
CS 161 (Stanford, Winter 2025) Homework 8

Style guide and expectations: We do NOT accept handwritten solutions. Please see
the “Homework” part of the “Resources” section on the webpage for guidance on what we
look for in homework solutions. We will grade according to these standards. You should
cite all sources you used outside of the course material. Please do not distribute this
material on any public forum.
Note about tagging your pages on gradescope: Please tag all of your pages to the
correct question number on gradescope. We will apply a 5% deduction to all untagged
answers.
What we expect: Make sure to look at the “We are expecting” blocks below each
problem to see what we will be grading for in each problem!
Pair submissions: You can submit in pairs for this assignment. If you choose to do this,
please submit one Gradescope assignment per pair and be sure to tag both partners on
your submission. Note that we still encourage exercises to be done solo first.

Exercises. The following questions are exercises. We suggest you do these on your own.
As with any homework question, though, you may ask the course staff for help.

1 Spanning Tree Algorithms

Consider the graph G below.

A B C

D E F

1

2

3

4
7

6

5
8

9

1.1 Prim (1 pt.)

In what order does Prim’s algorithm add edges to an MST when started from vertex D?

[We are expecting: An ordered list of edges.]

1.2 Kruskal (1 pt.)

In what order does Kruskal’s algorithm add edges to an MST?

[We are expecting: An ordered list of edges.]

1

2 Computing Max-Flow

Consider the graph below, with the edges labelled by their capacities. We will compute the
max-flow from s to t in the following steps.

(a) (1 pt.) We start with the 0 flow (which assigns no flow to any edge), so the residual
graph is just the graph itself. Find an augmenting path in this graph from s to t with
value 3.
[We are expecting: The list of vertices that are on the augmenting path with value
3; no justification required]

(b) (2 pt.) Draw the residual graph after sending the flow from part (a).
[We are expecting: A diagram of the residual graph]

(c) (2 pt.) Find another augmenting path (in the residual graph from part 2) from s to t
and compute its value, and draw the residual graph after adding this path to the flow.

[We are expecting: A list of vertices in the augmenting path, the augmenting path’s
value, and a diagram of the residual graph]

(d) (1 pt.) Compute the max flow, and find a cut whose capacity is the same as the max
flow.
[We are expecting: The max flow value, and a partition of the vertices corresponding
to the min-cut]

Problems. The following questions are problems. You may talk with your fellow CS
161-ers about the problems. However:

• Try the problems on your own before collaborating.
• Write up your answers yourself, in your own words. You should never share your

typed-up solutions with your collaborators.
• If you collaborated, list the names of the students you collaborated with at the

beginning of each problem.

2

3 Plucky’s Subway Adventure

Plucky is planning to visit her very large family this weekend. She realizes that she needs to
visit every single subway station to visit everyone from her family. She obtained a subway
map where each station is represented as a vertex and she sees that there are subway lines
connecting all the stations to form an undirected graph G = (V, E).

The subway system in her town has a peculiar pricing system. Each edge in the subway graph
has a weight that represents how expensive it is to travel between the two nodes it connects.

Plucky plans to buy a special student ticket marked for x dollars that allows her to travel for
unlimited trips between any two stations that takes no more than x dollars to travel. In other
words, she can travel through any path P in the subway system, as long as max{we | e ∈
P} ≤ x .

A

B

E

C

F

D

6

3

2

8

5 6

4

Figure 1: In a graph like this, Plucky needs to buy a $6 ticket to travel to all the stations;
she will be able to travel freely through any edges except for {A,E} with her ticket.

Plucky wants to get the cheapest ticket while visiting all the stations. Plucky realizes that
she will be able to do so by finding a spanning tree T of G that minimizes the quantity

x = max
e∈T
we,

Let us call this spanning tree a minimum-maximum tree since it minimizes the largest edge
in the tree.

3.1 MST (6 pt.)

Prove that a minimum spanning tree in G is always a minimum-maximum tree.

We will provide two hints, which suggest two separate ways to prove this statement. DO
NOT try to use both hints within the same proof.

Approach 1: Suppose toward a contradiction that T is an MST but not a minimum-maximum
tree, and say that T ′ is a minimum-maximum tree. Try to come up with a cheaper MST
than T (and hence a contradiction).

3

Approach 2: Use (without proof) the fact that any MST can be created by Kruskal’s
algorithm.

[We are expecting: A rigorous proof.]

