Lecture 11

Weighted Graphs: Dijkstra and Bellman-Ford

NOTE: We may not get to Bellman-Ford!
We will spend more time on it next time.




Announcements

* The midterm is today, 6-9pm. Good luck!

* Don’t talk about it after you are done — we will tell
you when it is ok to discuss the midterm.

e See Ed post for detailed midterm instructions and
logistics.



Midterm instructions (condensed)

 Double check time and location
* One 2-sided cheat sheet allowed

* No scratch paper; extra blank sheets in exam
DO NOT tear off any pages!

* Sign out with the TA before you leave



Previous two lectures

* Graphs!
* DFS

* Topological Sorting
e Strongly Connected Components

* BFS
e Shortest Paths in unweighted graphs



Today

 What if the graphs are weighted?

* Part 1: Dijkstra!
* This will take most of today’s class

e Part 2: Bellman-Ford!

* Real quick at the end if we have time!

e \We'll come back to Bellman-Ford in more detail, so
today is just a taste.
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Just the graph




Shortest path from Gates to the Union?

That doesn’t make sense if | label

the edges by walking time.
8



Shortest path from Gates to the Union?

weighted
graph

w(u,v) = weight
of edge between
uandv.

If | pay attention to
the weights, | should
go to Packard, then
CS161, then the

union.
9

For now, edge
weights are non-
negative.



Shortest path problem

 What is the shortest path betweenuand vin a
weighted graph?
* the cost of a path is the sum of the weights along that path
* The shortest path is the one with the minimum cost.

This path fromstot

3 20 / has cost 25.

This path is shorter,
it has cost 5.

* The distance d(u,v) between two vertices u and v is the cost of
the the shortest path between u and v.

* For this lecture all graphs are directed, but to save on notatfon

I’'m just going to draw undirected edges. O C@



Shortest paths
Crospia >~ 10 Z

This is the shortest Gates
path from Gates to

the Union. 1 @
Packard @
It has cost 6. 1

4
S C>
Q: What’s the shortest

20 path from Packard to

@ the Union? ;

15

25



Warm-up

* A sub-path of a shortest path is also a shortest path.

 Say this is a shortest path from s to t.

* Claim: this is a shortest path from s to x.
* Suppose not, one is a shorter path from s to x.
* But then that gives an even shorter path from s to t!
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Single-source shortest-path problem

* | want to know the shortest path from one vertex
(Gates) to all other vertices.

Packard 1 Packard

CS161 2 Packard-CS161
Hospital 10 Hospital

Caltrain 17 Caltrain

Union 6 Packard-CS161-Union
Stadium 10 Stadium

Dish 23 Packard-Dish

(Not necessarily stored as a table — how this information
: : . 13,
is represented will depend on the appllcailon)
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* “what is the
shortest path from
Palo Alto to
[anywhere else]”
using BART, Caltrain,
lightrail, MUNI, bus,
Amtrak, bike,
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Example

* Network routing

e | send information
over the internet,
from my computer
to to all over the
world.

e Each path has a cost
which depends on
link length, traffic,
other costs, etc..

* How should we
send packets?

UUNETs North America Intemet network |

LOMONTON
O 'ucwm
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9 Snge b Gy T l.‘h‘kﬁi
. @ moses — traceroute -a www.ethz.ch —103x19

