
Lecture 10
Finding strongly connected components

1

2

Last time

• Graph representation and depth-first search (DFS)
• Plus, applications!
• Topological sorting
• In-order traversal of BSTs

• The key was paying attention to the structure of the
tree that the search algorithm implicitly builds.

3

Last time

• Breadth-First Search (BFS) with an application:
• Shortest path in unweighted graphs
• (Note: on the slides from last week there’s another

application to testing bipartite-ness – we didn’t get to
that in lecture due to time constraints, but you might
want to check out the slides if you are interested!)

4

Does DFS work for
testing bipartite-ness?

Today

• One more application of DFS:

Finding
Strongly Connected Components

• But first! Let’s briefly recap DFS…

5

Recall: DFS
It’s how you’d explore a labyrinth with chalk and a piece of string.

1

2

3

4

5

8

6
7

Today, all graphs are directed!
Check that the things we did
last week still all work!

6

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start

This is the same picture we
had in the last lecture, except

I’ve directed all the edges.
Notice that there ARE cycles.

7

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start=0

Recall we also
keep track of
start and finish
times for every
node. 8

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1
Recall we also
keep track of
start and finish
times for every
node. 9

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1

start=2

Recall we also
keep track of
start and finish
times for every
node. 10

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1

start=2

start=3
Recall we also
keep track of
start and finish
times for every
node. 11

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1

start=2

start=3

start=4

Recall we also
keep track of
start and finish
times for every
node. 12

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1

start=2

start=3

start=4
leave=5

Recall we also
keep track of
start and finish
times for every
node. 13

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1

start=2

start=3

start=4
leave=5

Recall we also
keep track of
start and finish
times for every
node. 14

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1

start=2

start=3

start=4
leave=5

start=6

Recall we also
keep track of
start and finish
times for every
node. 15

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1

start=2

start=3

start=4
leave=5

start=6
leave=7

Recall we also
keep track of
start and finish
times for every
node. 16

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1

start=2

start=3
leave=8

start=4
leave=5

start=6
leave=7

Recall we also
keep track of
start and finish
times for every
node. 17

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1

start=0

start=1

start=2
leave=9

start=3
leave=8

start=4
leave=5

start=6
leave=7

Recall we also
keep track of
start and finish
times for every
node. 18

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

startstart=0

start=1
leave=10

start=2
leave=9

start=3
leave=8

start=4
leave=5

start=6
leave=7

Recall we also
keep track of
start and finish
times for every
node. 19

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start=0

start=1
leave=10

start=2
leave=9

start=3
leave=8

start=4
leave=5

start=6
leave=7

Recall we also
keep track of
start and finish
times for every
node. 20

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

start=0

start=1
leave=10

start=2
leave=9

start=3
leave=8

start=4
leave=5

start=11
leave=12

start=6
leave=7

Recall we also
keep track of
start and finish
times for every
node. 21

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Labyrinth:

explo
red!

start=0
leave=13

start=1
leave=10

start=2
leave=9

start=3
leave=8

start=4
leave=5

start=11
leave=12

start=6
leave=7

22

Depth first search
implicitly creates a tree on everything you can reach

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

Call this the
“DFS tree”

23

When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J

24

When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J

What about these
vertices???

25

When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J

26

When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J

27

When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J

28

When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J

29

When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J

30

When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J

YOINK!

YOINK!

31

When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

H

I

J

A

B

C

G

F D

E

The DFS forest is
made up of DFS trees

32

Recall:

• If v is a descendent of w in this tree:

• If w is a descendent of v in this tree:

• If neither are descendants of each other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or the other way around)

timeline

DFS tree

If v and w are in
different trees, it’s

always this last one.

(Works the same with DFS forests)

33

Enough of review

Strongly connected components

34

Strongly connected components

• A directed graph G = (V,E) is strongly connected if:
• for all v, w in V:
• there is a path from v to w and
• there is a path from w to v.

strongly connected not strongly connected
35

We can decompose a graph into
strongly connected components (SCCs)

(Definition by example)

Definition by definition: The SCCs are the equivalence classes
under the “are mutually reachable” equivalence relation. 36

Why do we care
about SCCs? stanford.edu

berkeley.edu

wikipedia.org

google image
 search for

“puppies”

Google terms
 and conditions

4chan.org

reddit.com

Consider the internet:

nytimes.com

Let’s ignore this corner of
the internet for now…but

everything today works fine
if the graph is disconnected. 37

Why do we care
about SCCs? stanford.edu

berkeley.edu

wikipedia.org

google image
 search for

“puppies”

Google terms
 and conditions

Consider the internet:

nytimes.com

(In real life, turns out
there’s one “giant” SCC in
the internet graph and
then a bunch of tendrils.) 38

Why do we care about SCCs?

• Strongly connected components tell you about
communities.
• Lots of graph algorithms only make sense on SCCs.
• So sometimes we want to find the SCCs as a first step.
• E.g., algorithms for solving 2-SAT (you’re not expected to to

know this).

