
CS 161 (Stanford, Winter 2025) Homework 5

Style guide and expectations: We do NOT accept handwritten solutions. Please see
the “Homework” part of the “Resources” section on the webpage for guidance on what we
look for in homework solutions. We will grade according to these standards. You should
cite all sources you used outside of the course material. Please do not distribute this
material on any public forum.
Note about tagging your pages on gradescope: Please tag all of your pages to the
correct question number on gradescope. We will apply a 5% deduction to all untagged
answers.
What we expect: Make sure to look at the “We are expecting” blocks below each
problem to see what we will be grading for in each problem!
Pair submissions: You can submit in pairs for this assignment. If you choose to do this,
please submit one Gradescope assignment per pair and be sure to tag both partners on
your submission. Note that we still encourage exercises to be done solo first.

Exercises. The following questions are exercises. We suggest you do these on your own.
As with any homework question, though, you may ask the course staff for help.

1 Exercise: Universality

Trucky the terrapin is organizing a campus pickleball tournament for up to 100 Stanford
students! To efficiently track player registrations, Trucky wants to use participants’ 8-digit
Stanford ID to build a hash table containing 100 buckets.

Trucky still needs to choose a hash family H = {hm : m ∈ {1, . . . , 1000}}, and being a
thinking terrapin, wants it to be universal.

Trucky has several ideas, and wants to know if they result in a universal hash family.

[We are expecting: For each candidate formulation, a proof of universality or a counterex-
ample.]

1.1 (2 pt.)

Let hm(x) be the sum of the digits in input x , plus m, truncated to the final 2 digits. For
example with m = 100, h100(01234567) = 28 because 0+1+2+3+4+5+6+7+100 = 128.
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1.2 (2 pt.)

Let hm(x) be the final 2 digits of mx . For example, h4(01234567) = the final 2 digits of
4938268 = 68.

2 Exercise: BFS and DFS Basics

Consider the following directed acyclic graph (DAG):

A

B

C

D E

2.1 (2 pt.)

Run DFS starting at vertex C, breaking any ties by reverse alphabetical order.1

(a) What do you get when you order the vertices by ascending start time?

(b) What do you get when you order the vertices by descending finish time?

[We are expecting: An ordering of vertices. No justification is required.]

2.2 (1 pt.)

Run BFS (not DFS) starting at vertex D, treating all edges as undirected. Break any ties by
alphabetical order. What is the order that the nodes are marked by BFS?

[We are expecting: An ordering of vertices. No justification is required.]

1For example, when DFS has a choice between B or C, it will always choose C. This includes when DFS is
starting a new tree in the DFS forest.
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Problems. The following questions are problems. You may talk with your fellow CS
161-ers about the problems. However:
• Try the problems on your own before collaborating.
• Write up your answers yourself, in your own words. You should never share your

typed-up solutions with your collaborators, other than your partner (if submitting in
pairs).
• If you collaborated, list the names of the students you collaborated with at the

beginning of each problem.

3 Perfect hashing

Ollie the overachieving ostrich has just read about hash tables and wants to learn more!

Recall from lecture 8 that a hash table supports the following operations:

• INSERT(k): Insert key k into the hash table.

• SEARCH(k): Check if key k is present in the table.

• DELETE(k): Delete the key k from the table.

For simplicity, Ollie is examining static hash tables, a more restricted problem where we
know all the keys to be inserted ahead of time. Specifically, a static hash table supports the
following operations:

• BUILD(k1, . . . , kn): Construct a static hash table from a set of n unique keys.

• SEARCH(k): Check if key k is present in the table.

To distinguish static hash tables from the more general hash tables presented in lecture, we
will refer to the latter as dynamic hash tables for the remainder of this problem.

Notes from the Ollie the ostrich: For this problem you can assume:

• You have access to a universal hash family H with a size greater than the number of
possible keys.

• Hash functions in family H are independent of each other.

• INSERT(k) runs in deterministic O(1) time for dynamic hash tables, as long as the key
being inserted is guaranteed to be unique. (If the key is unique, we can just append it
to a bucket without having to scan through the bucket.)

• Initializing an empty dynamic table with n buckets takes deterministic O(n) time.
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3.1 Simple static tables (0 pt.)

Ollie first looks at this simple implementation of static hash tables using dynamic hash tables:

• BUILD(k1, . . . , kn): Construct a dynamic hash table with n buckets with some hash
function hm ∈ H. Then, run INSERT(ki) for each ki .

• SEARCH(k): Run SEARCH(k) on the dynamic hash table.

What are the asymptotic runtimes of BUILD and SEARCH for this implementation? What
is the asymptotic size of this table, in terms of the total number of buckets?

Solution (provided)

BUILD runs in deterministic O(n) time, since it consists of n unique calls to INSERT,
which is a deterministic O(1) operation.
SEARCH runs in expectedO(1) time since SEARCH for dynamic hash tables is expected
O(1).
Since the dynamic table uses O(n) buckets, this implementation uses O(n) buckets.

