1 Grade-school multiplication

Suppose we multiply two <i>n</i> -digit integers $(x_1x_2x_n)$) and $(y_1y_2\dots y_n)$ using the grade-school multipli-
cation algorithm. How many pairs of digits x_i and y_j	get multiplied in this algorithm?

O n^3

0 2n - 1

 \bigcirc n^2

Correct

What is the smallest exponent x such that the number of one-digit operations in grade-school multiplication is always at most $10000 \cdot n^x$?

2 Correct

2 Divide-and-conquer multiplication

Suppose that we have a divide-and-conquer algorithm \mathcal{A} that multiplies two n-digit integers by recursively calling itself to perform t number of $\lceil n/2 \rceil$ -digit integer multiplications; when $n \leq 1$, it performs single-digit multiplication.

If t = 4, what is the smallest exponent x such that the number of one-digit multiplications is always at most $10000 \cdot n^x$?

2 Correct

For what values of t does the algorithm perform fewer one-digit multiplications than the grade-school multiplication algorithm for inputs that have n > 10000 digits?

O For all values of t

O t = 1, 2

t = 1, 2, 3

O t = 1, 2, 3, 4

Correct

What is the value of t for Karatsuba integer multiplication algorithm?

3

Correct