Lecture 12

Bellman-Ford, Floyd-Warshall, and Dynamic Programming!

Announcements

Homework 5 due today

Homework 6 out today

Almost done grading the midterm – grades will be released soon

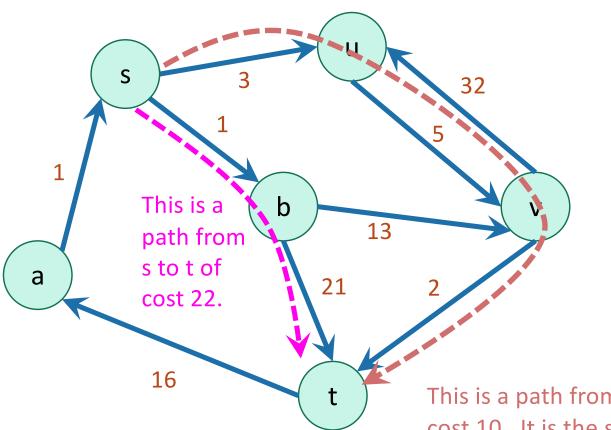
• I think the midterm was hard!

Today

- Bellman-Ford Algorithm
- Bellman-Ford is a special case of *Dynamic Programming!*
- What is dynamic programming?
 - Warm-up example: Fibonacci numbers
- Another example:
 - Floyd-Warshall Algorithm

Recall

A weighted directed graph:

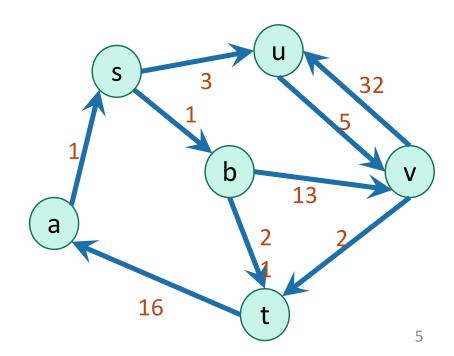


- Weights on edges represent costs.
- The cost of a path is the sum of the weights along that path.
- A shortest path from s
 to t is a directed path
 from s to t with the
 smallest cost.
- The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

This is a path from s to t of cost 10. It is the shortest path from s to t.

Last time

- Dijkstra's algorithm!
 - Solves the single-source shortest path problem in weighted graphs.



Dijkstra Drawbacks

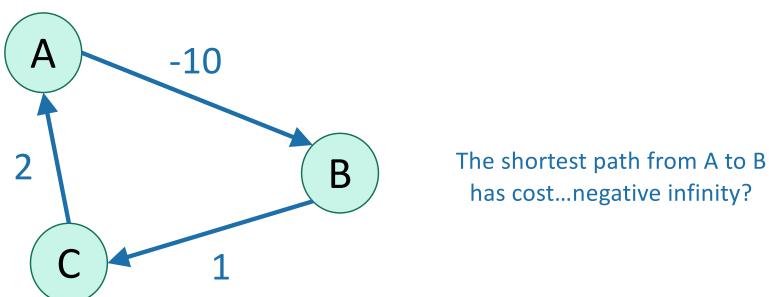
- Needs non-negative edge weights.
- If the weights change, we need to re-run the whole thing.

Bellman-Ford algorithm

- (-) Slower than Dijkstra's algorithm
- (+) Can handle negative edge weights.
 - Can be useful if you want to say that some edges are actively good to take, rather than costly.
 - Can be useful as a building block in other algorithms.
- (+) Allows for some flexibility if the weights change.
 - We'll see what this means later

Aside: Negative Cycles

- A **negative cycle** is a cycle whose edge weights sum to a negative number.
- Shortest paths aren't defined when there are negative cycles!



Bellman-Ford algorithm

- (-) Slower than Dijkstra's algorithm
- (+) Can handle negative edge weights.
 - Can detect negative cycles!
 - Can be useful if you want to say that some edges are actively good to take, rather than costly.
 - Can be useful as a building block in other algorithms.
- (+) Allows for some flexibility if the weights change.
 - We'll see what this means later

Bellman-Ford vs. Dijkstra

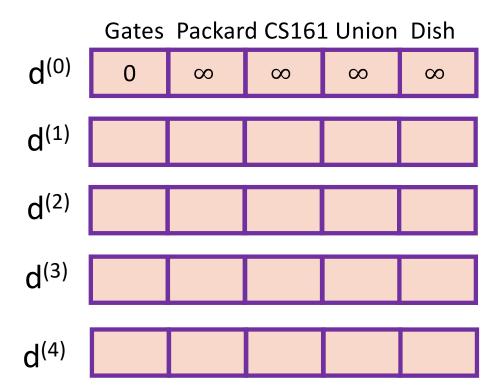
• Dijkstra:

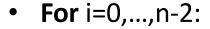
- Find the u with the smallest d[u]
- Update u's neighbors: d[v] = min(d[v], d[u] + w(u,v))

• Bellman-Ford:

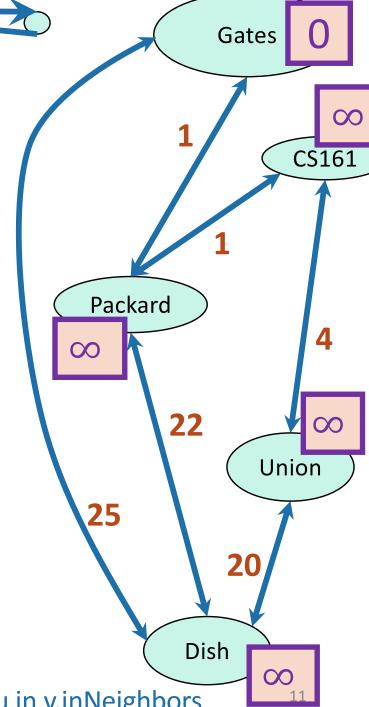
- Don't bother finding the u with the smallest d[u]
- Everyone updates!

