
CS 161 (Stanford, Winter 2025) Homework 2

Style guide and expectations: We do NOT accept handwritten solutions. Please see
the “Homework” part of the “Resources” section on the webpage for guidance on what we
look for in homework solutions. We will grade according to these standards. You should
cite all sources you used outside of the course material. Please do not distribute this
material on any public forum.
What we expect: Make sure to look at the “We are expecting” blocks below each
problem to see what we will be grading for in each problem!

1 Exercise: Solving Recurrence Relations

1.1 (4 pt.)

State and prove a tight bound for the following recurrence relation:

T (n) = 6T (n/3) + n3

[We are expecting: A brief but formal justification, likely citing a well-known theorem dis-
cussed in class.]

1.2 (4 pt.)

Use a recursion tree to give an upper bound on the following recurrence relation:

T (n) = 4T (n/5) + n

[We are expecting: A drawing of a recursion tree including a justification for the weight
(i.e. amount of work involved) of the entire tree based on the weight at each level and the
number of levels. You are welcome to hand-draw and upload an image of your recursion tree
(for LaTeX, use includegraphics)].

2 Exercise: Big O via induction

The Fibonacci numbers are a famous sequence defined by

F (0) = 0, F (1) = 1, F (n + 2) = F (n) + F (n + 1) for n ≥ 0.

For example, the first few Fibonacci numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .
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In this problem, we will use induction to get a sense for how quickly the Fibonacci numbers
grow.

(a) (4 pt.) Show that F (n) = O(2n).

(b) (4 pt.) Show that F (n) = Ω(1.5n).

(c) (0 pt.) Show that F (n) = Θ(ϕn), where

ϕ =
1 +
√
5

2

is the golden ratio.

[We are expecting: For part (a) and (b), a formal proof by induction. Make sure your
base case, inductive step, and conclusion are clearly identifiable from your proof. For part
(c), nothing! This part is optional, and significantly harder than the previous two parts,
but it may be rewarding to characterize the precise asymptotic growth rate of the Fibonacci
numbers.]

3 Exercise: Modified MergeSort

Let’s see how changing the size of the subproblems affects MergeSort.

(a) (3 pt.) Your friend gives you this modified version of MergeSort, and he claims that
it runs asymptotically better than the version of MergeSort we showed in class. Is he
correct in his claim? Write down a recurrence relation and runtime for this version of
MergeSort. (Merge is the same as we saw in lecture)

(b) (4 pt.) Inspired by your friend’s idea, Pepper the Peculiar Penguin (Plucky’s little
sibling) decides to write the following version of MergeSort:
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Pepper says that this version of MergeSort is faster than the version we saw in lecture.
Pepper’s argument is as follows:

“This modified MergeSort splits the array into n-subproblems of size O(1)
immediately. We therefore don’t waste time with the ’log(n) levels’ worth of
splitting. Additionally, in this modified sort, we’re calling Merge on a bunch
of sublists of size 1. Each merge would therefore take time

O(size of sublist A) +O(size of sublist B) = O(1) +O(1) = O(1)

That’s constant time per merge! Yay! We now have an algorithm that should
sort the array A in O(n) time-n merges of O(1) time each.”

Sadly, Pepper’s analysis is wrong. It was a good try, though!

Let’s help a penguin out: Tell Pepper what her mistake was and explain what the true
runtime of this modified MergeSort truly is.

[We are expecting: For part a), a recurrence relation for MergesortThirds and and ex-
planation of its runtime. For part b), an explanation of Pepper’s incorrect reasoning and an
explanation of the true runtime of MergesortN]

4 Faster exponentiation

This problem will investigate methods for calculating exponents of the form ab where b is a
large integer.
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(a) (1 pt.) How many multiplications are needed to compute ab by multiplying a by itself
b times?

(b) (3 pt.) Come up with a divide and conquer algorithm to calculate ab using O(log b)
multiplications.

(c) (3 pt.) Fermie the Ferret, a visitor to the CS 161 town, claims that they came up
with a truly marvelous algorithm that computes ab using only log log b multiplications.
Sadly, Fermie’s time in town is too short to tell you how the algorithm works. Explain
why Fermie must have made a mistake.

Hint: Think inductively about the largest power you can compute using n multiplica-
tions.

Bonus: (no extra points) Can you make your argument work to rule out O(log log b)
multiplications, not just log log b?

[We are expecting: For part (a), a number. For part (b), an algorithm in pseudocode and
an explanation of why it requires O(log b) multiplications. For part (c), an explanation of
why it is impossible to compute ab using log log b multiplications.]
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5 Quagga trouble

You stumble across a secret zoo where questionable experiments have been taking place. To
your astonishment, you find a field full of what appear to be quaggas!

Unfortunately, you quickly see that the zebras at this zoo have escaped their field, run through
some mud, and are mingling with the quaggas. Your goal in this problem is to distinguish all
quaggas from zebras.