Last login: Mon Feb 7 09:27:47 on ttys0@3
moses@Mosess-MacBook-Pro ~ % traceroute -a www.ethz.ch
traceroute to www.ethz.ch (129.132.19.216), 64 hops max, 52 byte packets
1 [AS0] 192.168.7.1 (192.168.7.1) 3.898 ms 2.066 ms 2.881 ms
2 [ASO] 192.168.0.1 (192.168.0.1) 2.897 ms 4.720 ms 3.108 ms
3 [AS0] 10.127.252.2 (10.127.252.2) 57.256 ms 5.571 ms 4.268 ms
4 [AS32] he-rtr.stanford.edu (128.12.0.209) 4.039 ms 11.471 ms 4.628 ms
5 [AS6939] 100gigabitethernet5-1.corel.paol.he.net (184.105.177.237) 4.648 ms 3.
6 [AS6939] 100ge9-2.corel.sjc2.he.net (72.52.92.157) 5.949 ms 5.291 ms 4.980 ms
7 [AS6939] 100gel0-2.corel.nyc4t.he.net (184.105.81.217) 69.007 ms 66.575 ms 67.
8 [AS6939] 100ge7-1.corel.lon2.he.net (72.52.92.165) 268.329 ms 191.401 ms 203.
9 [AS6939] port-channel2.core3.lon2.he.net (184.105.64.2) 205.515 ms 350.183 ms
10 [AS6939] port-channell2.core2.amsl.he.net (72.52.92.214) 144.263 ms 143.638 ms
11 [AS1200] swicel-100ge-0-3-0-1.switch.ch (80.249.208.33) 161.119 ms 208.169 ms
12 [AS559] swice4-b4.switch.ch (130.59.36.70) 219.228 ms 203.833 ms 204.402 ms
13 [AS559] swibfl-b2.switch.ch (130.59.36.113) 184.671 ms 204.955 ms 204.671 ms
14 [AS559] swiez3-b5.switch.ch (130.59.37.6) 205.079 ms 164.116 ms 245.086 ms
15 [AS559] rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) 204.296 ms 164.770 m
16 [AS559] rou-fw-rz-rz-gw.ethz.ch (192.33.92.169) 165.148 ms 322.839 ms 204.627
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Dijkstra’s algorithm

* Finds shortest paths from
Gates to everywhere else.




Dijkstra
Intuition

19



Dijkstra
INtuition

A vertex is done when it’s not
on the ground anymore.

20



Dijkstra
INtuition

YOINK!

21



Dijkstra
INtuition

YOINK!

22



Dijkstra
INtuition

YOINK!

V=

Gates

1

Packard

23



Dijkstra
INtuition

W s YOINK!

24



Dijkstra
Intuition

This creates a tree!

The shortest paths
are the lengths
along this tree.

25



How do we actually implement this?

* Without string and gravity?




Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Initialize d[v] = oo
for all non-starting vertices v,
and d[Gates] =0

* Pick the node u with the
smallest estimate d[u].




Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

* Pick the node u with the

smallest estimate d[u].
 Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))




Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).
Q Current node u

* Pick the node u with the

smallest estimate d[u].
 Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))

e Mark uasSsure.

1




Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).
Q Current node u

Pick the node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))

Mark u as sure.
* Repeat




Dijkstra by example

) Packard has three
How far is a node from Gates? neighbors. What happens

when we update them?
Q 'm not sure yet 1 min. think; 1 min. share
‘ I’'m sure ’
x = d[v] is my best over-estimate
for dist(Gates,v).
Q Current node u

Pick the node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))

Mark u as sure.
* Repeat




Dijkstra by example

) Packard has three
How far is a node from Gates? neighbors. What

happens when we
Q I’'m not sure yet update them?
‘ I’'m sure ’
x = d[v] is my best over-estimate
for dist(Gates,v).
Q Current node u

Pick the node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))

Mark u as sure.
* Repeat




Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).
Q Current node u

Pick the NOT-sure node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))

Mark u as sure.
* Repeat




Dijkstra by example

How far is a node from Gates?
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smallest estimate d[u].
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Dijkstra by example
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Mark u as sure.
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Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure
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smallest estimate d[u].
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Mark u as sure.
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Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).
‘ Current node u

Pick the NOT-sure node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))

Mark u as sure.
* Repeat




Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).
‘ Current node u

Pick the NOT-sure node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))

Mark u as sure.
* Repeat




Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

X= dFv] is my best over-estimate Packard
for dist(Gates,v).
‘ Current node u

Pick the NOT-sure node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))

Mark u as sure.
* Repeat




Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).
‘ Current node u

Pick the NOT-sure node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))

Mark u as sure.
* Repeat




Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).
‘ Current node u

* Pick the NOT-suUre node u with the

smallest estimate d[u].
 Update all u’s neighbors v:
e d[v] = min(d[v], d[u] + edgeWeight(u,Vv))

e Mark uasSsure.

