Lecture 12

Bellman-Ford, Floyd-Warshall,

and Dynamic Programming!



Announcements

* Homework 5 due today
* Homework 6 out today

* Almost done grading the midterm — grades will be
released soon

e | think the midterm was hard!



Today

* Bellman-Ford Algorithm
* Bellman-Ford is a special case of

* What is dynamic programming?
* Warm-up example: Fibonacci numbers

* Another example:
* Floyd-Warshall Algorithm



* Weights on edges

ReCa ‘ | represent costs.

. ] * The cost of a path is the
* A weighted directed graph: sum of the weights

along that path.

* Ashortest path from s
to tis a directed path
from s to t with the
smallest cost.

* The single-source

shortest path problem is
e to find the shortest path
’ fromstovforallvin
the graph.

path from N
stot of \
cost 22. \‘

]

<

16
This is a path from s to t of

cost 10. It is the shortest
path from s to t. .



Last time

* Dijkstra’s algorithm!
e Solves the single-source shortest path problem in weighted
graphs.




Dijkstra Drawbacks

* Needs non-negative edge weights.

* If the weights change, we need to re-run the
whole thing.



Bellman-Ford algorithm

* (-) Slower than Dijkstra’s algorithm

* (+) Can handle negative edge weights.

e Can be useful if you want to say that some edges are
actively good to take, rather than costly.

e Can be useful as a building block in other algorithms.

* (+) Allows for some flexibility if the weights change.
* We'll see what this means later



Aside: Negative Cycles

* A negative cycle is a cycle whose edge weights sum to
a negative number.

* Shortest paths aren’t defined when there are negative
cycles!

The shortest path from Ato B
has cost...negative infinity?




Bellman-Ford algorithm

* (-) Slower than Dijkstra’s algorithm

* (+) Can handle negative edge weights.

* Can detect negative cycles!

e Can be useful if you want to say that some edges are
actively good to take, rather than costly.

e Can be useful as a building block in other algorithms.

* (+) Allows for some flexibility if the weights change.
* We'll see what this means later



Bellman-Ford vs. Dijkstra

* Dijkstra:
* Find the u with the smallest d[u]
e Update u’s neighbors: d[v] = min( d[v], d[u] + w(u,V) )

e Bellman-Ford:
* Don’t bother finding the u with the smallest d[u]
* Everyone updates!
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Bellman-Ford ©—° &=

How far is a node from Gates?
Gates Packard CS161 Union Dish

a0 [0 o o]x ]
S I
d(2)|
d(3)|

da |

* Fori=0,...,,n-2:

* ForvinV:
o dN[v] « min(div], dO[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors



Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

a0 [0 oo [=]e]

d(1)|0|1|oo|oo|25|

Packard

Sl - — m
o [T T T 1]

ao | ] | [ [ |

* Fori=0,...,,n-2:

* ForvinV:
o dN[v] « min(div], dO[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors




Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

4 [ Lale[ala]
d(1)|0|1|oo|oo|25|

d(2)|o|1|2|45|23|

1 J
dof 1 1 | [ |
ao | ] | [ [ |

* Fori=0,...,,n-2:

* ForvinV:
o dN[v] « min(div], dO[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors




Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

a0 [0 oo [=]e]

d(1)|0|1|oo|oo|25|

Packard

d(2)|o|1|2|45|23| ,

d(3)|0|1|2|6|23|

ao | ] | [ [ |

* Fori=0,...,,n-2:

* ForvinV:
o dN[v] « min(div], dO[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors




Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

4 [ Lale[ala]
d(1)|0|1|oo|oo|25|

Packard

d(2)|o|1|2|45|23| ,

d(3)|0|1|2|6|23|

do | o | 1| 2|6 | 23|

These are the final distances!

* Fori=0,...,,n-2:

* ForvinV:
o dN[v] « min(div], dO[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors




Interpretation of dU

d®[v] is equal to the cost of the
shortest path between sand v
with at most i edges.

Gates Packard CS161 Union Dish

d¥ | o | 1| 2|6 | 23|




Why does Bellman-Ford work?

* Inductive hypothesis:

* d)[v] is equal to the cost of the shortest path between s
and v with at most i edges.

