Lecture 13

More dynamic programming!
Longest Common Subsequences, Knapsack, and

(if time) independent sets in trees.

Last time Py

* Not coding in an action movie.

o

O

R

e programs dynamically
in Mission Impossible 2

Last time Pre

* Dynamic programming is an algorithm design
paradigm.

e Basic idea:

* |dentify optimal sub-structure

* Optimum to the big problem is built out of optima of small
sub-problems

» Take advantage of overlapping sub-problems
* Only solve each sub-problem once, then use it again and again

* Keep track of the solutions to sub-problems in a table
as you build to the final solution.

Today

* Examples of dynamic programming:
1. Longest common subsequence

2. Knapsack problem
* Two versions!

3. Independent sets in trees

* If we have time...
* (If not the slides will be there as a reference)

* Yet more examples of DP in CLRS!
e Optimal order of matrix multiplications
* Optimal binary search trees
* Longest paths in DAGs, ...

The goal of this lecture

* For you to get really bored of dynamic programming

w
5 ‘ ' ./
| y X i) v v/_ Z
5 ol o , Ny .
. ; .’ -'/

Longest Common Subsequence

 How similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

Longest Common Subsequence

 How similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGITTAGCTTG

* Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

Longest Common Subsequence

e Subsequence:
is a subsequence of ABCDEFG

e If Xand Y are sequences, a common subsequence
is a sequence which is a subsequence of both.

is a common subsequence of ABCDEFGH and of
ABDFGHI

* A longest common subsequence...

e ...iIsa common subsequence that is longest.

* The longest common subsequence of ABCDE and
lis

We sometimes want to find these

® ® ® B anari — anari@nimbook —...

~ cat filel

* Applications in bioinformatics

~ cat file2

e The unix command diff

~ diff filel file2

* Merging in version control
* svn, git, etc...

5
A
B
C
D
=
F
G

[
&
A
B
D
F
G
H

I
5
3
<
5
<
8
>

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

e Step 5: If needed, code this up like a reasonable
person.

10

Step 1: Optimal substructure

Prefixes:
X Alc|lGcg|G | T
Y Alc|lGcg|Cc|T|T]|A

Notation: denote this prefix ACGC by Y,

e Our sub-problems will be finding LCS’s of prefixes to X and Y.
* Let C[i,j] = length_of_LCS(X, Y;)
C[2,3]=2

Examples:
P Cla4)=3 -

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. y

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

e Step 5: If needed, code this up like a reasonable
person.

12

Goal

* Write C|i,j] in terms of the solutions to smaller sub-
problems

C[i,j] = length_of_LCS(X;, Y;)

13

e QOur sub-problems will be finding

TWO CaSes LCS’s of prefixes to X and Y.
: . * Let C[i,j] = length_of_LCS(X, Y;)
Case 1: X[i] = Y[j]

These are

(A \/ the same
X Al C|G|G]|A

j

Then Cli,j] =1 + CJi-1,j-1].
* because LCS(X,Y;) = LCS(X; 1Y,) followed by | A

14

e QOur sub-problems will be finding

TWO CaSes LCS’s of prefixes to X and Y.
: : * Let C[i,j] = length_of_LCS(X, Y;)
Case 2: X[i] I=Y][j]

These are
{ \/ not the
same
X A C| G G T

j

* Then Cli,j] = max{ Cli-1,j], Cl[i,j-1] }.
* either LCS(X,Y;) = LCS(X,1,Y;) and | T| is not involved,
* or LCS(X,Y;) = LCS(X,)Y; ;) and |A| is not involved,

* (maybe both are not involved, that’s covered by the “or”),

Recursive formulation
of the optimal solution X, |

Y. [A|C|G|C|T|T|A
J

‘j Case O
(0 if i=00rj=0
e Cli,j]l=<Cli—1,j—1]+1 if X[i] = Y][j] andi,j >0
\max{ C[i,j —11,C[i = 1,j1} if X[i] # Y[j] andi,j >0 %

C s

Case 1l Case 2

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

&

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

e Step 5: If needed, code this up like a reasonable
person.

