Big-Oh Notation

Review Session 1/12

In this class we will use...

* Big-Oh notation!

* Gives us a meaningful way to talk about the
running time of an algorithm independent of
programming language, computing platform, etc.,
without having to count all the operations.

Main idea:

Focus on how the runtime scales with n (the input size).

(Only pay attention to the largest
function of n that appears.)

Some examples...

Number of operations Asymptotic Running Time

— We say this algorithm is
“asymptotically faster”
1 @) +1 O(log(n)) than the others.

Example Runtime

T(n) =25n°+5n + 7 ms

/N

The constant factor of As n gets large, the
25 depends on the lower-order terms
computing platform.. don’t really matter

= 0(n?)

pronounced “big-oh of ...” or sometimes “oh of ...”

Informal definition fo\r‘O(.)

* Let T(n), g(n) be functions of positive integers.
e Think of T(n) as a runtime: positive and increasing in n.

* We say “T(n) is 0(g(n))” if:
for large enough n,
T (n) is at most some constant multiple of g(n).

Here, “constant” means “some number
that doesn’t depend on n.”

Example

2n% + 10 = 0(n?)

250

200 -

150

100 -

= T(n)=2x"2 + 10
=== gin)=x"2
=== 3*g(n) = 3x"2

10

for large enough n,
T (n) is at most some constant
multiple of g(n).

3g(n) = 3n?

T(n) =2n%+ 10

g(n) =n’

Formal definition of O(...) ﬁ,

e Let T(n), g(n) be functions of positive integers.
e Think of T(n) as a runtime: positive and increasing in n.

* Formally,
T(n) = 0(g(n))
“If and only if” = “Forall”
dc,ng > 0 s.t. Vn = n,,
T(n) <c-gn) “such that”

“There exists”

Example

2n% + 10 = 0(n?)

250

200 -

150

100 -

= T(n)=2x"2 + 10
=== g{n)=x"2
=== 3*g(n) = 3x"2

10

T(n) =0(g(n))
=
dc,ng >0 s.t. Vn = n,,

T(n) <c-gn)

3g(n) = 3n?

T(n) =2n%+ 10

g(n) =n’

Example
2n% + 10 = 0(n?)
250 ‘
— T(n)=2x"2 + 10 n =4 /
=== gin)=x"2 0 /'
200 { === 3*g(n) = 3x"~2 /
x=n0=4 "4

150 A

100 A

10

T(n) =0(g(n))
=
dc,ng >0 s.t. Vn = n,,

Tn) <c-gn)
3g(n) = 3n?
(c=3)

T(n) =2n%+ 10

g(n) =n’

10

T(n) = 0(gn))

Example o
2 . 2 dc,ng > 0 s.t. Vn = n,,
2n® +10 = 0(n*) T(n) < c- g(n)
250 3g(n) = 3n? Formally:
s ;n})=2i;2 sl n,=4 /I (C = 3) e Choosec=3
-== gin)=x /
200 { === 3*g(n) = 3x"2 J * Choose n,=4
x=n0=4 R4 T(n) — 2n2 ¥ 10. Then:

vn = 4,
2n% +10 < 3 - n?

150 A

100 A

g(n) =n’

10

Same example
2n?% 4+ 10 = 0(n?)

250

200 A

150 +

100 -

7g(n) = 7n?

= T(n)=2x"2 + 10
=== gin)=x"2
=== T7*g(n) = 7x"2

g(n) =n’

T(n) = 0(gm))

—

dc,ng > 0 s.t. Vn = ng,

Tn) <c-gn)

Formally:

* Choosec=7
T(n)=2n?+10 * Choosen =2

* Then:

vn = 2,
2n? 4+10< 7 - n?

There is no “correct”
choice of c and n,

T(n) = 0(gm))

O(...) is an upper bound: =

n

4.0 -
35
3.0 4
2.5 A
2.0 1
15 -
10 -
0.5 1

0.0 -

= 0(n?)