* Repeat
» After all nodes are sure, say that d(Gates, v) = d[v] for all v




Dijkstra’s algorithm

Dijkstra(G,s):

Set all vertices to

d[v] =co forallvinV

e d[s]=0
 While there are nodes:
* Pick the node u with the smallest estimate d[u].

* Forvin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))
e Mark u as sure.
Now d(s, v) = d[v]

Lots of implementation details left un-explained.
We'll get to that!

See IPython Notebook for code! “



As usual

-

 Does it work?
* Yes.

* |s it fast?
* Depends on how you implement it.

43



Why does this work?

* Theorem:
e Suppose we run Dijkstra on G =(V,E), starting from s.
* At the end of the algorithm, the estimate d[v] is the actual
distance d(s,v).
Let’s rename “Gates” to

io_7

, s”, our starting vertex.
e Proof outline: .

* Claim 1: For all v, d[v] = d(s,Vv).
* Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

Claim 2

* Claims 1 and 2 imply the theorem. | |
« When v is marked sure, d[v] = d(S,V)./ Claim 1 + def of algorithm
* d[v] = d(s,v) and never increases, so after v is sure, d[v] stops changing.
* This implies that at any time after v is marked sure, d[v] = d(s,v).
 All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Next let’s prove the claims!



Claim 1
dlv] = d(s,v) for all v.

Informally:
* Every time we update d[v], we have a path in mind:

d[v] « min(d[v],

Whatever path we /

had in mind before

e d[v] = length of the path we have in mind
> |ength of shortest path
= d(s,v)

Formally:

* We should prove this by induction.
* (See skipped slide or do it yourself)

45



o | YOINK!
Intuition for Claim 2

When a vertex u is marked sure, d[u] = d(s,u) S ¥ \

 The first path that lifts u off the’
ground is the shortest one.

i ! * Let’s prove it!
= * Or at least see a proof outline.

Packard




. ;“\l Informal
. ) outline!
Claim 2 %

When a vertex u is marked sure, d[u] = d(s,u)

* Inductive Hypothesis:
 When we mark the t’th vertex v as sure, d[v] = dist(s,Vv).

e Base case (t=1): | |
* The first vertex marked sure is s, and d[s] = d(s,s) = 0. "= 0 e

* Inductive step:

* Assume by induction that every v already marked sure has
d[v] = d(s,v).

e Suppose that we are about to add u to the sure list.

* That is, we picked u in the first line here:

Pick the node u with the smallest estimate d[u].
Update all u’s neighbors v:
 d[v] « min(d[v], d[u] + edgeWeight(u,v))
Mark u as sure.
Repeat

e Want to show that d[u] = d(s,u). 48



Temporary definition:
C‘a | m 2 v is “good” means that d[v] = d(s,v)

Inductive step

* Want to show that u is good.

* Consider a true shortest path from s to u:

The vertices in between

are beige because they True shortest path.
49

may or may not be sure.



Temporary definition:
C‘a | m 2 v is “good” means that d[v] = d(s,Vv)

Inductive step ‘ means good ‘ means not good

“by way of contradiction”

* Want to show that u is good. BWOC, suppose u isn’t good.
e Say z is the last good vertex before u (on shortest path to u).

e 72’ is the vertex after z.

It may be that z =s.
It may be that z’ = u.

The vertices in between z !=u, since u is not good.

are beige because they True shortest path.
50

may or may not be sure.



Temporary definition:

Claim 2 v is “good” means that d[v] = d(s,v)
Inductive step ‘ means good ‘ means not good

e Want to show that u is good. BWOC, suppose u isn’t good.
dlz] = d(s,z) < d(s,u) < d[u]

Z is good Subpaths of
shortest paths are
shortest paths.

(We're also using that
the edge weights are
non-negative here).




Temporary definition:

C‘a | m 2 v is “good” means that d[v] = d(s,v)
Inductive step ‘ means good ‘ means not good

e Want to show that u is good. BWOC, suppose u isn’t good.
dlz] = d(s,z) < d(s,u) < d[u]

z is good Subpaths of Claim 1
shortest paths are
shortest paths.