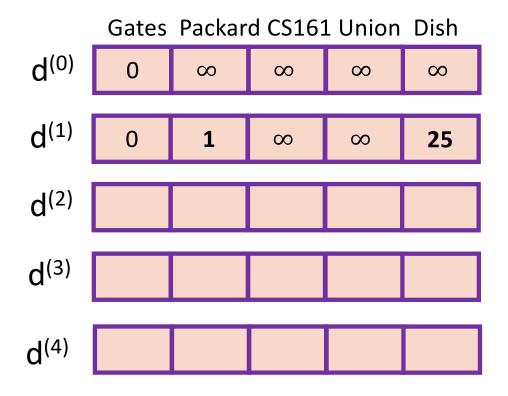
○ = ○ · · ·



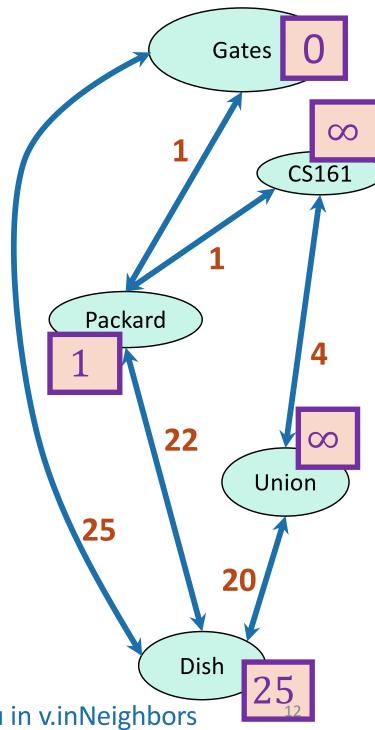


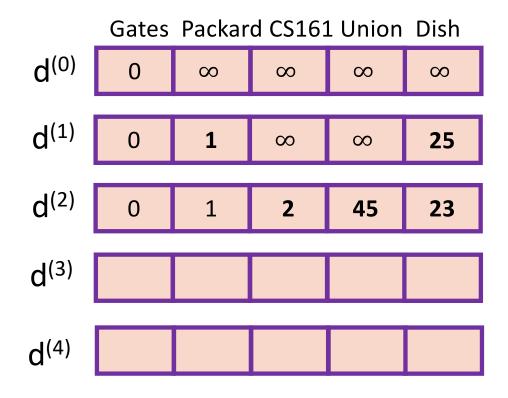
- **For** v in V:
 - d⁽ⁱ⁺¹⁾[v] ← min(d⁽ⁱ⁾[v] , d⁽ⁱ⁾[u] + w(u,v))
 where we are also taking the min over all u in v.inNeighbors



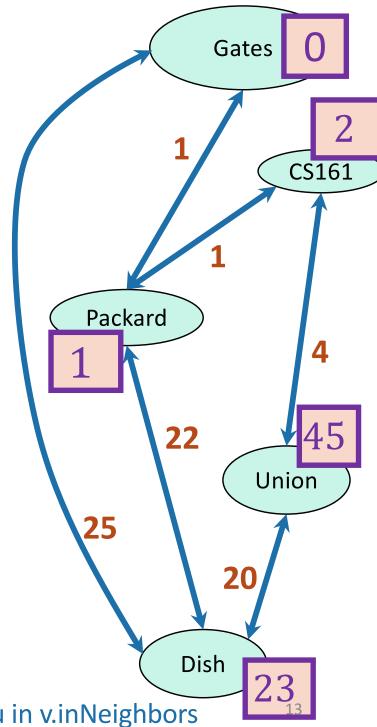


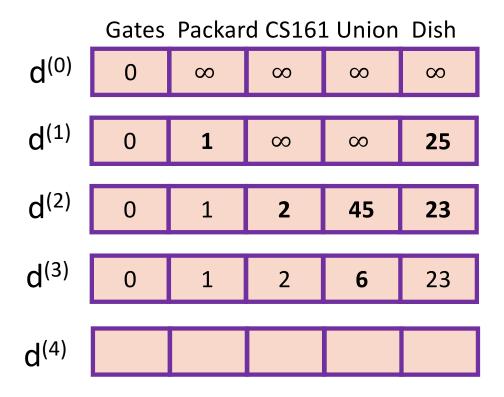
- **For** i=0,...,n-2:
 - **For** v in V:
 - d⁽ⁱ⁺¹⁾[v] ← min(d⁽ⁱ⁾[v], d⁽ⁱ⁾[u] + w(u,v))
 where we are also taking the min over all u in v.inNeighbors



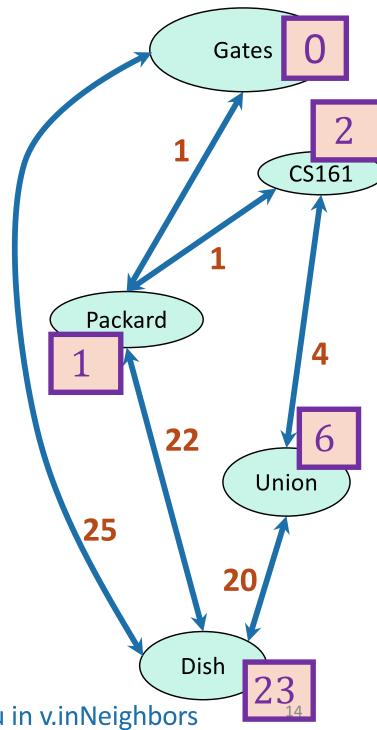


- **For** i=0,...,n-2:
 - **For** v in V:
 - d⁽ⁱ⁺¹⁾[v] ← min(d⁽ⁱ⁾[v], d⁽ⁱ⁾[u] + w(u,v))
 where we are also taking the min over all u in v.inNeighbors

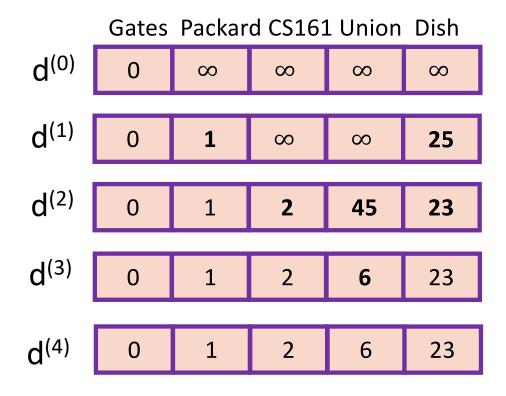




- **For** i=0,...,n-2:
 - **For** v in V:
 - d⁽ⁱ⁺¹⁾[v] ← min(d⁽ⁱ⁾[v] , d⁽ⁱ⁾[u] + w(u,v))
 where we are also taking the min over all u in v.inNeighbors

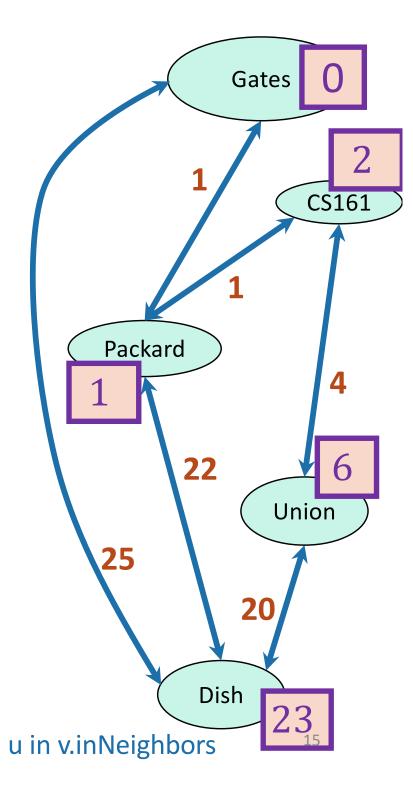


How far is a node from Gates?