3.2 The other way around (2 pt.)

Show that the converse to the last part is not true. That is, minimum-maximum tree is not
necessarily a minimum spanning tree.

[We are expecting: A counter-example, with an explanation of why it is a counter-example.
]

4 Max-Flow

Let G = (V, E) be a flow network with source s ∈ V , sink t ∈ V , and edge capacities for
each edge e ∈ E. All edge capacities are positive integers. We can represent a flow by a
1-indexed array F , where F [i] is the flow through edge E[i] for 1 ≤ i ≤ |E|.

4.1 Flow verification (5 pt.)

Given G and F , design an O(|V |+|E|)-time algorithm to determine if the flow F is a maximum
flow in G.

[We are expecting: An English description of your algorithm, an informal explanation of
why it works, and a runtime analysis.]

[Hint: remember to check that F is a valid flow.]

4.2 Flow update I (5 pt.)

Suppose that the capacity of a single edge e = (u, v) ∈ E is increased by 1. Given G, its
maximum flow F before the update, and e, design an O(|V |+ |E|)-time algorithm to update
F so that it is still the maximum flow of G after the update to e.

[We are expecting: An English description of your algorithm, an informal explanation of
why it works, and a runtime analysis.]

4.3 Flow update II (5 pt.)

Suppose that the capacity of a single edge e = (u, v) ∈ E is decreased by 1. Given G, its
maximum flow F before the update, and e, design an O(|V |+ |E|)-time algorithm to update
F so that it is still the maximum flow of G after the update to e.

[We are expecting: An English description of your algorithm, an informal explanation of
why it works, and a runtime analysis.]

4

5 Truculent Terrapins

Toby the Terrapin has two children who need to get to tap dancing class, but they often
quarrel, and so have trouble traveling together. The possible routes that these two terrapins
can take to class are represented via an undirected, unweighted graph G. Both of Toby’s
children start at node s, and they need to finish at node t without having used any of the
same edges on their path.

An example graph:

A B

C

S T

D

The paths [S,A,B, T] and [S,C,D, T] are valid for both 5.1 and 5.2.

The paths [S,A, C, T] and [S,C,D, T] are valid for 5.1 but not 5.2.

The paths [S,A,D, T] and [S,C,D, T] are valid for neither 5.1 nor 5.2.

5.1 Find Two Paths, No Overlapping Edges (5 pt.)

Help Toby design an algorithm to find paths for each of his two children. Your algorithm
should modify the graph and call Ford-Fulkerson as a subroutine. Your algorithm should either
return the list of vertices visited by the two separate paths, or −1 if no two paths which meet
the requirements exist.

[We are expecting: How you will modify the graph, how you will use Ford-Fulkerson, and a
justification as to why your algorithm always finds a path for each of Toby’s two children if
one exists.]

5.2 Finding Two Paths, No Overlapping Nodes (5 pt.)

Toby finds that his children are still quarreling, because even if they don’t use the same edges,
if they ever end up at the same node they will get into an argument.

Help Toby design a new algorithm that finds two paths from s to t for his children that do not
share any nodes (except for s and t). Your algorithm should first modify the graph so that

5

each node can only be passed through once, and then call Ford-Fulkerson as a subroutine.
Your algorithm should either return the list of vertices visited by the two separate paths, or
−1 if no two paths which meet the requirements exist.

[We are expecting: How you will modify the graph, how you will use Ford-Fulkerson, and a
justification as to why your algorithm always finds a path for each of Toby’s two children if
one exists.]

5.3 Extending the Algorithm (2 pt.)

Lucky the Lemur has 17 children, and he wants to put his children on separate paths to tap
dancing as well. (He wants to use Toby’s more strict requirement that none of his children
ever visit the same node). Extend the algorithm you wrote in part 5.2 to find n separate
paths from s to t such that no two of them visit the same node (except for s and t). (Again,
the algorithm should return −1 if it is impossible to create n such paths).

[We are expecting: How you will modify your previous approach, and a justification as to
why your algorithm always finds a path for each of Toby’s two children if one exists.]

6

	Spanning Tree Algorithms
	Prim 1
	Kruskal 1

	Computing Max-Flow
	Plucky's Subway Adventure
	MST 6
	The other way around 2

	Max-Flow
	Flow verification 5
	Flow update I 5
	Flow update II 5

	Truculent Terrapins
	Find Two Paths, No Overlapping Edges 5
	Finding Two Paths, No Overlapping Nodes 5
	Extending the Algorithm 2