* Since uis not good, d|z| # d|u].

e SO d[Z] < d[ ] SO 7z is sure. We chose u so that d[u] was

smallest of the unsure vertices.




Temporary definition:

C‘a | m 2 v is “good” means that d[v] = d(s,v)
Inductive step ‘ means good ‘ means not good

e Want to show that u is good. BWOC, suppose u isn’t good.
dlz] = d(s,z) < d(s,u) < d[u]

z is good Subpaths of Claim 1
shortest paths are
shortest paths.

* Ifd[z] = d[u], then uis good. =~ > neteeed

e SO d[Z] < d[U,], SO 7 is sure. We chose u so that d[u] was

smallest of the unsure vertices.




Temporary definition:
C‘a | m 2 v is “good” means that d[v] = d(s,Vv)

Inductive step ‘ means good ‘ means not good

e Want to show that u is good. BWOC, suppose u isn’t good.

* If zis sure then we’ve already updated z’:
d[z'] « min{d[z'],d[z] + w(z,2z")}

o d[Z’] < d[Z] + W(Z,Z’) def of update
By induction when z was added to

— d(S; Z) T W(Z, Z’) the sure list it had d(s,z) = d[z]

That is, the value of
d[z] when zwas =— d(S, Z’) sub-paths of shortest paths are shortest paths

marked sure...

< d[z'] clim1 So d(s,z’) = d[z’] and so Z’ is good.

CONTRADICTION!!

So u is good!

54



Back to this slide

Claim 2

When a vertex u is marked sure, d[u] = d(s,u)

* Inductive Hypothesis:
 When we mark the t’th vertex v as sure, d[v] = dist(s,Vv).

* Base case:
* The first vertex marked sure is s, and d[s] = d(s,s) =

* Inductive step:
e Suppose that we are about to add u to the sure list.
* That is, we picked u in the first line here:

Pick the node u with the smallest estimate d[u].
Update all u’s neighbors v:
 d[v] « min(d[v], d[u] + edgeWeight(u,v))
Mark u as sure.
Repeat

* Assume by induction that every v already marked sure has
d[v] = d(s,v).
 Want to show that d[u] = d(s,u).

Conclusion: Claim 2 holds!

55



: NOWba
Why does this work? thiss/-g,k to
Ide

* Theorem:
* Run Dijkstra on G =(V,E) starting from s.

* At the end of the algorithm, the estimate d[v] is the
actual distance d(s,v).

* Proof outline:
* Claim 1: For all v, d[v] = d(s,V).
* Claim 2: When a vertex is marked sure, d[v] = d(s,v).

* Claims 1 and 2 imply the theorem.

56



What have we learned?

* Dijkstra’s algorithm finds shortest
paths in weighted graphs with
non-negative edge weights.

* Along the way, it constructs a
nice tree.
* We could post this tree in Gates!

* Then people would know how to
get places quickly.




As usual

 Does it work?
* Yes.

e |s it fast? !

* Depends on how you implement it.

58



Running time?

Dijkstra(G,s):

Set all vertices to
dlv]=c forall vinV

e d[s]=0
 While there are nodes:
* Pick the node u with the smallest estimate d[u].

* Forvin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v) )
e Mark u as sure.
* Now dist(s, v) = d[v]

* niterations (one per vertex)
* How long does one iteration take?
Depends on how we implement it... s



We need a data structure that:

Just the inner loop:

Stores unsure vertices v * Pick the node u with the
smallest estimate d[u].

* Keeps track of dlv] * Update all u’s neighbors v:
e Can find u with minimum d[u] e d[v] « min(d[v],d[u] +
e findMin () edgeWeight(u,v))

e Mark u as sure.

Can remove that u
* removeMin (u)

Can update (decrease) d[v]

* updateKey (v, d) , , Coy
Total running time is big-oh of:

Z (T(findMin) + < z T (updateKey) ) + T(removeMin))
uev

veu.neighbors

=n(T(findMin) + T(removeMin) )+ m T(updateKey)



If we use an array

* T(findMin) = O(n)
* T(removeMin) = O(n)
e T(updateKey) = O(1)

* Running time of Dijkstra
=0(n( T(findMin) + T(removeMin) ) + m T(updateKey))
=0(n?) + O(m)
=0(n?)