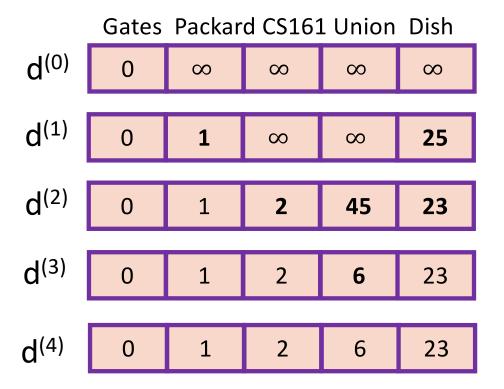
These are the final distances!

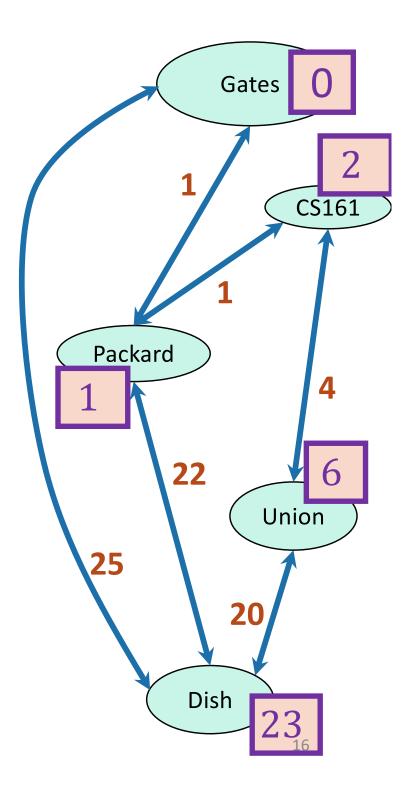
- **For** i=0,...,n-2:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$ where we are also taking the min over all u in v.inNeighbors



Interpretation of d⁽ⁱ⁾

d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.





Why does Bellman-Ford work?

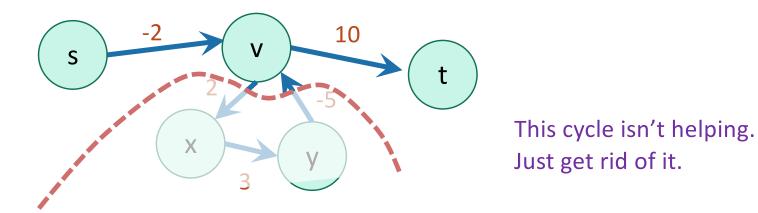
- Inductive hypothesis:
 - d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.
- Conclusion:
 - d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest path between s and v with at most n-1 edges.

Do the base case and inductive step!

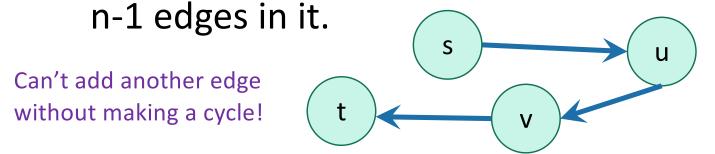
Aside: simple paths

Assume there is no negative cycle.

 Then there is a shortest path from s to t, and moreover there is a simple shortest path.



A simple path in a graph with n vertices has at most



"Simple" means that the path has no cycles in it.

• So there is a shortest path with at most n-1 edges

Why does it work?

- Inductive hypothesis:
 - d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.
- Conclusion:
 - d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest path between s and v with at most n-1 edges.
 - If there are no negative cycles, d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest path.

Bellman-Ford* algorithm

Bellman-Ford*(G,s):

- Initialize arrays d⁽⁰⁾,...,d⁽ⁿ⁻¹⁾ of length n
- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- **For** i=0,...,n-2:
 - For v in V:

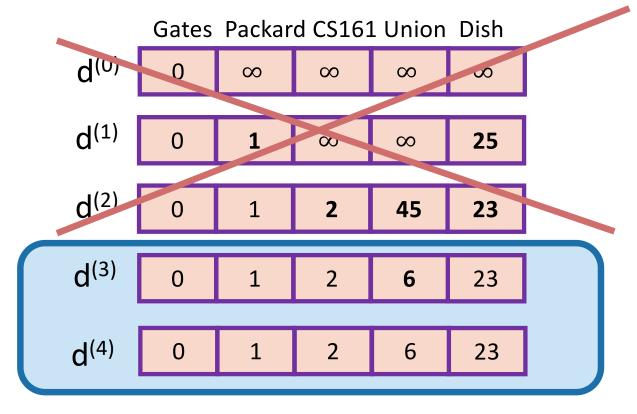
Here, Dijkstra picked a special vertex u and updated u's neighbors – Bellman-Ford will update all the vertices.

- $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \text{ in } v \text{ in Nbrs}} \{d^{(i)}[u] + w(u,v)\})$
- Now, dist(s,v) = $d^{(n-1)}[v]$ for all v in V.
 - (Assuming no negative cycles)

We don't even need two, just one array is fine. Why?

Note on implementation

- Don't actually keep all n arrays around.
- Just keep two at a time: "last round" and "this round"



Only need these two in order to compute d⁽⁴⁾

Bellman-Ford take-aways

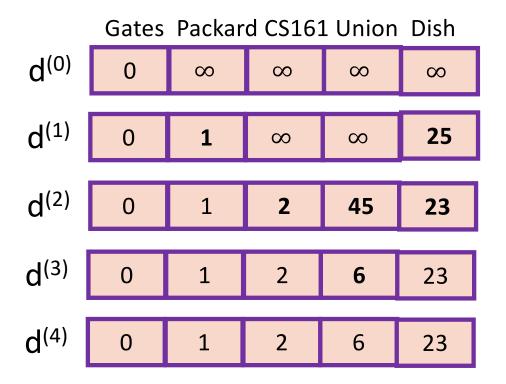
- Running time is O(mn)
 - For each of n rounds, update m edges.
- Works fine with negative edges.
- Does not work with negative cycles.
 - No algorithm can shortest paths aren't defined if there are negative cycles.
- B-F can detect negative cycles!
 - See skipped slides to see how, or think about it on your own!
- For your own information: by now we have faster (but complicated) algorithms with runtime $\simeq O(m \log(n)^c)$ as long as weights are not too large in magnitude!