17

LCS DP

* LCS(X, Y):
e C[i,0]=C[0,j] =0foralli=0,...,m, j=0,...n.
e Fori=1,..mandj=1,..,n:
 If X[i] = Y][j]:
* Cli,jl =CJi-1,j-1] +1

* Else: Runn,n g 47
* Cli,j] = max{ C[i,j-1], C[i-1,j] } O(,,m}"he

e Return C[m,n]

(0 if i=0o0rj=0
Cli,jl=4Cli—1j—1]+1 if X[i] = Y[j] andi,j > 0
max{ C[i,j — 1],C[i — 1,j]} ifX[i] #Y[j] and&j > 0

\

> m“m (@) >

Cli,jl =

0 ifi=0o0rj=0
Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0

.. 19, ..
max{ C[i,j — 1],C[i — 1,j1} if X[i] # Y[j] andi,j >0

Example
Y

A C T ‘ G
0 0 0 0 0
A 0 1 1 1 1
C 0 1 2 2 2
G 0 1 2 2 3
G 0 1 2 2 3
A 0 1 2 ‘ 2 ‘ 3

Cli,jl = {

So the LCM of X
and Y has length 3.

0 ifi=0o0rj=0
Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0

.. . . ; . 4 20. .7,
max{ C[i,j — 1], C[i — 1,j1} if X[i] # Y[j] andi,j >0

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

e Step 5: If needed, code this up like a reasonable
person.

21

> m“m (@) >

Cli,jl =

0 ifi=0o0rj=0
Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0

.. . . ; . 4 22..°.
max{ C[i,j — 1],C[i — 1,j1} if X[i] # Y[j] andi,j >0

Example
Y

A C T ‘ G
0 0 0 0 0
A 0 1 1 1 1
C 0 1 2 2 2
G 0 1 2 2 3
G 0 1 2 2 3
A 0 1 2 ‘ 2 ‘ 3

Cli,jl =

0 ifi=0o0rj=0
Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0

.. . . ; . 4 23..°.
max{ C[i,j — 1], C[i — 1,j1} if X[i] # Y[j] andi,j >0

Y A C T G
Y

A C T ‘ G

* Once we've filled this in,

we can work backwards.
0 0 0 0 0
A 0 1 1 1 1
C 0 1 2 2 2
G 0 1 2 2 3
G 0 1 2 2 3
A 0 1 2 ‘ 2 ‘ 3

0 ifi=0o0rj=0
Ccli,jl=<cli—1,j—-1]+1 if X[i] = Y[j] andi,j >0

max{ Cli,j — 11,Cli — 1,j1} if X[# Y[j] andi,j > 0

Y
A C T ‘ G
* Once we've filled this in,
we can work backwards.
0 0 0 0 0
A 0 1 1 1 1
C 0 1 2 2 2
G 0 1 2 2 3
G 0 1 2 2 3 That 3 must have come
from the 3 above it.
A 0 1 2 2 3
0 ifi=0o0rj=0
Ccli,jl=<cli—1,j—-1]+1 if X[i] = Y[j] andi,j >0

max{ Cli,j — 11,Cli — 1,j1} if X[l # Y[j] andi,j > 0

Y
A C T ‘ G
* Once we've filled this in,
we can work backwards.
ojlojJoj|o}oO * A diagonal jump means
A 0 . . . that we found an element
1 of the LCS!
C 0 1 2 2 2
G 0 1 2 2 3 This 3 came from that 2 — G
G 0 1 2 7 3 we found a match!
A 0 1 2 ‘ 2 ‘ 3
0 ifi=0o0rj=0
Ccli,jl=<cli—1,j—-1]+1 if X[i] = Y[j] andi,j >0

max{ Cli,j — 11,Cli — 1,j1} if X[l # Y[j] andi,j > 0

Y
A C T ‘ G
* Once we've filled this in,
we can work backwards.
ojlojJoj|o}oO * A diagonal jump means
A 0 . . . that we found an element
1 of the LCS!
C 0 1 2 2 2 | That2 may as well
have come from
G % . 2 2 : this other 2. G
G 0 1 2 2 3
A 0 1 2 ‘ 2 ‘ 3
0 ifi=0o0rj=0
Ccli,jl=<cli—1,j—-1]+1 if X[i] = Y[j] andi,j >0

max{ Cli,j — 11,Cli — 1,j1} if X[# Y[j] andi,j > 0

Y
A C T ‘ G
* Once we've filled this in,
we can work backwards.
ojlojJoj|o}oO * A diagonal jump means
A 0 . . . that we found an element
. of the LCS!
C 0 1 2 2 2
G 0 1 2 2 3 G
G 0 1 2 2 3
A 0 1 2 ‘ 2 ‘ 3
0 ifi=0o0rj=0
Ccli,jl=<cli—1,j—-1]+1 if X[i] = Y[j] andi,j >0