61



If we use a red-black tree

e T(findMin) = O(log(n))
* T(removeMin) = O(log(n))
* T(updateKey) = O(log(n))

* Running time of Dijkstra
=0(n( T(findMin) + T(removeMin) ) + m T(updateKey))
=0(nlog(n)) + O(mlog(n))
=0O((n + m)log(n))

Better than an array if the graph is sparse!
aka if m is much smaller than n?



Heaps support these operations

e findMin
* removeMin
e updateKey

* A heap is a tree-based data structure that has the
property that every node has a smaller key than its

children.
 Not covered in this class — see CS166

e But! We will use them.
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Many heap implementations

Nice chart on Wikipedia:

Operation | Binary!”l Leftist  Binomiall”l Fibonaccil”® | Pairing® | Brodall'%’!  Rank-pairing!'? | Strict Fibonaccil'®]

find-min ©(1) e(1) ©(log n) ©(1) ©(1) e(1) ©(1)
delete-min | ©(log n) | ©(log n) = G(log n) O(log n)!© O(log n)® | O(log n) O(log n)i©
insert O(log n) | ©(log n) | ©(1)( (1) (1) e1) (1)
decrease-key | ©(log n) | ©(n) ©(log n) e(1)l] o(log n)©dl | g(1) e(1)l]
merge e(n) O(log n) | O(log n)l®! | B(1) e(1) e(1) e(1)

e(1)
O(log n)
e(1)
e(1)
e(1)
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Say we use a Fibonacci Heap

e T(findMin) = O(1) (amortized time*)
* T(removeMin) = O(log(n)) (amortized time*)
e T(updateKey) = O(1) (amortized time*)

e See CS166 for more!

* Running time of Dijkstra
=0O(n(T(findMin) + T(removeMin) )+ m T(updateKey))
= O(nlog(n) + m) (amortized time)

*This means that any sequence of d removeMin calls takes time at most O(dlog(n)).
But a few of the d may take longer than O(log(n)) and some may take %% time..



See IPython Notebook for Lecture 11
The heap is implemented using heapdict

In practice

Shortest paths on a graph with n vertices and about 5n edges

Dijkstra using a Python

n

— BFS p, list to keep track of
140 - ) . A R tices h drati
—-= Dijkstra with an array // vertices has quadratic
120 - Dijkstra with a heap .(',. - runtime.
e
100 - s \
. R4
wi ) /./
;,E-; - R Dijkstra using a heap
= s . .
= 60 - o looks a bit more linear
g (actually nlog(n))
40 A - -~
~
20 1 R |
T e BFS is really fast by
T " — — ) )
01 == “—__ comparison! Butit
0 200 400 600 800 1000 1200 1400 1600 doesn’t work on

weighted graplss.



Dijkstra is used in practice

e eg, OSPF (Open Shortest Path First), a routing
protocol for IP networks, uses Dijkstra.

But there are
some things it’s
not so good at.
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Dijkstra Drawbacks

* Needs non-negative edge weights.

* If the weights change, we need to re-run the
whole thing.
* in OSPF, a vertex broadcasts any changes to the

network, and then every vertex re-runs Dijkstra’s
algorithm from scratch.
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Bellman-Ford algorithm

* (-) Slower than Dijkstra’s algorithm

* (+) Can handle negative edge weights.

e Can be useful if you want to say that some edges are
actively good to take, rather than costly.

e Can be useful as a building block in other algorithms.

* (+) Allows for some flexibility if the weights change.
* We'll see what this means later
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Today: intro to Bellman-Forad

 We'll see a definition by example.

 We'll come back to it next lecture with more rigor.
 Don’t worry if it goes by quickly today.