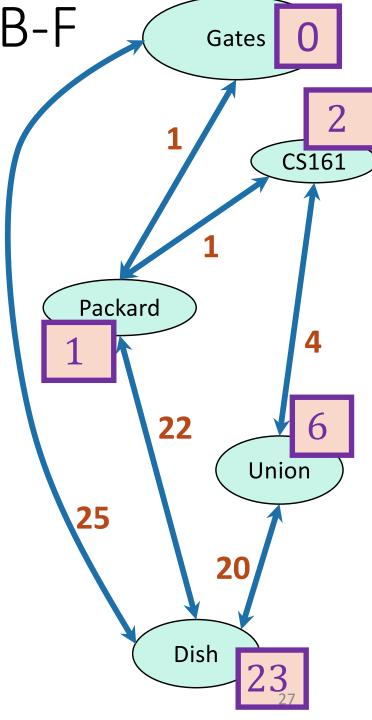
[Bernstein-Nanongkai-Wulff-Nilsen'2022]

Technically, the weights need to be integers, and then the runtime scales linearly with log(W) where W is the largest absolute value of the weights.

Important thing about B-F for the rest of this lecture

d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.





Bellman-Ford is an example of...

Dynamic Programming!

Today:

- Example of Dynamic programming:
 - Fibonacci numbers.
 - (And Bellman-Ford)
- What is dynamic programming, exactly?
 - And why is it called "dynamic programming"?
- Another example: Floyd-Warshall algorithm
 - An "all-pairs" shortest path algorithm

Pre-Lecture exercise: How not to compute Fibonacci Numbers

• Definition:

```
• F(n) = F(n-1) + F(n-2), with F(1) = F(2) = 1.
```

- The first several are:
 - 1
 - 1
 - 2
 - 3
 - 5
 - 8
 - 13, 21, 34, 55, 89, 144,...

Question:

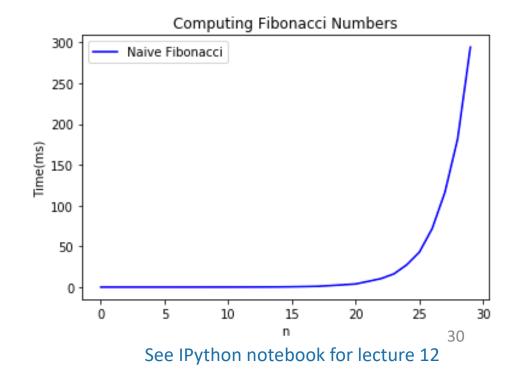
• Given n, what is F(n)?

Candidate algorithm

def Fibonacci(n):
if n == 0, return 0
if n == 1, return 1
return Fibonacci(n-1) + Fibonacci(n-2)

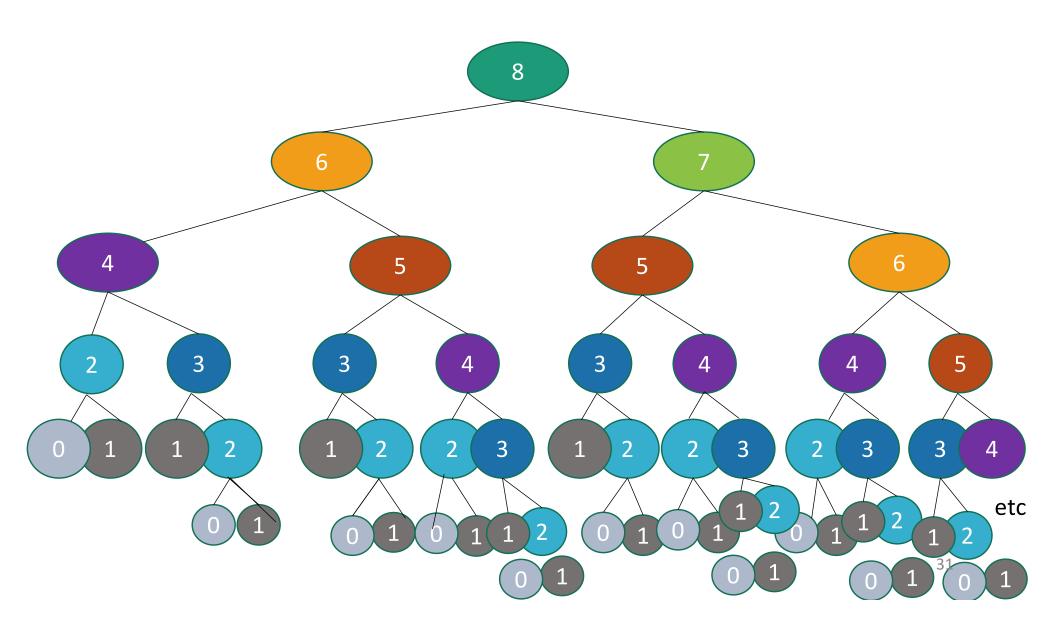
Running time?

- T(n) = T(n-1) + T(n-2) + O(1)
- $T(n) \ge T(n-1) + T(n-2)$ for $n \ge 2$
- So T(n) grows at least as fast as the Fibonacci numbers themselves...
- This is **EXPONENTIALLY QUICKLY**! $T(n) \ge 2T(n-2)$ implies $T(n) \ge \Omega(2^{n/2})$.

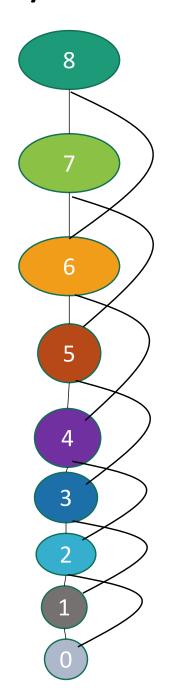


What's going on? Consider Fib(8)

That's a lot of repeated computation!



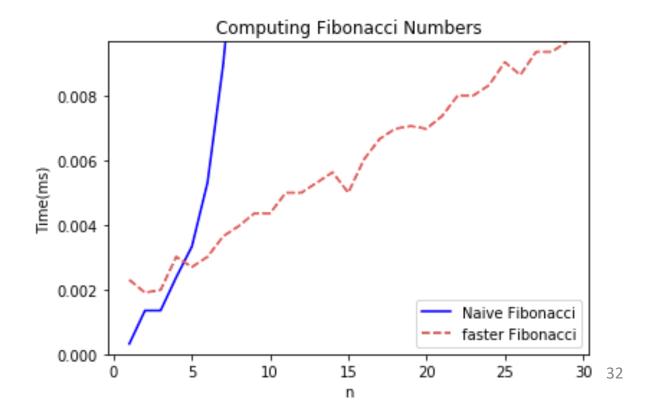
Maybe this would be better:



def fasterFibonacci(n):

- F = [0, 1, None, None, ..., None]
 \\ F has length n + 1
- for i = 2, ..., n:
 - F[i] = F[i-1] + F[i-2]
- return F[n]

Much better running time!