 Conclusion:

« d™U[v] is equal to the cost of the shortest path between
s and v with at most n-1 edges.

Do the base case and
inductive step!




Aside: simple paths

Assume there is no negative cycle.

* Then there is a shortest path from sto t, and
moreover there is a simple shortest path.

-2 10
S
"~
’ ~ —y
e N
V4

. This cycle isn’t helping.

e \ Just get rid of it.
V4 >’ ~"

4

* Asimple path in a graph with n vertices has at most

n-1 edges in it. G
a “Simple” means
Can’t add another edge that the path has
without making a cycle! ° a no cycles in it. ﬁ

* So there is a shortest path with at most n-1 edges



Why does it work?

* Inductive hypothesis:

 d)[v] is equal to the cost of the shortest path between s
and v with at most i edges.

 Conclusion:

« d™1[v] is equal to the cost of the shortest path between
s and v with at most n-1 edges.

* If there are no negative cycles, d"1[v] is equal to the
cost of the shortest path.

Notice that negative edge weights are fine.
Just not negative cycles. o



= (V,E) is a graph with n
vertices and m edges.

Bellman-Ford™ algorithm

Bellman-Ford*(G,s):
* |nitialize arrays d'9,...,d™1) of length n

dO[v]=oco forallvinV

. d(o) [S] -0 Here, Dijkstra picked a special vertex u and
updated u’s neighbors — Bellman-Ford will
* Fori=0,...,n-2: update all the vertices.
* ForvinV:

» d#U[v] < min( dO[v], min,;, yinnerstd@[u] + w(u,v)} )

Now, dist(s,v) = d(™1[v] for all vin V.
* (Assuming no negative cycles)

*Slightly different than some versions of Bellman- Ford .but
this way is pedagogically convenient for today’s Iecture



We don’t even need

two, just one array is
fine. Why?

Note on implementation

* Don’t actually keep all n arrays around.
» Just keep two at a time: “last round” and “this round”

Gates Packard CS161 Union Dish

3
d()l 0 | 1 | 2 | 6 |23 | Only need these
two in order to

d@ | o | 1| 2| 6 | 23] compute d®

21



Bellman-Ford take-aways

* Running time is O(mn)
* For each of n rounds, update m edges.

* Works fine with negative edges.

* Does not work with negative cycles.
* No algorithm can — shortest paths aren’t defined if there are
negative cycles.
* B-F can detect negative cycles!
e See skipped slides to see how, or think about it on your own!

* For your own information: by now we have fasterébut
complicated) algorithms with runtime = O(mlog(n)¢)
as long as weights are not too large in magnitude!

[Bernstein-N gkai-Wulff-Nilsen’2022]

Technically, the weights need to be integers, and then the runtime scales
linearly with log(W) where W is the largest absolute value of the weights.
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Important thing about B-F
for the rest of this lecture

d®[v] is equal to the cost of the
shortest path between sand v
with at most i edges.

Packard

r

Gates Packard CS161 Union Dish

do [0 Jo [ [ [ ]
d[o[a]o]=]=]
d? [0 [ 1 [ 2 [as[a]
d® [0 [1 ]2 6]
d9[o[1]2]6[2]




Bellman-Ford is an example of...
Dynamic Programming!

Today:

* Example of Dynamic programming: '
* Fibonacci numbers.
e (And Bellman-Ford)

* What is dynamic programming, exactly?
 And why is it called “dynamic programming”?

* Another example: Floyd-Warshall algorithm
* An “all-pairs” shortest path algorithm

28



°re-Lecture exercise:
How not to compute Fibonacci Numbers

e Definition:
* F(n) = F(n-1) + F(n-2), with F(1) = F(2) = 1.
 The first several are:
e 1

e o o o
O W N =

° 3
* 13, 21, 34, 55, 89, 144,...

* Question:
e Given n, what is F(n)?

29



Candidate algorithm

* def Fibonacci (n):
e 1f n == 0, return O
e 1f n == 1, return 1
e return Fibonacci (n-1) + Fibonacci (n-2)

Running time?

