are expecting: English description and brief running
time analysis]

6 Currency conversion

Suppose the various economies of the world use a set of currencies C1, C2, . . . , Cn – think of
these as dollars, pounds, bitcoins, etc. Your bank allows you to trade each currency Ci for
any other currency Cj , and finds some way to charge you for this service (in a manner to be
elaborated in the subparts below). We will devise algorithms to trade currencies to maximize
the amount we end up with.

6.1 Flat fees

Suppose that for each ordered pair of currencies (Ci , Cj) the bank charges a flat fee of fi j > 0
dollars to exchange Ci for Cj regardless of the quantity of currency being exchanged). Devise
an efficient algorithm which, given a starting currency Cs , a target currency Ct , and a list of
fees fi j for all i , j ∈ {1, 2, . . . , n}, computes the cheapest way (that is, incurring the least in
fees) to exchange all of our currency in Cs to currency Ct . Justify the correctness of your
algorithm and its runtime.

6

6.2 Exchange rates

Consider the more realistic setting where the bank does not charge flat fees, but instead uses
exchange rates. In particular, for each ordered pair (Ci , Cj), the bank lets you trade one unit
of Ci for ri j units of Cj , i.e. you receive ri j units of Cj in exchange of one unit of Ci . Devise an
efficient algorithm which, given starting currency Cs , target currency Ct , and a list of rates
ri j , computes a sequence of exchanges that results in the greatest amount of Ct . Justify the
correctness of your algorithm and its runtime.

6.3 Making money

Due to fluctuations in the markets, it is occasionally possible to find a sequence of exchanges
that lets you start with currency A, change into currencies, B, C, D, etc., and then end
up changing back to currency A in such a way that you end up with more money than you
started with—that is, there are currencies Ci1, . . . , Cik such that

ri1i2 × ri2i3 × . . .× rik−1ik × rik i1 > 1.

Devise an efficient algorithm that finds such an anomaly if one exists. Justify the correctness
of your algorithm and its runtime.

7

	Algorithm Practice
	Strongly Connected Components
	Hyperlinks can go backward?
	Edsger’s Apfelstrudel
	High Speed Cable Internet
	Currency conversion
	Flat fees
	Exchange rates
	Making money