This was an example of...

What is *dynamic programming*?

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.
- Usually, it is for solving optimization problems
 - E.g., *shortest* path
 - (Fibonacci numbers aren't an optimization problem, but they are a good example of DP anyway...)

Elements of dynamic programming

1. Optimal sub-structure:

- Big problems break up into sub-problems.
 - Fibonacci: F(i) for $i \le n$
 - Bellman-Ford: Shortest paths with at most i edges for $i \le n$
- The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 - Fibonacci:

$$F(i+1) = F(i) + F(i-1)$$

Bellman-Ford:

 $d^{(i+1)}[v] \leftarrow \min\{ d^{(i)}[v], \min_{u} \{ d^{(i)}[u] + weight(u,v) \} \}$

Shortest path with at most i edges from s to v

Shortest path with at most i edges from s to u.

Elements of dynamic programming

2. Overlapping sub-problems:

- The sub-problems overlap.
 - Fibonacci:
 - Both F[i+1] and F[i+2] directly use F[i].
 - And lots of different F[i+x] indirectly use F[i].
 - Bellman-Ford:
 - Many different entries of d(i+1) will directly use d(i)[v].
 - And lots of different entries of d^(i+x) will indirectly use d⁽ⁱ⁾[v].
 - This means that we can save time by solving a sub-problem just once and storing the answer.

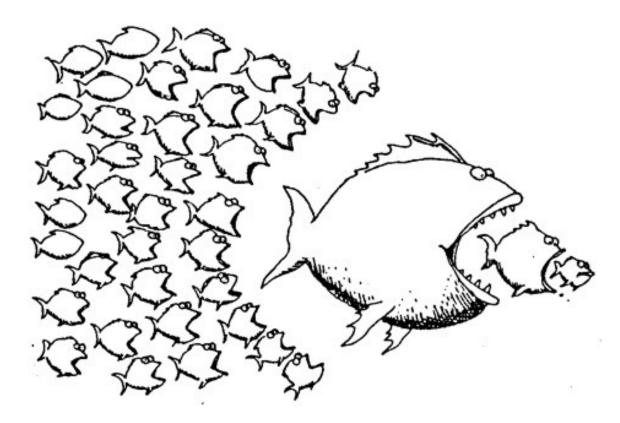
Elements of dynamic programming

- Optimal substructure.
 - Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.
- Overlapping subproblems.
 - The subproblems show up again and again
- Using these properties, we can design a dynamic programming algorithm:
 - Keep a table of solutions to the smaller problems.
 - Use the solutions in the table to solve bigger problems.
 - At the end we can use information we collected along the way to find the solution to the whole thing.

Two ways to think about and/or implement DP algorithms

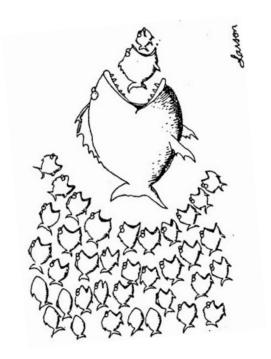
Top down

Bottom up



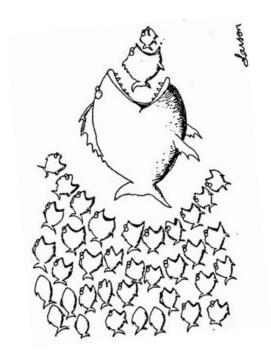
Bottom up approach what we just saw.

- For Fibonacci:
- Solve the small problems first
 - fill in F[0],F[1]
- Then bigger problems
 - fill in F[2]
- ...
- Then bigger problems
 - fill in F[n-1]
- Then finally solve the real problem.
 - fill in F[n]



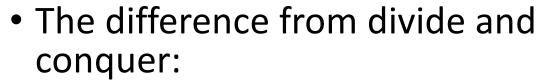
Bottom up approach what we just saw.

- For Bellman-Ford:
- Solve the small problems first
 - fill in d⁽⁰⁾
- Then bigger problems
 - fill in d⁽¹⁾
- ...
- Then bigger problems
 - fill in d⁽ⁿ⁻²⁾
- Then finally solve the real problem.
 - fill in d⁽ⁿ⁻¹⁾



Top down approach

- Think of it like a recursive algorithm.
- To solve the big problem:
 - Recurse to solve smaller problems
 - Those recurse to solve smaller problems
 - etc..



- Keep track of what small problems you've already solved to prevent re-solving the same problem twice.
- Aka, "memo-ization"

Example of top-down Fibonacci

```
define a global list F = [0, 1, None, None, ..., None]
• def Fibonacci(n):
    • if F[n] != None:
         • return F[n]
    • else:
         • F[n] = Fibonacci(n-1) + Fibonacci(n-2)
    • return F[n]
                                              Computing Fibonacci Numbers
                                0.008
                               0.006
                             0.006
0.004
   Memo-ization:
  Keeps track (in F)
 of the stuff you've
    already done.
                               0.002
                                                            Naive Fibonacci
                                                            faster Fibonacci, bottom-up
                                                            faster Fibonacci, top-down
                                0.000
```

10

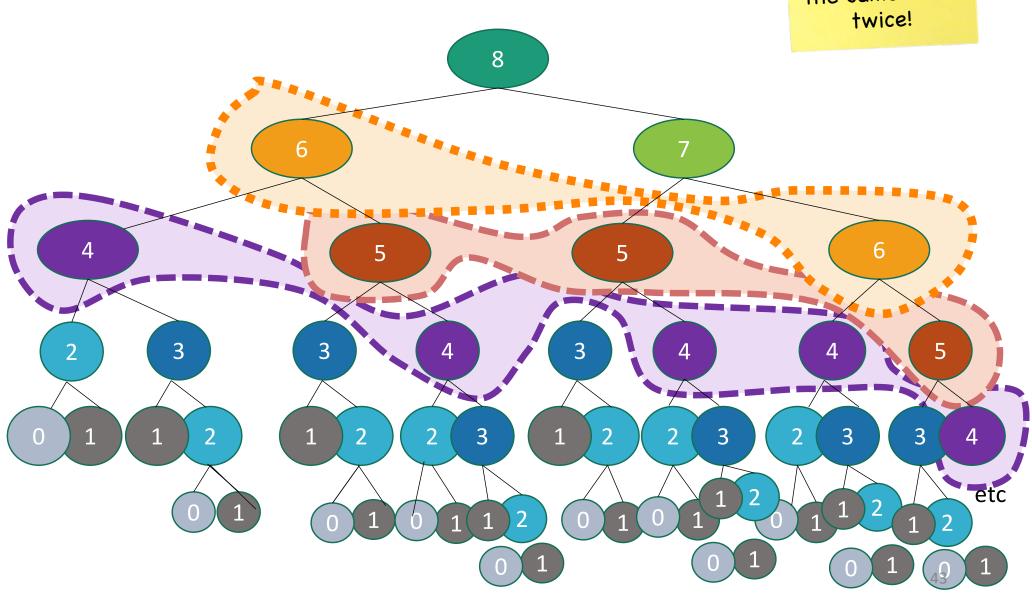
15

20

25

Memo-ization visualization

Collapse
repeated nodes
and don't do
the same work
twice!

