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In this class we will use…
•Big-Oh notation!

•Gives us a meaningful way to talk about the 
running time of an algorithm independent of 
programming language, computing platform, etc., 
without having to count all the operations.
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Main idea:

Focus on how the runtime scales with n (the input size). 

Number of operations Asymptotic Running Time

We say this algorithm is 
“asymptotically faster” 

than the others.

(Only pay attention to the largest 
function of n that appears.)Some examples…
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Example Runtime

T(n) = 25n2 + 5n + 7 ms

The constant factor of 
25 depends on the 
computing platform..

As n gets large, the 
lower-order terms 
don’t really matter

= O(n2)
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Informal definition for O(…)

 

Here, “constant” means “some number 
that doesn’t depend on n.”

pronounced “big-oh of …” or sometimes “oh of …”
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g(n) = n2

 

3g(n) = 3n2

T(n) = 2n2 + 10
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Formal definition of O(…)

 

“There exists”

“For all”

“such that”

“If and only if”
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g(n) = n2

3g(n) = 3n2

T(n) = 2n2 + 10
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g(n) = n2

3g(n) = 3n2

(c = 3)

T(n) = 2n2 + 10

 

n
0
=4
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g(n) = n2

3g(n) = 3n2

(c = 3)

T(n) = 2n2 + 10

 

n
0
=4

Formally:
• Choose c = 3
• Choose n

0
 = 4

• Then:
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Formally:
• Choose c = 7
• Choose n

0
 = 2

• Then:

 

g(n) = n2

7g(n) = 7n2

n
0
=2

T(n) = 2n2 + 10

There is no “correct” 
choice of c and n

0
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• Choose c = 1
• Choose n

0
 = 1

• Then

 

g(n) = n2

T(n) = n
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Ω(…) means a lower bound

 

Switched these!!

pronounced “big-omega of …”
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• Choose c = 1/3
• Choose n

0
 = 2

• Then

 

 

T(n) = nlog(n)

g(n) = 3n

g(n)/3 = n
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Θ(…) means both!

 

pronounced “big-theta of …” or sometimes “theta of”
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Take-away from examples

•To prove T(n) = O(g(n)), you have to come up with c 
and n

0 
so that the definition is satisfied.

•To prove T(n) is NOT O(g(n)), one way is proof by 
contradiction:
• Suppose (to get a contradiction) that someone gives you 

a c and an n
0
 so that the definition is satisfied.

• Show that this someone must by lying to you by deriving 
a contradiction.
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Practice

• f(n) = n and g(n) = n2 - n 

f(n) =      g(n)

• f(n) = 2n and g(n) = n2

f(n) =      g(n)

• f(n) = 8n and g(n) = n log n

f(n) =      g(n)
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Practice

• f(n) = n and g(n) = n2 - n 

f(n) =O(g(n))     

• f(n) = 2n and g(n) = n2

f(n) =Ω(g(n))   polynomial functions are slower than 
exponential functions

n grows slower than n2
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Practice

• f(n) = 8n and g(n) = n log n

f(n) =O(g(n))
c > 0, nc = O(nc log n)

with c = 1, f(n) = O(g(n))

lim
n→∞ 

8n / n log n 

= lim
n→∞ 

8 / log n 

= 0
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State order of growth in Θ notation

• f(n) = 50

• f(n) = n + … + 3 + 2 + 1

• f(n) = (g(n))2 where g(n) = √n + 5
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State order of growth in Θ  notation

• f(n) = 50

f(n) = Θ(1) 

• f(n) = n + … + 3 + 2 + 1

f(n) = n(n+1)/2 = (n2 + n)/2 = Θ(n2) 

• f(n) = (g(n))2 where g(n) = √n + 5

f(n) = (√n + 5)2 = n + 10√n + 25 = Θ(n)
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Summary of Definitions

f(n) = O(g(n)) if there exists a c > 0 where after large 
enough n, f(n) ≤ c * g(n)

Asymptotically f grows as most as much as g

f(n) = Ω(g(n)) if g(n) = O(f(n))

Asymptotically, f grows at least as much as g

f(n) = Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n))

Asymptotically, f and g grow the same
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Important Takeaways
• If d > c, nc = O(nd) but nc ≠ Ω(nd)
• Asymptotic notation only cares about the highest 

growing terms: e.g. n2 + n = Ω(n2)
• Asymptotic notation does not care about leading 

constants: e.g. 50n = Θ(n)
• Any exponential with base > 1 grows more than 

any polynomial
• The base of the exponential matters: e.g. 3n = 

O(4n) but 3n ≠ Ω(4n)



Any questions?