Computing Fibonacci Numbers

 T(n)=T(n-1) + T(n-2) + O(1) 300 {
* T(n)=T(n-1) + T(n-2) forn > 2 250 |
 So T(n) grows at least as fast as
the Fibonacci numbers
themselves...
e This is EXPONENTIALLY QUICKLY!
T(n) = 2T (n — 2) implies
T(n) = Q(2?).

- Naive Fibonacci

200

Time(ms)
(=] (=]
o u
o o

()

(=]
1

0 5 10 15 20 25
n

See IPython notebook for lecture 12

30

30



What's going on? That’s a lot of
' - repeated
Consider Fib(8) computation!




Maybe this would be better:

def fasterFibonacci (n) :

e F = [0, 1, None, None, .., None ]
* \\ F has length n + 1
e for 1 = 2, .., n:

e F[i1] = F[1-1] + F[1-2]
* return F[n]

Much better running time!

Computing Fibonacci Numbers

0.008 -

_ 0.006 - 7
2 N
DY)
é 0.004 -
0.002 -
= Naive Fibonacci
=== faster Fibonacci
0.000 + T T T T T T

0 5 10 15 20 25 30 32




This was an example of...

ajﬂ’w
m]ﬂg

py"

Pf@g 4 gjﬁ’




What is dynamic programming?

* It is an algorithm design paradigm
* like divide-and-conquer is an algorithm design paradigm.
e Usually, it is for solving optimization problems

* E.g., shortest path

* (Fibonacci numbers aren’t an optimization problem, but
they are a good example of DP anyway...)
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Elements of dynamic programming

1. Optimal sub-structure:

* Big problems break up into sub-problems.
e Fibonacci: F(i) fori <n
* Bellman-Ford: Shortest paths with at most i edges fori <n

* The solution to a problem can be expressed in terms of
solutions to smaller sub-problems.

* Fibonacci:
F(i+1) = + F(i-1)
e Bellman-Ford:
d#[v] « min{ , min, {d"[u] + weight(u,v)}}

N

Shortest path with at most
i edges from s to u. 35



Elements of dynamic programming
2. Overlapping sub-problems:

* The sub-problems overlap.
* Fibonacci:
* Both F[i+1] and F[i+2] directly use F[i].
* And lots of different F[i+x] indirectly use F[i].
* Bellman-Ford:

* Many different entries of d*') will directly use d"/[v].
* And lots of different entries of d'" will indirectly use d)[v].

* This means that we can save time by solving a sub-problem
just once and storing the answer.

36



Elements of dynamic programming

* Optimal substructure.
e Optimal solutions to sub-problems can be used to find the
optimal solution of the original problem.
* Overlapping subproblems.
* The subproblems show up again and again

* Using these properties, we can design a dynamic
programming algorithm:
* Keep a table of solutions to the smaller problems.
* Use the solutions in the table to solve bigger problems.

* At the end we can use information we collected along the
way to find the solution to the whole thing.

37



Two ways to think about and/or
implement DP algorithms

* Top down

* Bottom up




Bottom up approach

what we just saw.

* For Fibonacci:

* Solve the small problems first
e fill in F[O],F[1]

* Then bigger problems

* Then bigger problems
 fill in F[n-1]

* Then finally solve the real problem.

 fill in F[n]

39



Bottom up approach

what we just saw.

 For Bellman-Ford:

* Solve the small problems first
e fill in d(©

* Then bigger problems

* Then bigger problems
* fill in d(n-2)

* Then finally solve the real problem.
e fill in d()

40



Top down approach

* Think of it like a recursive algorithm.

* To solve the big problem:

* Recurse to solve smaller problems

* Those recurse to solve smaller problems
* etc..

* The difference from divide and

conquer: %
e Keep track of what small problems you’ve
already solved to prevent re-solving the MENO
same problem twice.
* Aka, “memo-ization”

41



Example of top-down Fibonacci

* define a global 1list F = [0,1,None, None, .., None]

def Fibonacci (n) :
e 1f F[n] != None:
* return F[n]
c else:
* F[n] = Fibonacci(n-1) + Fibonacci (n-2)

* return F[n]
Computing Fibonacci Numbers

£ "J,'—/
/:‘, 7
0.008 A Rt i
&
"’/..-’
: __ 0.006 A -
Memo-ization: 2 ¥/
Keeps track (in f) é 0004 -
of the stuff youve ’
already done.
0.002 A = Naive Fibonacci
-== faster Fibonacci, bottom-up
""" faster Fibonacci, top-down
0000 L L L L L T 4Z L
0 5 10 15 20 25 30