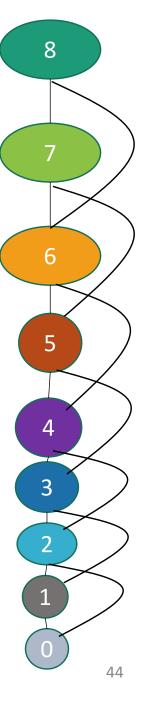


Memo-ization Visualization ctd

Collapse
repeated nodes
and don't do the
same work
twice!

But otherwise treat it like the same old recursive algorithm.

- define a global list F = [0,1,None, None, ..., None]
- **def** Fibonacci(n):
 - **if** F[n] != None:
 - return F[n]
 - else:
 - F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 - return F[n]



What have we learned?

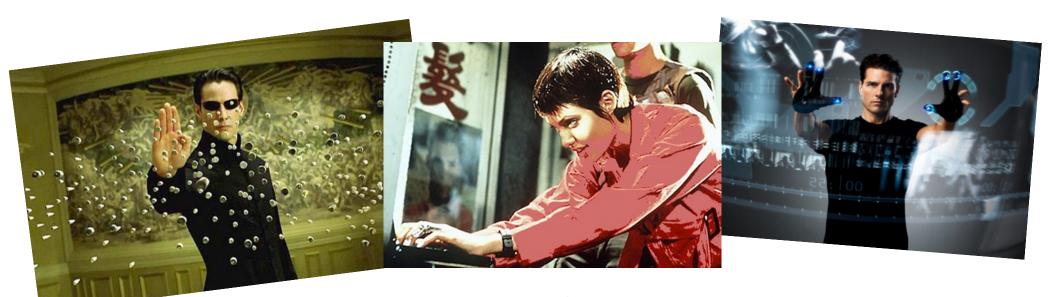
• Dynamic programming:

- Paradigm in algorithm design.
- Uses optimal substructure
- Uses overlapping subproblems
- Can be implemented bottom-up or top-down.
- It's a fancy name for a pretty common-sense idea:

Don't duplicate work if you don't have to!

Why "dynamic programming"?

- Programming refers to finding the optimal "program."
 - as in, a shortest route is a plan aka a program.
- Dynamic refers to the fact that it's multi-stage.
- But also it's just a fancy-sounding name.



Why "dynamic programming"?

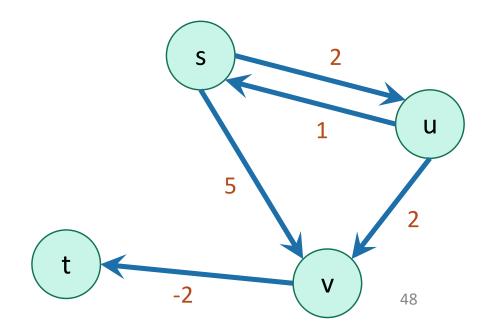
- Richard Bellman invented the name in the 1950's.
- At the time, he was working for the RAND Corporation, which was basically working for the Air Force, and government projects needed flashy names to get funded.
- From Bellman's autobiography:
 - "It's impossible to use the word, dynamic, in the pejorative sense...I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Floyd-Warshall Algorithm

Another example of DP

- This is an algorithm for All-Pairs Shortest Paths (APSP)
 - That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
 - Not just from a special single source s.

Destination					
Source		S	u	V	t
	S	0	2	4	2
	u	1	0	2	0
	V	∞	∞	0	-2
	t	∞	∞	∞	0



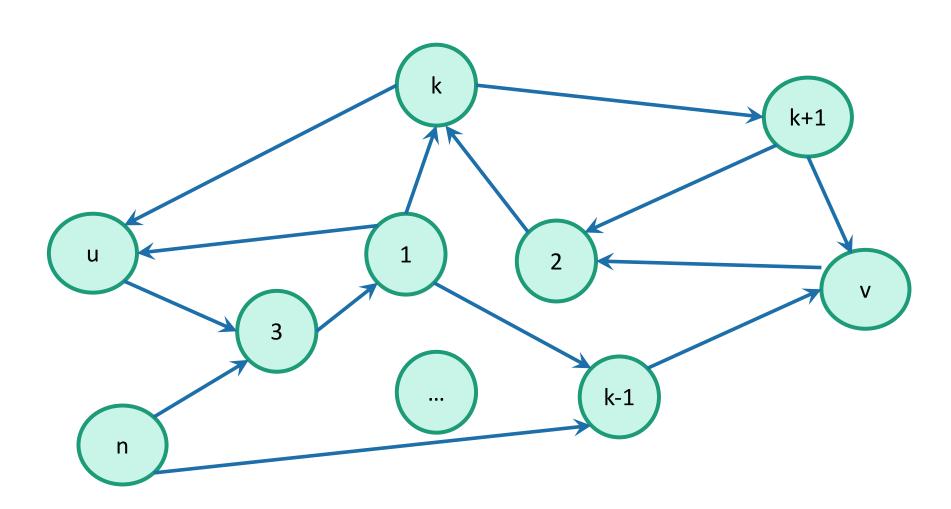
Floyd-Warshall Algorithm

Another example of DP

- This is an algorithm for All-Pairs Shortest Paths (APSP)
 - That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
 - Not just from a special single source s.
- Naïve solution (if we want to handle negative edge weights):
 - For all s in G:
 - Run Bellman-Ford on G starting at s.
 - Time $O(n \cdot nm) = O(n^2m)$,
 - may be as bad as n⁴ if m=n²

Can we do better?

Optimal substructure



Optimal substructure

Label the vertices 1,2,...,n

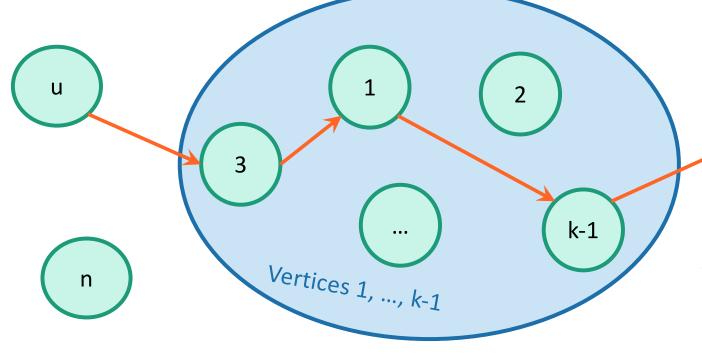
(We omit some edges in the picture below – meant to be a cartoon, not an example).