max{ Cli,j — 11,Cli — 1,j1} if X[# Y[j] andi,j > 0

Y
A C T ‘ G
* Once we've filled this in,
we can work backwards.
ojlojJoj|o}oO * A diagonal jump means
A 0) . . that we found an element
. of the LCS!
C 0 1 2 2 2
G 0 1 2 2 3 C G
G 0 1 2 2 3
A 0 1 2 ‘ 2 ‘ 3
0 ifi=0o0rj=0
Ccli,jl=<cli—1,j—-1]+1 if X[i] = Y[j] andi,j >0

max{ Cli,j — 11,Cli — 1,j1} if X[# Y[j] andi,j > 0

Y| A|lc|T|G
Y
A C T ‘ G
* Once we've filled this in,
we can work backwards.
OoJojJoj|o}o * A diagonal jump means
A 0) . . that we found an element
1 of the LCS!
C 0 1 2 2 2
G 0 1 2 2 3 A C G
G 0 1 2 2 3
This is the LCS!
A 0 1 2 ‘ 2 ‘ 3
0 ifi=0o0rj=0
Ccli,jl=<cli—1,j—-1]+1 if X[i] = Y[j] andi,j >0

max{ Cli,j — 11,Cli — 1,j1} if X[l # Y[j] andi,j > 0

Finding an LCS

* Good exercise to write out pseudocode for what we
just saw!
* Or you can find it in lecture notes.

* Takes time O(mn) to fill the table

* Takes time O(n + m) on top of that to recover the LCS

 We walk up and left in an n-by-m array
 We can only do that for n + m steps.

* Altogether, we can find LCS(X,Y) in time O(mn).

31

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

e Step 5: If needed, code this up like a reasonable ,
person.

32

Our approach actually isn’t so bad

* If we are only interested in the length of the LCS we
can do a bit better on space:
* Since we go across the table one-row-at-a-time, we can only
keep two rows if we want.

* If we want to recover the LCS, we need to keep the
whole table.

than O(mn) time?
* A bit better.
* By a log factor or so.

e But doing much better (polynomially better) is an open
problem!

33

What have we learned?

* We can find LCS(X,Y) in time O(nm)
e if |[Y|=n, |X|=m

 We went through the steps of coming up with a
dynamic programming algorithm.
* We kept a 2-dimensional table, breaking down the
problem by decrementing the length of X and Y.

34

Example 2: Knapsack Problem

* We have n items with weights and values:

ltem:

S
Weight: 6 P
Value: 20 8 14

* And we have a knapsack:
* it can only carry so much weight:

ltem: h o b/ g/

Weight: 6 2 4 3
Value: 20 8 14 13

g Capacity: 10

11
35

* Unbounded Knapsack:
* Suppose | have infinite copies of all items.
 What'’s the most valuable way to fill the knapsack?

i i Total weight: 10
/ / = ¥ Total value: 42

* 0/1 Knapsack:

* Suppose | have only one copy of each item.
* What's the most valuable way to fill the knapsack?

= Total weight: 9
= b/ g/ Total value: 35

36

Some notation

ltem:
Welght W]_ W2 W3 see Wn
Value: Vl V2 V3 Vn

Capacity: W

37

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

38

Optimal substructure

e Sub-problems:
* Unbounded Knapsack with a smaller knapsack.
e K[x] = value you can fit in a knapsack of capaci

First solve the

problem for Then larger Then larger

small knapsacks knapsacks knapsacks

Optimal substructure h tem

» Suppose this is an optimal solution for capacity x:

X ne =

)
Saq o < O\u’(:\Oﬂ

G ast
conta £ e \ i
Cop\l 0 - E‘} .
one Weight w;,
Value v,

Capacity x
* Then this is optimal for capacity x - w;: valueVv

Why? N L B

: . PL
1 minute think 5 e

(wait) 1 minute share

" Capacity x — w;,
Value V - v, 40

item i

Optimal substructure

» Suppose this is an optimal solution for capacity x:

ak ‘—he. =

xa\> < m\. Sl
O comy o o .