Note: âĂĲExpectedâĂİ runtime means expectation over the random choice of hash function,
rather than a randomly selected key

3.2 Expected vs. deterministic (1 pt.)

Why does an expected O(1) runtime for SEARCH not imply a deterministic worst-case O(1)
runtime?

[We are expecting: A brief explanation in plain English.]

3.3 Expected collisions (1 pt.)

Ollie is despondent upon learning of the lack of deterministic search. Being an overachieving
ostrich, Ollie searches for a new implementation with better performance.

Ollie now looks at hashing n keys into a table with n2 buckets. What is the expected total
number of collisions in such a table?

Hint: You may cite equations from lecture notes.

[We are expecting: A mathematical derivation.]
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3.4 Collision probability (1 pt.)

When hashing n keys into a table with n2 buckets, show that there is at least a 1/2 probability
of having no collisions in the table. (In other words, show that there is at most a 1/2
probability of having any collisions in the table.)

Hint: Markov’s inequality may be useful. For a random variable X and a constant a:

P(X ≥ a) ≤ E[X]
a
.

[We are expecting: A mathematical derivation.]

3.5 Big fast tables (4 pt.)

With this knowledge, help Ollie implement a static hash table with the following properties:

• BUILD(k1, . . . , kn) runs in expected O(n2) time.

• SEARCH(k) runs in deterministic O(1) time.

• The size of the data structure is n2 buckets.

Hint: We should reattempt implementing the hash table if the current table does not meet
requirements. How many attempts would this take in expectation?

[We are expecting: A specification of BUILD and SEARCH in clear English or pseudocode,
along with justifications of the required properties.]

3.6 Small slow tables (6 pt.)

Although we have satisfied Ollie’s runtime requirements, Ollie is still worried about the O(n2)
size.

We now turn to more space-efficient tables with deterministic search times. Help Ollie
implement a static hash table with the following properties:

• BUILD(k1, . . . , kn) runs in expected O(n) time.

• SEARCH(k) runs in deterministic O(
√
n) time.

• The size of the data structure is n buckets.
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Hint: Can we get a table with a small total number of pairwise collisions? How does the
total number of pairwise collisions imply the worst-case runtime for SEARCH?

[We are expecting: A specification of BUILD and SEARCH in clear English or pseudocode,
along with justifications of the required properties.]

3.7 Interlude (Optional) (0 pt.)

For a table with n unique keys, m buckets, and k total collisions, let si be the size of bucket
i , where i ∈ [1, . . . , m]. Show the following relation:

m

i=1

s2i = 2k + n

[We are expecting: A mathematical derivation, but this part is optional!]

3.8 Small fast tables (Optional) (0 pt.)

Now, we are ready to define a data structure that fulfills Ollie’s runtime requirements and
space requirements.

Help Ollie implement a data structure with the following properties:

• BUILD(k1, . . . , kn) runs in expected O(n) time.

• SEARCH(k) runs in deterministic O(1) time.

• The size of the data structure is O(n) buckets.

Hint: Can we combine static hash tables with different tradeoffs to get the best of both
worlds?

[We are expecting: A specification of BUILD and SEARCH in clear English or pseudocode,
along with justifications of the required properties. Feel free to reference previous portions
of the problem. This part is also optional!]

4 Badger badger badger

A family of badgers lives in a network of tunnels; the network is modeled by a connected,
undirected graph G with n vertices and m edges. See an example below. Each of the tunnels
have different widths, and a badger of width x can only pass through tunnels of width ≥ x .

6



For example, in the graph below, a badger with width x = 2 could get from v0 to v4 (either
by v0 → v1 → v4 or by v0 → v3 → v4). However, a badger of width 3 could not get from
v0 to v4.

v0 v13.14

v2 v3 v4

21.1 2

3.3 2.1

x

The graph is stored in the adjacency-list format we discussed in class. More precisely, G has
vertices v0, . . . , vn−1 and is stored as an array V of length n, so that V [i ] is a pointer to the
head of a linked list Ni which stores integers. An integer j ∈ {0, . . . , n − 1} is in Ni if and
only if there is an edge between the vertices vi and vj in G.

You have access to a function tunnelWidth so that tunnelWidth(i,j) returns the width of
the tunnel between vi and vj if {vi , vj} is an edge in G. You may assume that the runtime of
tunnelWidth is O(1). (It is guaranteed that tunnelWidth(i,j)=tunnelWidth(j,i) since
the graph is G undirected). If {vi , vj} is not an edge in G, then you have no guarantee about
what tunnelWidth(i,j) returns.

4.1 Is there a path for a given badger? (5 pt.)

Design a deterministic algorithm which takes as input G in the format above, integers s, t ∈
{0, . . . , n − 1}, and a desired badger width x > 0; the algorithm should return True if there
is a path from vs to vt that a badger of width x could fit through, or False if no such path
exists.