" 4

Memo-ization visualization e
’r:: sarzg woork
twice!

| IJ‘LI: I-l:;



Memo-ization Visualization

ctd
Collapse But otherwise
repeated nodes 4 o4t it like the
and dont do the same old
same WorK recursive
TWies algorithm.
* define a global list F = [0,1,None, None, .., None]

* def Fibonacci(n):

e if F[n] != None:

* return F[n]
* else:

* F[n] = Fibonacci(n-1) + Fibonacci (n-2)
* return F[n]

=




What have we learned?

* Dynamic programiming:

Paradigm in algorithm design.

Uses optimal substructure

Uses overlapping subproblems

Can be implemented bottom-up or top-down.

It’s a fancy name for a pretty common-sense idea:

»
Dont
duplicate

work if you
dont have to!

45



Why “dynamic programming” ?

III

* Programming refers to finding the optimal “program.”

* asin, a shortest route is a plan aka a program.
* Dynamic refers to the fact that it’s multi-stage.
e But also it’s just a fancy-sounding name.

Manipulating computer code in an action mévie?



Wh

v “dynamic programming” ?

e Richard Bellman invented the name in the 1950’s.

e At t
Cor
Air

ne time, he was working for the RAND
ooration, which was basically working for the

~orce, and government projects needed flashy

names to get funded.

* From Bellman’s autobiography:

* “It’s impossible to use the word, dynamic, in the
pejorative sense...I thought dynamic programming was
a good name. It was something not even a
Congressman could object to.”

47



Source

Floyd-Warshall Algorithm

Another example of DP

* This is an algorithm for All-Pairs Shortest Paths (APSP)

* Thatis, | want to know the shortest path from u to v for ALL
pairs u,v of vertices in the graph.

* Not just from a special single source s.

Destination

~

- I




Floyd-Warshall Algorithm

Another example of DP

* This is an algorithm for All-Pairs Shortest Paths (APSP)

* Thatis, | want to know the shortest path from u to v for ALL
pairs u,v of vertices in the graph.

* Not just from a special single source s.

* Naive solution (if we want to handle negative edge weights):
* Forall sinG:
* Run Bellman-Ford on G starting at s.

e Time O(n-nm) = O(n’m),
* may be as bad as n* if m=n2 etter?



Label the vertices 1,2,...,n

Optimal substructure




Label the vertices 1,2,...,n
" (We omit some edges in the
Optlmal SUbStrUCture picture below — meant to be a
cartoon, not an example).

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest Our DP algorithm

path from u to v, so that all the internal will fill in the
vertices on that path are in {1,...,k-1}. n-by-n arrays
p© DO, .., DO
Let DY[u,v] be the solution teratively and
to Sub-problem(k-1). then we'll be done.

This is the shortest
path fromutov

through the blue set.
- k-1 It has cost D[y, v]

51



Label the vertices 1,2,...,n
" (We omit some edges in the
Optlmal SUbStrUCture picture below — meant to be a
cartoon, not an example).
Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest Our DP algorithm

path from u to v, so that all the internal will fill in the
vertices on that path are in {1,...,k-1}.

n-by-n arrays

p© DO, .., DO
Let D1[u,v] be the solution teratively and
to Sub-problem(k-1). then we'll be done.

Question: How can we find D[u,v] using D1)?

u 1
v
This is the shortest
@ k-1 path fromutov

through the blue set.
. k-1 It has cost D[y, v]
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ow can we find D®[u,v] using D17

D(k)[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {J, ..., k}.

53



ow can we find D™[u,v] using D1)?

D(k)[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {J, ..., k}.

Case 1: we don't
k@/‘f.
need vertex k. ey,
..,

Zh/s Path 4. the

Q

'Ortest before _
@ *Ull the shortest "0 it’s

Vert,ces 1

_— D®[y,v] = DkU[u,v]




ow can we find D®[u,v] using D17

D(k)[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {J, ..., k}.