T(n) = O(g(n))

— T(n)=n
- g(n) =n"2
1*g(n)

=1

000 025 050 075 100 125 150 175 200

dc,ng > 0 s.t. Vn = ng,

Tn) <c-gn)

g(n) = n?
e Choosec=1
 Choose n,= 1
T(n) =n i Then
vn = 1,
n < n?

pronounced “big-omega of ...”

()(...) means a lower bound

e Wesay “T'(n) is Q(g(n))” if, for large enough n,
T (n) is at least as big as a constant multiple of g(n).

* Formally,

T(n) = Q(gn))
—

dc,ng > 0 s.t. Vn = n,,

c-gn) <T(n)
N A

Switched these!!

N T = a(gm)

Example dc,ng > 0 ;::: vn = no,
n 10g2 (Tl) — Q(Bn) c-gn) <Tm)

Tin) = Omegalglnl) g(n) =3n

- T(n) = n log(n)

20 - - g(n) = 3*n
- 13 * g(n)
n=2

T(n) =nlog(n) « Choosec=1/3
 Choose n,= 2

e Then
vn = 2,

3n
3 < nlog,(n)

g(n)/3=n

pronounced “big-theta of ...” or sometimes “theta of”

©(...) means both!

e We say “T'(n) is ©(g(n))” iff both:

T(n) = 0(g(n))

and

T(n) = Q(gn))

T(n) = 0(g(m))

Non—EXample: 3¢, > 0 ot vn = no,
n4is not 0(n) T <c-g(m

* Proof by contradiction:
e Suppose that n? = 0(n).
* Then there is some positive c and nyso that:

vn = n,, n<c-n
* Divide both sides by n:
Vn = n,, n<c

* That’s not true!!! What about, say, ng +c+ 17
* Thenn = ng, but, n >c

e Contradiction!

Take-away from examples

* To prove T(n) = O(g(n)), you have to come up with c
and n,so that the definition is satisfied.

* To prove T(n) is NOT O(g(n)), one way is proof by
contradiction:

» Suppose (to get a contradiction) that someone gives you
a cand an n, so that the definition is satisfied.

* Show that this someone must by lying to you by deriving
a contradiction.

Practice

. f(n) =nand g(n) =n?-n

f(n)=__g(n)
. f(n) =2"and g(n) = n?
f(n)=__g(n)

. f(n) =8nand g(n) =nlog n
f(n)=__g(n)

Practice

. f(n) =nand g(n) =n?-n
f(n) =O(g(n)) n grows slower than n*

. f(n) =2"and g(n) = n?
3 polynomial functions are slower than
f(n) ={X(g(n)) exponential functions

Practice

- f(n) =8nand g(n) =nlogn
f(n) =0O(g(n))
c>0,n“=0(nlog n)
with c =1, f(n) = O(g(n))

lim __8n/nlogn
=lim __8/logn
=0

State order of growth in © notation

. f(n) =50
. f(n)=n+...+3+2+1

. f(n) = (g(n))* where g(n) = Vn + 5

State order of growth in ® notation

. f(n) =50
f(n) = ©(1)
- f(n)=n+...+43+2+1
f(n) = n(n+1)/2 = (n* + n)/2 = ©(n?)
. f(n) = (g(n))>where g(n) =Vn + 5
f(n) = (Vn + 5)2 = n + 10Vn + 25 = O(n)

Summary of Definitions

f(n) = O(g(n)) if there exists a ¢ > 0 where after large
enough n, f(n) < c * g(n)

Asymptotically f grows as most as much as g
f(n) = Q(g(n)) if g(n) = O(f(n))

Asymptotically, f grows at least as much as g
f(n) = O©(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n))

Asymptotically, f and g grow the same

Important Takeaways

. Ifd >c, n®=0(n% but n® # Q(nY)

- Asymptotic notation only cares about the highest
growing terms: e.g. n* + n = Q(n?)

. Asymptotic notation does not care about leading
constants: e.g. 50n = O(n)

- Any exponential with base > 1 grows more than
any polynomial

. The base of the exponential matters: e.g. 3" =
0(4") but 3" # QQ(4")

Any questions?