𝑥 ∨ 𝑦 ∧ ¬𝑥 ∨ 𝑧 ∧ ¬𝑦 ∨ ¬𝑧

• E.g., economist who has to first break up his labor market
data into SCCs in order to make sense of it

39

How to find SCCs?

• Consider all possible decompositions and check.

• Something like…
• Run DFS a bunch to find out which u’s and v’s belong in

the same SCC.
• Aggregate that information to figure out the SCCs

Try 1:

Try 2:

Come up with a straightforward way to use DFS
to find SCCs. What’s the running time?

 More than n2 or less than n2?

Think: 1-2 minutes.
Pair+Share: (wait) 1 minute 40

One straightforward solution

• SCCs = []
• For each u:
• Run DFS from u
• For each vertex v that u can reach:
• If v is in an SCC we’ve already found:

• Run DFS from v to see if you can reach u
• If so, add u to v’s SCC
• Break

• If we didn’t break, create a new SCC which just contains u.

This will not be our final
solution so don’t worry

too much about it…

Running time AT LEAST Ω 𝑛! , no matter how smart
you are about implementing the rest of it… 41

Today

•We will see how to find strongly connected
components in time O(n+m)
• !!!!!
• This is called Kosaraju’s algorithm.

42

Pre-Lecture exercise

• Run DFS starting at D:

• That will identify SCCs…
• Issues:
• How do we know where to start DFS?
• It wouldn’t have found the SCCs if we started from A.

43

Algorithm

• Do DFS to create a DFS forest.
• Choose starting vertices in any order.
• Keep track of finishing times.

• Reverse all the edges in the graph.
• Do DFS again to create another DFS forest.
• This time, order the nodes in the reverse order of the

finishing times that they had from the first DFS run.

• The SCCs are the different trees in the second DFS
forest.

Running time: O(n + m)

44

But let’s break that down a bit…

• (See Python notebook)
Look, it works!

45

Example

46

Example

47

Example

1. Start with an arbitrary
vertex and do DFS.

48

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0

49

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0

Start:1

50

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0

Start:1

Start:2

51

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0

Start:1

Start:2

Start:3

52

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0

Start:1

Start:2

Start:3
Finish:4

53

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0

Start:1

Start:2
Finish:5

Start:3
Finish:4

54

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0

Start:1

Start:2
Finish:5

Start:3
Finish:4

55

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0

Start:1

Start:2
Finish:5

Start:3
Finish:4

Start:6

56

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0

Start:1

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

57

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

58

Example

1. Start with an arbitrary
vertex and do DFS.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

59

Example

1. Start with an arbitrary
vertex and do DFS.

 Repeat until done.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

60

Example

1. Start with an arbitrary
vertex and do DFS.

 Repeat until done.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

61

Example

2. Reverse all the edges.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

62

Example

2. Reverse all the edges.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

63

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

64

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

65

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

66

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

67

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

68

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

69Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

70

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

71

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

72

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

73

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Here’s another DFS
tree in the DFS
forest!

74
Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Here’s another DFS
tree in the DFS
forest!

75
Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Here’s another DFS
tree in the DFS
forest!

76
Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Here’s another DFS
tree in the DFS
forest!

77
Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Here’s another DFS
tree in the DFS
forest!

78
Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Here’s another DFS
tree in the DFS
forest!

79
Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Here’s another DFS
tree in the DFS
forest!

The la
st

DFS
tre

e!

80
Notice that I’m not changing the start and finish
times – I’m keeping them from the first run.

Example

3. Do DFS again, but this time,
start with the vertices with
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree
in the DFS forest!

Here’s another DFS
tree in the DFS
forest!

The la
st

DFS
tre

e!

IT WORKED! 81

One question

82

The SCC graph

• Pretend that each SCC is a
vertex in a new graph.

83

The SCC graph
Lemma 1: The SCC graph is a
Directed Acyclic Graph (DAG).

Proof idea: if not, then two
SCCs would collapse into one.

84

Starting and finishing times in a SCC

• The finishing time of a SCC is the largest finishing
time of any element of that SCC.

Start:0
Finish:9

Start:1
Finish:8

Start:6
Finish:7

Start: 0
Finish: 9

• The starting time of a SCC is
the smallest starting time of
any element of that SCC.

all times are with respect
to the first DFS run

Definitions:

85

Our SCC DAG
with start and finish times

Start: 0
Finish: 9

Start: 10
Finish: 11

Start: 2
Finish: 5

• Last time we saw that
Finishing times allowed us to
topologically sort of the
vertices.

• Notice that works in this
example too…

86

Start: 0
Finish: 9

Start: 10
Finish: 11

Start: 2
Finish: 5

• Let’s reverse the edges.

Main idea

87

Main idea

Start: 0
Finish: 9

Start: 10
Finish: 11

Start: 2
Finish: 5

• Let’s reverse the edges.
• Now, the SCC with the largest

finish time has no edges going out.
• If it did have edges going out, then it

wouldn’t be a good thing to choose first
in a topological ordering!

• If I run DFS there, I’ll find exactly
that component.