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

Let D^(k-1)[u,v] be the solution to Sub-problem(k-1).

Our DP algorithm
will fill in the
n-by-n arrays
D⁽⁰⁾, D⁽¹⁾, ..., D⁽ⁿ⁾
iteratively and
then we'll be done.



k

This is the shortest path from u to v through the blue set. It has cost D^(k-1)[u,v]

Optimal substructure

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

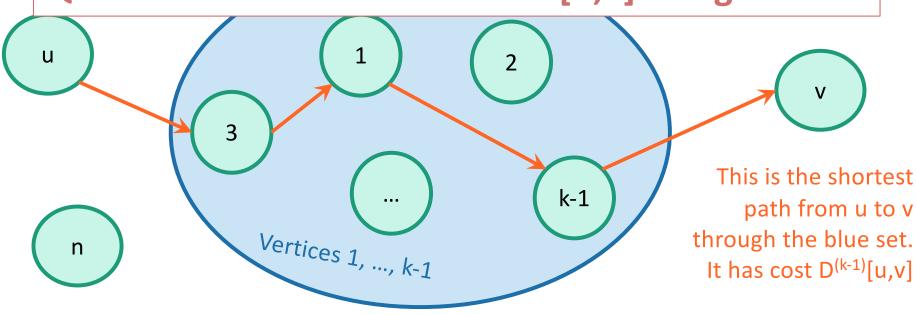
Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

Our DP algorithm will fill in the n-by-n arrays D⁽⁰⁾, D⁽¹⁾, ..., D⁽ⁿ⁾ iteratively and then we'll be done.

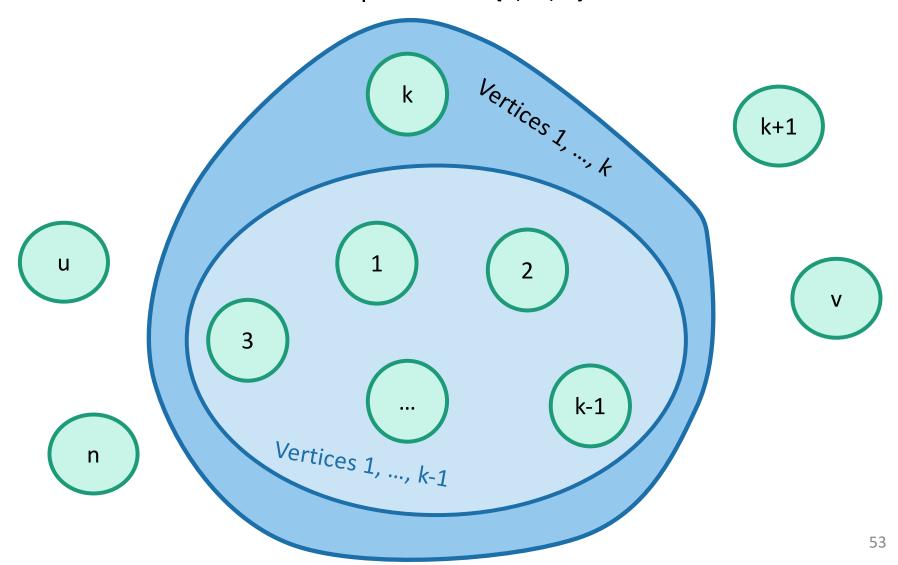
Label the vertices 1,2,...,n (We omit some edges in the picture below – meant to be a cartoon, not an example).

Question: How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

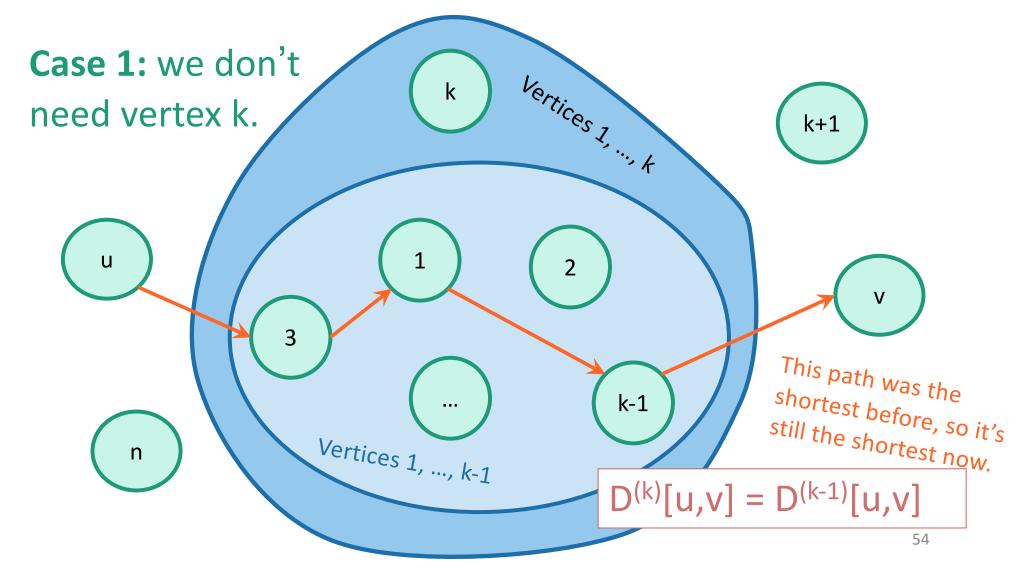
k



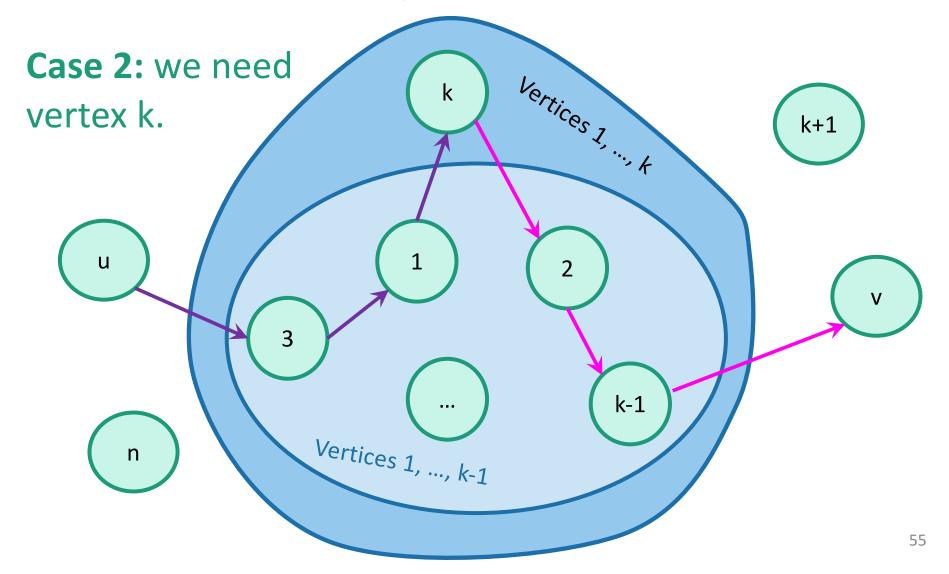
 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.