(For example, in the example above we have s = 0 and t = 4. Your algorithm should return
True if 0 < x ≤ 2 and False if x > 2).

Your algorithm should run in time O(n + m). You may use any algorithm we have seen in
class as a subroutine.

Note: In your pseudocode, make sure you use the adjacency-list format for G described
above. For example, your pseudocode should not say something like “iterate over all edges in
the graph.” Instead it should more explicitly show how to do that with the format described.

[We are expecting: Pseudocode AND an English description of your algorithm, and a
short justification of the running time. You should make sure to use the adjacency-list
representation of G described above in your pseudocode. You can use any algorithms we
have seen from class as a subroutine.]
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4.2 Find the largest fitting badger (6 pt.)

Design a deterministic algorithm which takes as input G in the format above and integers
s, t ∈ {0, . . . , n−1}; the algorithm should return the largest real number x so that there exists
a path from vs to vt which accommodates a badger of width x . Your algorithm should run in
time O((n +m) log(m)). You may use any algorithm we have seen in class as a subroutine.

Note: Don’t assume that you know anything about the tunnel widths ahead of time. (e.g.,
they are not necessarily bounded integers). How would you find the largest tunnel width?

Note: In your pseudocode, make sure you use the adjacency-list format for G described
above. For example, your pseudocode should not say something like “iterate over all edges in
the graph.” Instead it should more explicitly show how to do that with the format described.

Hint: Use part (a).

[We are expecting: Pseudocode AND an English description of your algorithm, and a
short justification of the running time. You should make sure to use the adjacency-list
representation of G described above in your pseudocode. You can use any algorithms we
have seen from class as a subroutine.]

4.3 Ethics (4 pt.)

Suppose you want to design a network of tunnels that can accommodate the widest of
badgers. City planners do something similar: the tunnels are roads, and the badgers represent
traffic. Imagine you are tasked with designing a road system that avoids congestion by
optimizing for the widest roads possible to accommodate the heaviest amount of traffic the
route can get. However, you realized that wider roads actually do not help with traffic
congestion (see Building Bigger Roads Actually Makes Traffic Worse). What are some other
considerations that are overlooked when we optimize the roads for cars? Here are a few
articles for some inspiration:

• Speed kills, so why do we keep designing for it?

• Places and non-places

• Life in the Slow Lane

• Widening Highways Doesn’t Really Help Traffic

[We are expecting: four to six sentences explaining (1) what other groups of people who
share the road we overlook when we only consider car users; (2) what are the consequences
they face when traversing a city planned for cars; and (3) what are the consequences that
everyone faces when car traffic is encouraged.]
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5 Wake up, Sheeple!

You arrive on an island with n sheep. The sheep have developed a pretty sophisticated society,
and have a social media platform called Baaaahtter (it’s like X but for sheep2). Some sheep
follow other sheep on this platform. Being sheep, they believe and repeat anything that they
hear. That is, they will re-post anything that any sheep they are following said. We can
represent this by a graph, where (a) → (b) means that (b) will re-post anything that (a)
posted. For example, if the social dynamics on the island were:

Snowflake the sheep

Sprinkle the sheep

Sugar the sheep

Socks the sheep

then Socks the Sheep follows Sugar the Sheep, and Sugar follows both Sprinkle and Snowflake,
and so on. This means that Socks will re-post anything that Sugar posts, Sugar will re-post
anything by Snowflake and Sprinkle, and so on. (If there is a cycle then each sheep will only
re-post a post once).

For the parts below, let G denote this directed, unweighted graph on the n sheep. Let m
denote the number of edges in G.

5.1 The influencer circle (4 pt.)

A sheep is an influencer if anything that they post eventually gets re-posted by every other
sheep on the island. In the example above, both Snowflake and Sprinkle are influencers.

Prove that, if there is at least one influencer, then (1) all influencers are in the same strongly
connected component of G, and (2) every sheep in that component is an influencer.

[We are expecting: A short but rigorous proof.]
2Also my new start-up idea
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5.2 Who is the influencer? (4 pt.)

Suppose that there is at least one influencer. Give an algorithm that runs in time O(n +m)
and finds an influencer. You may use any algorithm we have seen in class as a subroutine.

[We are expecting: Pseudocode or a very clear English description of your algorithm, an
informal justification that your algorithm is correct , an informal justification that the running
time is O(n +m).]

5.3 Is there an influencer? (3 pt.)

Suppose that you do not know whether there is an influencer. Give an algorithm that runs in
time O(n+m) and returns either an influencer or the text "no influencer". You may use
any algorithm we have seen from class as a subroutine, and you may also use your algorithm
from the previous part as a subroutine.

[We are expecting: Pseudocode or a very clear English description of your algorithm, an
informal justification that your algorithm is correct, an informal justification that the running
time is O(n +m)]
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