• Remove and repeat.

88

Let’s make this idea formal.

89

Recall

• If v is a descendent of w in this tree:

• If w is a descendent of v in this tree:

• If neither are descendents of each other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or the other way around)

w

v

timeline

90

As we saw last time…

A B

Claim: In a DAG, we’ll always have:

finish: [smaller]finish: [larger]

91

Same thing, in the SCC DAG.

•Claim: we’ll always have

finish: [smaller]finish: [larger]

92

Let’s call it Lemma 2

• If there is an edge like this:

• Then A.finish > B.finish.

A B

93

Proof idea

• Two cases:
• We reached A before B in our first DFS.
• We reached B before A in our first DFS.

A B
Want to show A.finish > B.finish.

94

• Case 1: We reached A before B in our first DFS.

• Say that:
• y has the largest finish in B;
• z was discovered first in A;

• Then:
• Reach A before B
• => we will discover y via z
• => y is a descendant of z in the DFS forest.

• Then

Proof idea A B

z.start
z.finishy.start

y.finish
aka,

A.finish > B.finish

Want to show A.finish > B.finish.

B.finish = y.finish
 A.finish >= z.finish

≤	A.finish B.finish=

95

• Case 2: We reached B before A in our first DFS.

• There are no paths from B to A
• because the SCC graph has no cycles

• So we completely finish exploring B and never reach A.
• A is explored later after we restart DFS.

Proof idea A B

aka,
A.finish > B.finish

Want to show A.finish > B.finish.

96

Proof idea

• Two cases:
• We reached A before B in our first DFS.
• We reached B before A in our first DFS.

• In either case:

A B

A.finish > B.finish

which is what we wanted to show.

Want to show A.finish > B.finish.

Notice: this is exactly the same two-case argument that we did last
time for topological sorting, just with the SCC DAG! 97

This establishes:

Lemma 2

• If there is an edge like this:

• Then A.finish > B.finish.

A B

98

This establishes:

Corollary 1
• If there is an edge like this in the reversed graph:

• Then A.finish > B.finish.

A B

99

Start: 0
Finish: 9

Start: 10
Finish:11

Now we see why
this finds SCCs.
• The Corollary says that all blue arrows

point towards larger finish times.
• So if we start with the largest finish

time, all blue arrows lead in.
• Thus, that connected component, and

only that connected component, are
reachable by the second round of DFS

Remember that after the first round of DFS, and
after we reversed all the edges, we ended up
with this SCC DAG:

• Now, we’ve deleted that
first component.

• The next one has the next
biggest finishing time.

• So all remaining blue
arrows lead in.

• Repeat. Start: 2
Finish: 5

100

Formally, we prove it by induction

• Theorem: The algorithm we saw before will
correctly identify strongly connected components.

• Inductive hypothesis:
• The first t trees found in the second (reversed) DFS

forest are the t SCCs with the largest finish times.

• Base case: (t=0)
• The first 0 trees found in the reversed DFS forest are the

0 SCCs with the largest finish times. (TRUE)

101

Inductive step [drawing on board to supplement]

• Assume by induction that the first t trees are the last-finishing
SCCs.
• Consider the (t+1)st tree produced, suppose the root is x.
• Suppose that x lives in the SCC A.
• Then A.finish > B.finish for all remaining SCCs B.

• This is because we chose x to have the largest finish time.

• Then there are no edges leaving A in the remaining SCC DAG.
• This follows from the Corollary.

• Then DFS started at x recovers exactly A.
• It doesn’t recover any more since nothing else is reachable.
• It doesn’t recover any less since A is strongly connected.
• (Notice that we are using that A is still strongly connected when we

reverse all the edges).

• So the (t+1)st tree is the SCC with the (t+1)st biggest finish time.
102

Formally, we prove it by induction
• Theorem: The algorithm we saw before will

correctly identify strongly connected components.

• Inductive hypothesis:
• The first t trees found in the second (reversed) DFS

forest are the t SCCs with the largest finish times.

• Base case: [done]
• Inductive step: [done]
• Conclusion: The second (reversed) DFS forest

contains all the SCCs as its trees!
• (This is the IH when t = #SCCs)

103

Punchline:
we can find SCCs in time O(n + m)

• Do DFS to create a DFS forest.
• Choose starting vertices in any order.
• Keep track of finishing times.

• Reverse all the edges in the graph.
• Do DFS again to create another DFS forest.
• This time, order the nodes in the reverse order of the

finishing times that they had from the first DFS run.

• The SCCs are the different trees in the second DFS
forest.

Algorithm:

(Clearly it wasn’t obvious since it took
all class to do! But hopefully it is less

mysterious now.)
104

Recap

• Depth First Search reveals a very useful structure!
• We saw last week that this structure can be used to do

Topological Sorting in time O(n + m)

• Today we saw that it can also find Strongly Connected
Components in time O(n + m)

• This was pretty non-trivial.

105

Next time

• Dijkstra’s algorithm!

• Pre-lecture exercise: weighted graphs!

BEFORE Next time

106