0 .
one © Weight w;
Value v,

Capacity x
* Then this is optimal for capacity x - w;: valueVv

D e
R

#
5 v

If | could do better than the second solution,
then adding a turtle to that improvement
would improve the first solution.

Capacity x — w;

Value V -v, "

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

42

Recursive relationship

* Let K[x] be the optimal value for capacity x.

K[x] = max; {

The maximum is over
all'i so that w; < x.

RN
RO s
; ek

5 o a0 5

Optimal wayto The value of
fill the smaller item i.
knapsack

K[x] = max. { K[x=w.] + v, }

* (And K[x] = O if the maximum is empty).

e Thatis, if therearenoisothatw; < x
43

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution. {

* Step 3: Use dynamic programming to find the value
of the optimal solution.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

44

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0
e forx=1, .. W:
e K[x]=0
e fori=1, ..., n:
o ifw; < x:
* K|x] = max{ K|[x],K[x —w;| + v; }
e return K[W]

Running time: O(nW)

KIx] = max; { J&

= max; { K[x —w;] +v;} 45

Can we do better?

* Writing down W takes log(W) bits.
e Writing down all n weights takes at most nlog(W) bits.

* Input size: nlog(W).
* Maybe we could have an algorithm that runs in time
O(nlog(W)) instead of O(nW)?

* Open problem!
e (But probably the answer is no...otherwise P = NP)

46

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. {

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

47

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0
e forx=1, .. W:
e K[x]=0
e fori=1, ..., n:
o ifw; < x:
* K|x] = max{ K|[x],K[x —w;| + v; }
e return K[W]

(Bt
K[X] = makx; { \

= max; { K[x—w;] +v;}

48

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
 K[0O]=0 ’
* [TEMS[0] =@

e forx=1, .., W:

e K[x]=0
e fori=1, ..., n:
¢ Ile < X:

e K|x] = max{ K|x],K[x —w;] +v;}
« If K[x] was updated: ’
* ITEMS[x] =ITEMS[x —w;] U {itemi }
e return ITEMS[W]

Ja \
4 ‘9‘,- 1
R
I"’.‘ * - ” ¥
s AR }
;' 2 *..’,“

= max; { K[x —w;] +v;} 49

K[x] = max; {

A~

ITEMS

* UnboundedKnapsack(W, n, weights, values):
+ K[0]=0
* [TEMS[0] =0
e forx=1,.. W:
e K[x]=0
e fori=1,..n:
e ifw; <x:
* K[x] = max{ K[x],K[x —w;] +v;}
* If K[x] was updated:
* ITEMS[x] = ITEMS[x—w;] U {item i}
* return ITEMS[W]

ltem:

Weight:
Value:

PN

Capacity: 4

A~

ITEMS

* UnboundedKnapsack(W, n, weights, values):
« K[0]=0
e ITEMS[0] = @

e f =1, .., W:
Example S
e fori=1,..n:

if Wi < Xx:

0 1 2 3 4 * K[x] = max{ K[x],K[x —w;] +v;}

If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
0 1 * return ITEMS[W]

ltem: h o b/

Weight:

Value:

TEMS[1] = ITEMS[0] + ik

Capacity: 4

A~

ITEMS

* UnboundedKnapsack(W, n, weights, values):
« K[0]=0
e ITEMS[0] = @

e f =1, .., W:
Example S
e fori=1,..n:

if Wi < Xx:

0 1 2 3 4 * K[x] = max{ K[x],K[x —w;] +v;}

If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
0 1 2 * return ITEMS[W]

ltem: h o b/

Weight:

Value:

TEMS[2] = ITEMS[1] + ¥k

Capacity: 4

A~

ITEMS

ITEMS[2] = ITEMSIO] + v

UnboundedKnapsack(W, n, weights, values):

K[0] =0
ITEMS[O0] = @
forx=1, .., W:
K[x]=0
fori=1,..,n:
if w, < x:
K[x] = max{ K[x],K[x —w;] +v; }
If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
return ITEMS[W]

ltem:
Weight: 1 2 3
Value: 1 4 6

RN\

Capacity: 4

A~

ITEMS

* UnboundedKnapsack(W, n, weights, values):
« K[0]=0
e ITEMS[0] = @

e f =1, .., W:
Example S
e fori=1,..n:

if Wi < Xx:

0 1 2 3 4 * K[x] = max{ K[x],K[x —w;] +v;}

If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
0 1 4 5 * return ITEMS[W]

ltem: h o b/

Weight:

Value:

ITEMS[3] = ITEMS[2] + ik

Capacity: 4

A~

ITEMS

* UnboundedKnapsack(W, n, weights, values):
« K[0]=0
ITEMS[O] = @

e f =1, .., W:
Example S
e fori=1,..n:

if Wi < Xx:

0 1 2 3 4 * K[x] = max{ K[x],K[x —w;] +v;}

If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
0 1 4 6 * return ITEMS[W]

ltem: h o b/

Weight:

Value:

TEMS[3] = ITEMS[0] + &y

Capacity: 4

A~

ITEMS

* UnboundedKnapsack(W, n, weights, values):
« K[0]=0
e ITEMS[0] = @

e f =1, .., W:
Example S
e fori=1,..n:

if Wi < Xx:

0 1 2 3 4 * K[x] = max{ K[x],K[x —w;] +v;}

If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
0 1 4 6 7 * return ITEMS[W]

ltem: h o b/

Weight:

Value:

ITEMS[4] = ITEMS[3] +h

Capacity: 4

A~

ITEMS

ITEMS[4] = ITEMS[2] + G

UnboundedKnapsack(W, n, weights, values):

K[0] =0
ITEMS[O0] = @
forx=1, .., W:
K[x]=0
fori=1,..,n:
if w, < x:
K[x] = max{ K[x],K[x —w;] +v; }
If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
return ITEMS[W]

ltem:
Weight: 1 2 3
Value: 1 4 6

Capacity: 4

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the

actual solution. {
e Step 5: If needed, code this up like a reasonable
person.
(Pass)

58

What have we learned?

* We can solve unbounded knapsack in time O(nW).
* If there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a one-dimensional table, creating smaller
problems by making the knapsack smaller.

59

ltem: h G b g/ %

Weight: 6 2 4 3 11
Value: 20 8 14 13 35

;;Capachy:lo

* Unbounded Knapsack:
e Suppose | have infinite copies of all of the items.
 What'’s the most valuable way to fill the knapsack?

f i Total weight: 10
/ / =) ¥ Total value: 42

» * 0/1 Knapsack:

* Suppose | have only one copy of each item.
* What's the most valuable way to fill the knapsack?

= Total weight: 9
= b (/ Total value: 35

60

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

61

Optimal substructure: try 1

e Sub-problems:
* Unbounded Knapsack with a smaller knapsack.

First solve the

problem for Then larger Then larger

small knapsacks knapsacks knapsacks

This won’t quite work...

 We are only allowed one copy of each item.

* The sub-problem needs to “know” what items
we’ve used and what we haven’t.

| can’t use
any turtles...

63

Optimal substructure: try 2

e Sub-problems:

First solve the
problem with
few items

We'll still increase the size of the knapsacks.
Then more
items

Then yet
more
items

(We-
/l ke
6,0 q tWo\d.
/men .
S/O

na/ tab/e}

4

Our sub-problems:

* Indexed by x and |

First j items Capacity x

K[x,j] = optimal solution for a knapsack of
size x using only the first j items.

65

Relationship between sub-problems

* Want to write K[x,j] in terms of smaller sub-problems.

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 66

TwoO cases

* Case 1: Optimal solution for j items does not use itemj.
e Case 2: Optimal solution for j items does use item j.

First j items Capacity x

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 67

TwoO cases h item |

* Case 1: Optimal solution for j items does not use item j.

Capacity x
Value V
Use only the first j items

First j items

What lower-indexed problem
should we solve to solve this
problem?

1 min think; (wait) 1 min share

Casa

68

TwoO cases h item |

* Case 1: Optimal solution for j items does not use item j.

Capacity x
Value V
Use only the first j items

First j items

* Then this is an optimal solution for j-1 items:

o N

CaaC|ty X
S Value V -
First -1 items Use only the first j-1 items.

TwoO cases) item]

* Case 2: Optimal solution for j items uses item j.

“n »

Weight w; L1
Value v, Capacity x
Value V
First j items Use only the first j items

What lower-indexed problem
should we solve to solve this
problem?

1 min think; (wait) 1 min share

Casa

70

TwoO cases h itemn |

* Case 2: Optimal solution for j items uses item j.

Weight w, SRR
Value v, Capacity x
Value V
First j items Use only the first j items

* Then this is an optimal solution for j-1 items and a
smaller knapsack:

Capacity x — w;
Value V-,
Use only the first j-1iitems.