 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.



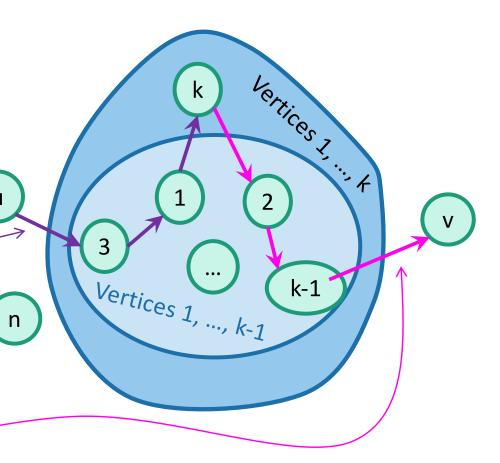
 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.



Case 2 continued

- Suppose there are no negative cycles.
 - Then WLOG the shortest path from u to v through {1,...,k} is **simple**.
- If <u>that path</u> passes through k, it must look like this:
- This path is the shortest path from u to k through {1,...,k-1}.
 - sub-paths of shortest paths are shortest paths
- Similarly for this path.

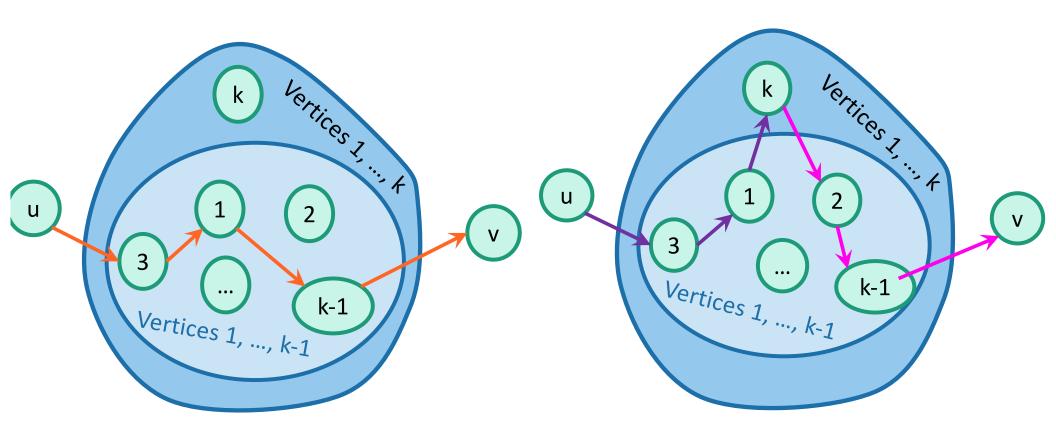
Case 2: we need vertex k.



$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]_{56}$$

Case 1: we don't need vertex k.

Case 2: we need vertex k.



$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$

$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]$$

• $D^{(k)}[u,v] = min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

Case 1: Cost of shortest path through {1,...,k-1}

- Optimal substructure:
 - We can solve the big problem using solutions to smaller problems.
- Overlapping sub-problems:
 - D^(k-1)[k,v] can be used to help compute D^(k)[u,v] for lots of different u's.

• $D^{(k)}[u,v] = min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

Case 1: Cost of shortest path through {1,...,k-1}

Using our <u>Dynamic programming</u> paradigm, this immediately gives us an algorithm!

Floyd-Warshall algorithm

- Initialize n-by-n arrays D^(k) for k = 0,...,n
 - $D^{(k)}[u,u] = 0$ for all u, for all k
 - $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - D⁽⁰⁾[u,v] = weight(u,v) for all (u,v) in E. ◆
- **For** k = 1, ..., n:
 - For pairs u,v in V^2 :
 - $D^{(k)}[u,v] = min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$
- Return D⁽ⁿ⁾

The base case checks out: the only path through zero other vertices are edges directly from u to v.

This is a bottom-up **Dynamic programming** algorithm.

We've basically just shown

• Theorem:

If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix D⁽ⁿ⁾ so that:

 $D^{(n)}[u,v]$ = distance between u and v in G.

- Running time: O(n³)
 - Better than running Bellman-Ford n times!

Work out the details of a proof!

We don't even need two, just one array is fine. Why?

- Storage:
 - Need to store two n-by-n arrays, and the original graph.

As with Bellman-Ford, we don't really need to store all n of the D(k).

What if there *are* negative cycles?

- Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
 - "Negative cycle" means that there's some v so that there is a path from v to v that has cost < 0.
 - Aka, $D^{(n)}[v,v] < 0$.
- Algorithm:
 - Run Floyd-Warshall as before.
 - If there is some v so that D⁽ⁿ⁾[v,v] < 0:
 - return negative cycle.

What have we learned?

- The Floyd-Warshall algorithm is another example of dynamic programming.
- It computes All Pairs Shortest Paths in a directed weighted graph in time O(n³).

Can we do better than O(n³)?

Nothing on this slide is required knowledge for this class

- There is an algorithm that runs in time $O(n^3/log^{100}(n))$.
 - [Williams, "Faster APSP via Circuit Complexity", STOC 2014]
- If you can come up with an algorithm for All-Pairs-Shortest-Path that runs in time O(n^{2.99}), that would be a really big deal.
 - Let me know if you can!
 - See [Abboud, Vassilevska-Williams, "Popular conjectures imply strong lower bounds for dynamic problems", FOCS 2014] for some evidence that this is a very difficult problem!

Recap

- Two shortest-path algorithms:
 - Bellman-Ford for single-source shortest path
 - Floyd-Warshall for all-pairs shortest path
- Dynamic programming!
 - This is a fancy name for:
 - Break up an optimization problem into smaller problems
 - The optimal solutions to the sub-problems should be subsolutions to the original problem.
 - Build the optimal solution iteratively by filling in a table of sub-solutions.
 - Take advantage of overlapping sub-problems!

Next time

More examples of dynamic programming!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.

No pre-lecture exercise for next time