
Lecture 10
Finding strongly connected components
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Last time

• Graph representation and depth-first search (DFS)
• Plus, applications!
• Topological sorting
• In-order traversal of BSTs

• The key was paying attention to the structure of the 
tree that the search algorithm implicitly builds.
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Last time

• Breadth-First Search (BFS) with an application:
• Shortest path in unweighted graphs
• (Note: on the slides from last week there’s another 

application to testing bipartite-ness – we didn’t get to 
that in lecture due to time constraints, but you might 
want to check out the slides if you are interested!)
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Does DFS work for 
testing bipartite-ness?



Today

• One more application of DFS:
 

Finding 
Strongly Connected Components

• But first!  Let’s briefly recap DFS…
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Recall: DFS
It’s how you’d explore a labyrinth with chalk and a piece of string.

1

2

3

4

5

8

6
7

Today, all graphs are directed!  
Check that the things we did 
last week still all work!
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start

This is the same picture we 
had in the last lecture, except 

I’ve directed all the edges.  
Notice that there ARE cycles.
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Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start=0

Recall we also 
keep track of 
start and finish 
times for every 
node. 8



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1
Recall we also 
keep track of 
start and finish 
times for every 
node. 9



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1

start=2

Recall we also 
keep track of 
start and finish 
times for every 
node. 10



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1

start=2

start=3
Recall we also 
keep track of 
start and finish 
times for every 
node. 11



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1

start=2

start=3

start=4

Recall we also 
keep track of 
start and finish 
times for every 
node. 12



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1

start=2

start=3

start=4
leave=5

Recall we also 
keep track of 
start and finish 
times for every 
node. 13



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1

start=2

start=3

start=4
leave=5

Recall we also 
keep track of 
start and finish 
times for every 
node. 14



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1

start=2

start=3

start=4
leave=5

start=6

Recall we also 
keep track of 
start and finish 
times for every 
node. 15



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1

start=2

start=3

start=4
leave=5

start=6
leave=7

Recall we also 
keep track of 
start and finish 
times for every 
node. 16



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1

start=2

start=3
leave=8

start=4
leave=5

start=6
leave=7

Recall we also 
keep track of 
start and finish 
times for every 
node. 17



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1

start=0

start=1

start=2
leave=9

start=3
leave=8

start=4
leave=5

start=6
leave=7

Recall we also 
keep track of 
start and finish 
times for every 
node. 18



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

startstart=0

start=1
leave=10

start=2
leave=9

start=3
leave=8

start=4
leave=5

start=6
leave=7

Recall we also 
keep track of 
start and finish 
times for every 
node. 19



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start=0

start=1
leave=10

start=2
leave=9

start=3
leave=8

start=4
leave=5

start=6
leave=7

Recall we also 
keep track of 
start and finish 
times for every 
node. 20



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

start=0

start=1
leave=10

start=2
leave=9

start=3
leave=8

start=4
leave=5

start=11
leave=12

start=6
leave=7

Recall we also 
keep track of 
start and finish 
times for every 
node. 21



Depth First Search 
Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven’t 
explored all the 
paths out.

Been there, have 
explored all the 
paths out.

Labyrinth: 

explo
red!

start=0
leave=13

start=1
leave=10

start=2
leave=9

start=3
leave=8

start=4
leave=5

start=11
leave=12

start=6
leave=7
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Depth first search  
implicitly creates a tree on everything you can reach

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

Call this the 
“DFS tree”
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When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J
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When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J

What about these 
vertices???
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When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J
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When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J
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When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J
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When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J
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When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J
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When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

A

D

B

C

E

G

F

H

I J

YOINK!

YOINK!
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When you can’t reach everything

• Run DFS repeatedly to get a depth-first forest

H

I

J

A

B

C

G

F D

E

The DFS forest is 
made up of DFS trees
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Recall:

• If v is a descendent of w in this tree:

• If w is a descendent of v in this tree:

• If neither are descendants of each other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or the other way around)

timeline

DFS tree

If v and w are in 
different trees, it’s 

always this last one.