Case 2: we need
Lo,
vertex k. sy,
.,

@ Vertices 1

ALY k‘l
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Case 2 continued

Suppose there are no negative

cycles.

 Then WLOG the shortest path from
u to v through {1,...,k} is simple.

If that path passes through k, it

must look like this:

Case 2: we need
vertex k.

—

This path is the shortest path
from u to k through {1,...,k-1}.

e sub-paths of shortest paths are

shortest paths
Similarly for this path.

D®[u,v] = DID[u,k] + DDk, v].,




How can we find D®)[u,v] using D1)?

Case 1: we don’t need vertex k. Case 2: we need vertex k.




How can we find D[u,v] using D17

e DI[u,v] = min{ DY[u,v], DN[u k] + DLk v] }

Case 1: Cost of Case 2: Cost of shortest path
shortest path from u to k and then from k to v
through {1,...,k-1} through {1,...,k-1}

* Optimal substructure:

* We can solve the big problem using solutions to smaller
problems.

* Overlapping sub-problems:

« DI1[k,v] can be used to help compute D¥)[u,v] for lots
of different u’s.

58



How can we find D®)[u,v] using D1)?

e DI[u,v] = min{ DY[u,v], DkN[u k] + DLk v] }

Case 1: Cost of Case 2: Cost of shortest path
shortest path from u to k and then from k to v
through {1,...,k-1} through {1,...,k-1}

* Using our Dynamic programming paradigm, this
immediately gives us an algorithm!




Floyd-Warshall algorithm

* Initialize n-by-n arrays DX for k = 0,...,n

e D[y,u] =0 for all u, for all k The base case

_ checks out: the
° D(k)_U,V] = oo for all u # V, for all k only path through
* DOu,v] = weight(u,v) for all (u,v) in E.«—  zeroother vertices

are edges directly

* Fork=1, N ) from u to v.
* For pairs u,vin V2
e DKy, v] = min{ D“Y[u,v], D&y k] + DLk v] }

e Return D

This is a bottom-up Dynamic programming algorithm.



We've basically just shown

e Theorem:

If there are no negative cycles in a weighted directed graph G,
then the Floyd-Warshall algorithm, running on G, returns a
matrix D" so that:

D(M[u,v] = distance between u and v in G.

Work out the 2>
° Runn|ng tlme- O(n3) details of a proof!
e Better than running Bellman-Ford n times!

We don’t even need

two, just one array is
fine. Why?

* Storage:
* Need to store two n-by-n arrays, and the original graph.

As with Bellman-Ford, we don’t really need to store all n of the D). -



What if there are negative cycles?

e Just like Bellman-Ford, Floyd-Warshall can detect
negative cycles:

* “Negative cycle” means that there’s some v so that there
is a path from v to v that has cost < 0.

e Aka, DM[v,v] <O.

* Algorithm:
* Run Floyd-Warshall as before.
* |f there is some v so that D(™[v,v] < O:
* return negative cycle.
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What have we learned?

* The Floyd-Warshall algorithm is another example of

* It computes All Pairs Shortest Paths in a directed
weighted graph in time O(n3).



Can we do better than O(n3)?

Nothing on this slide is required knowledge for this class

* There is an algorithm that runs in time O(n3/log%°(n)).
* [Williams, “Faster APSP via Circuit Complexity”, STOC 2014]

* If you can come up with an algorithm for All-Pairs-
Shortest-Path that runs in time O(n4?°), that would be
a really big deal.

* Let me know if you can!

* See [Abboud, Vassilevska-Williams, “Popular conjectures
imply strong lower bounds for dynamic problems”, FOCS
2014] for some evidence that this is a very difficult problem!
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Recap

* Two shortest-path algorithms:
e Bellman-Ford for single-source shortest path
* Floyd-Warshall for all-pairs shortest path

 Dynamic programming!
* This is a fancy name for:

* Break up an optimization problem into smaller problems

* The optimal solutions to the sub-problems should be sub-
solutions to the original problem.

* Build the optimal solution iteratively by filling in a table of
sub-solutions.

» Take advantage of overlapping sub-problems!
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Next time

* More examples of dynamic programming!

We will stop bullets with our

action-packed coding skills,

and also maybe find longest
common subsequences.

* No pre-lecture exercise for next time
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