* There are some skipped slides with pseudocode, but
we’ll see them again next lecture.

e Basic idea:

* |nstead of picking the u with the smallest d[u] to update,
just update all of the u’s simultaneously.
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Bellman-Ford algorithm

Bellman-Ford(G,s):

e divl]=o forallvinV

e d[s]=0
Instead of picking u cleverly,

* Fori=0,...,n-1: / just update for all of the u’s.
* ForuinV:

* Forvin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))

Compare to Dijkstra:

 While there are nodes:
* Pick the node u with the smallest estimate d[u].
* Forvin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))
e Mark u as sure.
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For pedagogica\ reasons
which we will see next lecture

* We are actually going to change this to be less smart.
 Keep n arrays: d©, d), .., din-)

Bellman-Ford*(G,s):

e di[v]=o0 for allvinV, for all i=0,...,n-1

L (O) =
d [S] 0 Slightly different than the original
* Fori=0,...,,n-2: Bellman-Ford algorithm, but the

. analysis is basically the same.
 ForuinV: Y Y

* Forvin u.neighbors:
o d#[v] « min(d"[v], di*]v], d"[u] + edgeWeight(u,v))

e Then dist(s,v) = d(™1)]v]
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Start with the same graph, no
negative weights.

Bellman-Ford S

How far is a node from Gates? i C@

Gates Packard CS161 Union Dish
d(o)l 0 |oo |oo |oo |oo|

dv [T T T ]
do | |
de | |

G |

* Fori=0,...,n-2:
e ForuinV:
* Forvin u.neighbors:
* d®V[v] < min(d[v], d*V[v], dVu] + edgeWeight(u,v))



Start with the same graph, no
negative weights.

Bellman-Ford S

How far is a node from Gates? i C@

Gates Packard CS161 Union Dish
d(o)l 0 |oo |oo |oo |oo|

d(1)|0|1|oo|oo|25|
ao T T T T ]
a [T T T T 1
dao [T T T T 1
* Fori=0,...,,n-2:
* ForuinV:

* Forvin u.neighbors:



Start with the same graph, no
negative weights.

Bellman-Ford S

How far is a node from Gates? i C@

Gates Packard CS161 Union Dish
d(o)l 0 |oo |oo |oo |oo|

dv | o | 1 | o | o I 25 |

do [0 [ 1 [ 2 [as]2s]

e[ T T T T 1]

s« [T T 1T T 1]
* Fori=0,...,,n-2:

* ForuinV:

* Forvin u.neighbors:



Start with the same graph, no

_ negative weights.
Bellman-Ford S

How far is a node from Gates? i C@

Gates Packard CS161 Union Dish
d(o)l 0 |oo |oo |oo |oo|

d® | o 1|00|oo|25|

do [0 [ 1 [ 2 [as]2s]

d® [ o | 1 | 2 | 6 | 23 |

aee [T 1 [ T 1
* Fori=0,...,,n-2:

* ForuinV:

* Forvin u.neighbors:



Start with the same graph, no
negative weights.

Bellman-Ford S

How far is a node from Gates? i C@

Gates Packard CS161 Union Dish
d(o)l 0 |oo |oo |oo |oo|

d(1)|0|1|oo|oo|25

|
do [0 [ 1 [ 2 [as]2s]
d® [ o | 1 | 2 | 6 | 23 |

oo v =]

These are the final distances!

* Fori=0,...,,n-2:
* ForuinV:

* Forvin u.neighbors:
o di*[v] « min(dW[v], d™*1[v], d[u] + edgeWeight(u,Vv))



As usual

* Does it work?
* Yes
* |dea to the right.

* (See hidden slides for

details)

* |s it fast?
* Not really...

A simple
path is a
path with
no cycles.

Gates Packard CS161 Union Dish
d(o) | 0

d(1)|0|1|oo|oo|25
d(2)|o|1

d(3)|o|1|2|6|23

|
|
|2|45|23|
|
|

d(4)|0l1|2|6|23

Idea: proof by induction.
Inductive Hypothesis:

dii[v] is equal to the cost of the
shortest path between s and v
with at most i edges.

Conclusion:
di"-1[v] is equal to the cost of the

shortest simple path between s
and v. (Since all simple paths
have at most n-1 edges).




Pros and cons of Bellman-Ford

* Running time: O(mn) running time
* For each of n steps we update m edges
* Slower than Dijkstra

* However, it’s also more flexible in a few ways.

* Can handle negative edges

* If we constantly do these iterations, any changes in the
network will eventually propagate through.
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Wait a second...