Not being an animal expert, you can’t tell the difference between a quagga and a muddy
zebra. However, you can gather a pair of animals and ask them to evaluate each other.
Zebras, being herd animals, can always tell if another animal is a zebra or not, and will let you
know. These quaggas, however, have just been rescued from over a century of extinction,
and are too new to the world to give you an accurate response. For example, if Zamantha
and Zathaniel the zebras evaluate each other, they will both say that the other is a zebra.
But if Zamantha and Quincy the quagga evaluate each other, then Zamantha will say that
Quincy is a quagga, but Quincy may say either that Zamantha is a zebra or a quagga. We
will refer to one of these interactions as a "quagga evaluation". The outcomes of quagga
evaluations are as follows:

Animal A Animal B A says (about B) B says (about A)
Zebra Zebra Zebra Zebra
Zebra Quagga Quagga Either

Quagga Zebra Either Quagga
Quagga Quagga Either Either

Suppose that there are n animals in the zoo, and that strictly more than n/2 of them are
zebras.

(a) (4 pt.) Give an algorithm that uses O(n2) quagga evaluations and identifies all of the
quaggas.
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[We are expecting: A description of the procedure (either in pseudocode or very clear
English), with a brief explanation of what it is doing and why it works.]

(b) (12 pt.) ∗ Now let’s start designing an improved algorithm. The following procedure
will be a building block in our algorithm—make sure you read the requirements carefully!

Suppose that n is even. Show that, using only n/2 quagga evaluations, you can reduce
the problem to the same problem with less than half the size. That is, give a procedure
that does the following:

• Input: A population of n animals (zebras and quaggas), where n is even, so that
there are strictly more than n/2 zebras in the population.

• Output: A population of m animals, for 0 < m ≤ n/2, so that there are strictly
more than m/2 zebras in the population.

• Constraint: The number of quagga evaluations is no more than n/2.

[We are expecting: A description of this procedure (either in pseudocode or very clear
English), and rigorous argument that it satisfies the Input, Output, and Constraint
requirements above.]

(c) (0 pt.) [This problem is NOT REQUIRED, but you may assume it for future parts.
Note: the maximum assignment score will still be capped at 100.] Extend your
argument for odd n. That is, given a procedure that does the following:

• Input: A population of n animals, where n is odd, so that there are strictly more
than n/2 zebras in the population.

• Output: A population of m animals, for 0 < m ≤ ⌈n/2⌉, so that there are strictly
more than m/2 zebras in the population.

• Constraint: The number of quagga evaluations is no more than ⌊n/2⌋.

(⋆) For all of the following parts, you may assume that the procedures in parts (b) and (c)
exist even if you have not done those parts.

(d) (4 pt.) Using the procedures from parts (b) and (c), design a recursive algorithm that
uses O(n) quagga evaluations and finds a single zebra.

[We are expecting: A description of the procedure (either in pseudocode or very clear
English).]

(e) (8 pt.) Prove formally, using induction, that your answer to part (d) is correct.

[We are expecting: A formal argument by induction. Make sure you explicitly state
the inductive hypothesis, base case, inductive step, and conclusion.]

∗This is the trickiest part of the problem set! You may have to think a while.
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(f) (8 pt.) Prove that the running time of your procedure in part (d) uses O(n) quagga
evaluations. If you find that you are working with floors and ceilings, you may ignore
them (i.e. assume that the quantity is a whole number).

[We are expecting: A formal argument. Note: do this argument “from scratch," do
not use the Master Theorem.]

(g) (4 pt.) Give a procedure to find all quaggas using O(n) quagga evaluations.

[We are expecting: An informal description of the procedure. ]

7



6 The Role of AI Tools in Education

This problem will examine the ethical implications of using AI tools like ChatGPT to complete
homework assignments and explore how educational assessments should evolve in a post-AI
world.

(a) (2 pt.) Reflect on the restriction against using ChatGPT for solving homework problems
in CS 161. Why might this restriction exist? Consider analogies, such as the use
of calculators in math classes, to help explain your reasoning. Discuss the learning
outcomes that might be compromised by relying on AI tools, and why these outcomes
remain valuable even in professional settings where AI is widely available.

(b) (2 pt.) Based on your reflections in part (a), design a new format for homework
assignments and exams in CS 161 that aligns with the learning objectives you identified.

• Specify the types of tasks or questions that would optimize for meaningful learning,
even if students have access to AI tools.

• Explain how your design encourages the development of problem-solving and crit-
ical thinking skills that cannot be replaced by AI.

(c) (2 pt.) Analyze the “run-time” of your proposed course design in terms of staff hours
needed to operate the course as a function of the number of enrolled students, n. For
example, if we were considering how to use AI-assisted grading:

• Assuming a naive model where all assignments and exams are graded manually,
you can write an expression for the total run-time T (n), assuming each student
has k assignments, and grading each assignment takes c hours.

• Then, extending this model to include AI-assisted grading, you might argue that
grading time becomes constant for each assignment. Explicitly state all assump-
tions and parameters.

(d) (2 pt.) Propose at least one improvement to reduce the run-time of your course design
while maintaining the learning objectives outlined in part (a).

• Specify the parameter(s) affected by your change and how they influence T (n).

• Update your expression for T (n) to reflect the improvement.

• Justify why your proposed change does not compromise the learning outcomes of
the course.

[We are expecting: For part (a), an explanation of the ethical considerations and
educational goals of restricting AI usage. For part (b), a detailed description of as-
signment and exam formats that emphasize critical thinking and learning. For part (c),
a mathematical expression for the run-time of the proposed course design, with clear
assumptions. For part (d), a revised run-time model and justification of the proposed
improvement.]
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