(Works the same with DFS forests)
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Enough of review

Strongly connected components

34



Strongly connected components

• A directed graph G = (V,E) is strongly connected if: 
• for all v, w in V:
• there is a path from v to w and 
• there is a path from w to v.

strongly connected not strongly connected
35



We can decompose a graph into 
strongly connected components (SCCs)

(Definition by example)

Definition by definition: The SCCs are the equivalence classes 
under the “are mutually reachable” equivalence relation. 36



Why do we care 
about SCCs? stanford.edu

berkeley.edu

wikipedia.org

google image   
         search for 

“puppies”

Google terms 
        and conditions

4chan.org

reddit.com

Consider the internet:

nytimes.com

Let’s ignore this corner of 
the internet for now…but 

everything today works fine 
if the graph is disconnected. 37



Why do we care 
about SCCs? stanford.edu

berkeley.edu

wikipedia.org

google image   
         search for 

“puppies”

Google terms 
        and conditions

Consider the internet:

nytimes.com

(In real life, turns out 
there’s one “giant” SCC in 
the internet graph and 
then a bunch of tendrils.) 38



Why do we care about SCCs?

• Strongly connected components tell you about 
communities.
• Lots of graph algorithms only make sense on SCCs.
• So sometimes we want to find the SCCs as a first step.
• E.g., algorithms for solving 2-SAT (you’re not expected to to 

know this).

𝑥 ∨ 𝑦 ∧ ¬𝑥 ∨ 𝑧 ∧ ¬𝑦 ∨ ¬𝑧

• E.g., economist who has to first break up his labor market 
data into SCCs in order to make sense of it 

39



How to find SCCs?

• Consider all possible decompositions and check.

• Something like…
• Run DFS a bunch to find out which u’s and v’s belong in 

the same SCC.
• Aggregate that information to figure out the SCCs

Try 1:

Try 2:

Come up with a straightforward way to use DFS 
to find SCCs.  What’s the running time? 

 More than n2 or less than n2?

Think: 1-2 minutes.  
Pair+Share: (wait) 1 minute 40



One straightforward solution

• SCCs = [ ]
• For each u:
• Run DFS from u
• For each vertex v that u can reach:
• If v is in an SCC we’ve already found:

• Run DFS from v to see if you can reach u
• If so, add u to v’s SCC
• Break

• If we didn’t break, create a new SCC which just contains u.

This will not be our final 
solution so don’t worry 

too much about it…

Running time AT LEAST Ω 𝑛! , no matter how smart 
you are about implementing the rest of it… 41



Today

•We will see how to find strongly connected 
components in time O(n+m)
• !!!!!
• This is called Kosaraju’s algorithm.
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Pre-Lecture exercise

• Run DFS starting at D:

• That will identify SCCs…
• Issues:
• How do we know where to start DFS?
• It wouldn’t have found the SCCs if we started from A.
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Algorithm

• Do DFS to create a DFS forest.
• Choose starting vertices in any order.
• Keep track of finishing times.

• Reverse all the edges in the graph.
• Do DFS again to create another DFS forest.
• This time, order the nodes in the reverse order of the 

finishing times that they had from the first DFS run.

• The SCCs are the different trees in the second DFS 
forest.

Running time: O(n + m)
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But let’s break that down a bit…

• (See Python notebook)
Look, it works!
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Example

46



Example
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Example

1. Start with an arbitrary 
vertex and do DFS.

48



Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0
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Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0

Start:1
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Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0

Start:1

Start:2
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Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0

Start:1

Start:2

Start:3
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Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0

Start:1

Start:2

Start:3
Finish:4
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Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0

Start:1

Start:2
Finish:5

Start:3
Finish:4
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Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0

Start:1

Start:2
Finish:5

Start:3
Finish:4
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Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0

Start:1

Start:2
Finish:5

Start:3
Finish:4

Start:6
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Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0

Start:1

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7
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Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7
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Example

1. Start with an arbitrary 
vertex and do DFS.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7
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Example

1. Start with an arbitrary 
vertex and do DFS.

     Repeat until done.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7
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Example

1. Start with an arbitrary 
vertex and do DFS.

     Repeat until done.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11
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Example

2. Reverse all the edges.  

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11
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Example

2. Reverse all the edges.  

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11
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Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11
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Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11
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Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!
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Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!
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Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!
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Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

69Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.



Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.
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Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.
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Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.

72



Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.
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Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Here’s another DFS 
tree in the DFS 
forest!

74
Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.



Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Here’s another DFS 
tree in the DFS 
forest!

75
Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.



Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Here’s another DFS 
tree in the DFS 
forest!

76
Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.



Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Here’s another DFS 
tree in the DFS 
forest!

77
Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.



Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Here’s another DFS 
tree in the DFS 
forest!

78
Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.



Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Here’s another DFS 
tree in the DFS 
forest!

79
Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.



Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Here’s another DFS 
tree in the DFS 
forest!

The la
st 

DFS 
tre

e!

80
Notice that I’m not changing the start and finish 
times – I’m keeping them from the first run.



Example

3. Do DFS again, but this time, 
start with the vertices with 
the largest finish time.

Start:0
Finish:9

Start:1
Finish:8

Start:2
Finish:5

Start:3
Finish:4

Start:6
Finish:7

Start:10
Finish:11

This is one DFS tree 
in the DFS forest!

Here’s another DFS 
tree in the DFS 
forest!

The la
st 

DFS 
tre

e!

IT WORKED! 81



One question

82



The SCC graph

• Pretend that each SCC is a 
vertex in a new graph.

83



The SCC graph
Lemma 1: The SCC graph is a 
Directed Acyclic Graph (DAG).

Proof idea: if not, then two 
SCCs would collapse into one.

84



Starting and finishing times in a SCC

• The finishing time of a SCC is the largest finishing 
time of any element of that SCC.

Start:0
Finish:9

Start:1
Finish:8

Start:6
Finish:7

Start: 0
Finish: 9

• The starting time of a SCC is 
the smallest starting time of 
any element of that SCC.

all times are with respect 
to the first DFS run

Definitions:

85



Our SCC DAG
with start and finish times

Start: 0
Finish: 9

Start: 10
Finish: 11

Start: 2
Finish: 5

• Last time we saw that 
Finishing times allowed us to 
topologically sort of the 
vertices.

• Notice that works in this 
example too…

86



Start: 0
Finish: 9

Start: 10
Finish: 11

Start: 2
Finish: 5

• Let’s reverse the edges.

Main idea

87



Main idea

Start: 0
Finish: 9

Start: 10
Finish: 11

Start: 2
Finish: 5

• Let’s reverse the edges.
• Now, the SCC with the largest 

finish time has no edges going out.
• If it did have edges going out, then it 

wouldn’t be a good thing to choose first 
in a topological ordering!

• If I run DFS there, I’ll find exactly 
that component.

• Remove and repeat. 

88



Let’s make this idea formal.
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Recall

• If v is a descendent of w in this tree:

• If w is a descendent of v in this tree:

• If neither are descendents of each other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or the other way around)

w

v

timeline

90



As we saw last time…

A B

Claim: In a DAG, we’ll always have:

finish: [smaller]finish: [larger]

91



Same thing, in the SCC DAG.

•Claim: we’ll always have 

finish: [smaller]finish: [larger]

92



Let’s call it Lemma 2  

• If there is an edge like this:

• Then A.finish > B.finish.

A B

93



Proof idea

• Two cases: 
• We reached A before B in our first DFS. 
• We reached B before A in our first DFS. 

A B
Want to show A.finish > B.finish.

94



• Case 1: We reached A before B in our first DFS.

• Say that:
• y has the largest finish in B;
• z was discovered first in A;

• Then:
• Reach A before B 
• => we will discover y via z  
• => y is a descendant of z in the DFS forest.

• Then

Proof idea A B

z.start
z.finishy.start

y.finish
aka, 

A.finish > B.finish

Want to show A.finish > B.finish.