 What is the shortest path
from Gates to the Union?




Wait a second...

* What is the shortest path
from Gates to the Union?




Negative edge weights?

 What is the shortest path
from Gates to the Union?

* Shortest paths aren’t defined
if there are negative cycles!




Bellman-Ford and
negative edge weights

* B-F works with negative edge weights...as long as

there are no negative cycles.

* A negative cycle is a path with the same start and end
vertex whose cost is negative.

* However, B-F can detect negative cycles.
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Gates Packard CS161 Union Dish

Back to the 40 [0 [o [« | |

|

correctness d® | o | |
d(2)|o|1|2|45|23|
| |

|

1|oo|oo|25

* Does it work?
* Yes d6 | 0
* |dea to the right.

1|2|6|23

d(4)|0|1|2|6|23

Idea: proof by induction.

Inductive Hypothesis:
d[v] is equal to the cost of the

If there are negative cycles, shortest path between s and v
with at most i edges.

then non-simple paths matter! :
Conclusion:
So the proof breaks for d~1[v] is equal to the cost of the
negative cycles. shortest simple path between s
s and v. (Since all simple paths

have at most n-1 edges).  ss



B-F with negative cycles

Gates Packard CS161 Union Dish
d(o)l 0 |oo |oo |oo |oo|

o EE =TT
d?[o [s[2]7]s]
d¥ [a [ s[a]s ][]
This is not looking good!
+ Fori=0,...,n-2:
+ ForuinV:

* Forvin u.neighbors:
o di*[v] « min(dW[v], d™*1[v], d[u] + edgeWeight(u,Vv))
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B-F with negative cycles

Gates Packard CS161 Union Dish
d(o)l 0 |oo |oo |oo |oo|

d(l)|0|1|oo|oo|-3

|
d(2)|o|-5|2|7|-3|
|
|

d(4)|-4|-5|-4|6|-7
But we can tell that it’s not looking good:
d(5)|-4|-9|-4|3|-7|

Some stuff changed!

* Fori=0,...,,n-1:
* ForuinV:

* Forvin u.neighbors:
o di*[v] « min(dW[v], d™*1[v], d[u] + edgeWeight(u,Vv))
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How Bellman-Ford deals with
negative cycles

* |f there are no negative cycles:
e Everything works as it should.
e The algorithm stabilizes after n-1 rounds.
* Note: Negative edges are okay!!

* |f there are negative cycles:

* Not everything works as it should...

* it couldn’t possibly work, since shortest paths aren’t well-defined if
there are negative cycles.

* The d[v] values will keep changing.

e Solution:

* Go one round more and see if things change.
e |fso, return NEGATIVE CYCLE ®
e (Pseudocode on skipped slide)
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Summary

It’s okay if that went by fast, we’ll come back to Bellman-Ford

* The Bellman-Ford algorithm:

* Finds shortest paths in weighted graphs with negative
edge weights

* runs in time O(nm) on a graph G with n vertices and m
edges.

* If there are no negative cycles in G:
 the BF algorithm terminates with d"1)[v] = d(s,Vv).

* If there are negative cycles in G:
e the BF algorithm returns negative cycle.
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Recap: shortest paths

* BFS:

e (+) O(n+m)
* (-) only unweighted graphs

* Dijkstra’s algorithm:
* (+) weighted graphs
* (+) O(nlog(n) + m) if you implement it right.
* (-) no negative edge weights

* (-) very “centralized” (need to keep track of all the vertices to know
which to update).

* The Bellman-Ford algorithm:
* (+) weighted graphs, even with negative weights

* (+) can be done in a distributed fashion, every vertex using only
information from its neighbors.

* (-) O(hm)
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Bonus

 Tomorrow (Feb 13) 4-5pm in CoDa E160:
Bob Tarjan speaking on

Universal Optimality of Dijkstra's Shortest Path Algorithm

IEEE FOCS (Foundations of Computer Science) 2024
Best Paper Award
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Next Time

* Dynamic Programming!!!

next time

* Pre-lecture exercise for Lecture 12
e Remember the Fibonacci numbers from HW1?