B.finish = y.finish
 A.finish >= z.finish

≤	A.finish B.finish= 
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• Case 2: We reached B before A in our first DFS.

• There are no paths from B to A 
• because the SCC graph has no cycles

• So we completely finish exploring B and never reach A.
• A is explored later after we restart DFS.

Proof idea A B

aka, 
A.finish > B.finish

Want to show A.finish > B.finish.
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Proof idea

• Two cases: 
• We reached A before B in our first DFS. 
• We reached B before A in our first DFS. 

• In either case:

A B

A.finish > B.finish

which is what we wanted to show.

Want to show A.finish > B.finish.

Notice: this is exactly the same two-case argument that we did last 
time for topological sorting, just with the SCC DAG! 97



This establishes: 

Lemma 2  

• If there is an edge like this:

• Then A.finish > B.finish.

A B
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This establishes: 

Corollary 1
• If there is an edge like this in the reversed graph:

• Then A.finish > B.finish.

A B
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Start: 0
Finish: 9

Start: 10
Finish:11

Now we see why 
this finds SCCs.
• The Corollary says that all blue arrows 

point towards larger finish times.
• So if we start with the largest finish 

time, all blue arrows lead in.
• Thus, that connected component, and 

only that connected component, are 
reachable by the second round of DFS

Remember that after the first round of DFS, and 
after we reversed all the edges, we ended up 
with this SCC DAG:

• Now, we’ve deleted that 
first component.

• The next one has the next 
biggest finishing time.

• So all remaining blue 
arrows lead in.

• Repeat. Start: 2
Finish: 5
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Formally, we prove it by induction

• Theorem:  The algorithm we saw before will 
correctly identify strongly connected components. 

• Inductive hypothesis:  
• The first t trees found in the second (reversed) DFS 

forest are the t SCCs with the largest finish times.

• Base case: (t=0) 
• The first 0 trees found in the reversed DFS forest are the 

0 SCCs with the largest finish times.  (TRUE)
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Inductive step [drawing on board to supplement]

• Assume by induction that the first t trees are the last-finishing 
SCCs.
• Consider the (t+1)st tree produced, suppose the root is x.
• Suppose that x lives in the SCC A.
• Then A.finish > B.finish for all remaining SCCs B.

• This is because we chose x to have the largest finish time.

•  Then there are no edges leaving A in the remaining SCC DAG.
• This follows from the Corollary.

•  Then DFS started at x recovers exactly A.
• It doesn’t recover any more since nothing else is reachable.
• It doesn’t recover any less since A is strongly connected. 
• (Notice that we are using that A is still strongly connected when we 

reverse all the edges).

• So the (t+1)st tree is the SCC with the (t+1)st biggest finish time.  
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Formally, we prove it by induction
• Theorem:  The algorithm we saw before will 

correctly identify strongly connected components. 

• Inductive hypothesis:  
• The first t trees found in the second (reversed) DFS 

forest are the t SCCs with the largest finish times.

• Base case: [done]
• Inductive step: [done]
• Conclusion: The second (reversed) DFS forest 

contains all the SCCs as its trees!  
• (This is the IH when t = #SCCs)

103



Punchline: 
we can find SCCs in time O(n + m)

• Do DFS to create a DFS forest.
• Choose starting vertices in any order.
• Keep track of finishing times.

• Reverse all the edges in the graph.
• Do DFS again to create another DFS forest.
• This time, order the nodes in the reverse order of the 

finishing times that they had from the first DFS run.

• The SCCs are the different trees in the second DFS 
forest.

Algorithm:

(Clearly it wasn’t obvious since it took 
all class to do!  But hopefully it is less 

mysterious now.)
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Recap

• Depth First Search reveals a very useful structure!
• We saw last week that this structure can be used to do 

Topological Sorting in time O(n + m)

• Today we saw that it can also find Strongly Connected 
Components in time O(n + m)

• This was pretty non-trivial.
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Next time

• Dijkstra’s algorithm!

• Pre-lecture exercise: weighted graphs!

BEFORE Next time
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