First j-1 items

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

72

Recursive relationship

* Let K[x,j] be the optimal value for:

* capacity x,
* with j items.

K[x,j] = max{ K[x, j-1],

Case 1

* (And K[x,0] = 0 and K[0,j] = 0).

73

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.
* Step 2: Find a for the value of

the optimal solution. ,

* Step 3: Use dynamic programming to find the value
of the optimal solution.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

74

Bottom-up DP algorithm

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,...,W
e K[O,i] =0 foralli=0,...,n
e forx=1,..,W:
e forj=1,...,n:

Case 1
e K[x,j] = K[x, j-1]
o if Wi < X:
* KIx,j] = max{ K[x,j],]

e return K[\W n]|

Running time O(nW)

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Example ot 21y

¢ K[XIJ] = K[XI J_l]

o ifw, <x:
x=0 x=1 x=2 x=3 © Kl) = maxq K[l
K[x—w; j-1] +v; }
=0 0 0 0 0 e return K[W,n]
0
W -
0
L E e
0
b ¥ h =3

ltem: b
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Example ot 21y

¢ K[XIJ] = K[XI J_l]

o ifw, <x:
x=0 x=1 x=2 x=3 © Kl) = maxq K[l
K[x—w; j-1] +v; }
=0 0 0 0 0 e return K[\W,n]
0 0
W -
0
L E e
0
b ¥ h =3

ltem: b/
current relevant Weight: 1 2 3 ’
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Example ot 21y

¢ K[XIJ] = K[XI J_l]

o ifw, = x:
x=0 x=1 = x=2 x=3 © KDx,jl = max{ KIx],
K[x—w; j-1] +v; }
: 0 0 0 0 * return K[\W,n]
j=0
_ 0 1
W = .
0
. E e
0
W, =
ltem: b
current relevant Weight: 1 2 3 %
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Example ot 21y

¢ K[XIJ] = K[XI J_l]

o ifw, = x:
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,j],
KIx—w;, j-1] +v; }
_ 0 0 0 0 * return K[\W,n]
j=0
0

0
=
ltem: b
current relevant Weight: 1 2 3 %
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,..,n

e forx=1,..W:
Example ot 21
* K[x,j] = K[x, j-1]
o ifw, = x:
© KDojl = max{K[x,j],
K[x—w; j-1] +v; }

x=0 x=1 x=2 x=3

: 0 0 0 0 * return K[\W,n]
j=0
| o L2
- i
0 1
Y s
0 1
b ¥ h J=3 h
ltem: b
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,..,n

e forx=1,..W:
Example ot 21
* K[x,j] = K[x, j-1]
o ifw, = x:
© KDojl = max{K[x,j],
K[x—w; j-1] +v; }

x=0 x=1 x=2 x=3

: 0 0 0 0 * return K[\W,n]
j=0
o .1] o
W =)
0 1
Y s
0 1
b ¥ h J=3 h
ltem: b
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,..,n

e forx=1,..W:
Example ot 21
* K[x,j] = K[x, j-1]
o ifw, = x:
© KDojl = max{K[x,j],
K[x—w; j-1] +v; }

x=0 x=1 x=2 x=3

: 0 0 0 0 * return K[\W,n]
j=0
0 1 1
W o | wa
0 1
, S
0 1
-, = -
ltem: b
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example Forit 1
* K[x,j] = K[x, j-1]
o ifw, = x:
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,]l,
K[x—w; j-1] +v; }

0 0 0 0 e return K[W,n]

ltem: b
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,..,n

e forx=1,..W:
Example ot 21
* K[x,j] = K[x, j-1]
o ifw, = x:
© KDojl = max{K[x,j],
K[x—w; j-1] +v; }

x=0 x=1 x=2 x=3

: 0 0 0 0 * return K[\W,n]
j=0
0 1 1
W = o | wa
0 1 4
v - .
0 1
-, = b
ltem: b
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example Forit 1
* K[x,j] = K[x, j-1]
o ifw, = x:
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,]l,
K[x—w; j-1] +v; }

0 0 0 0 e return K[W,n]

ltem: b
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Example ot 21y

¢ K[XIJ] = K[XI J_l]

o ifw, = x:
=0 x=1 x=2 x=3 © Klx,j] = max{ K[x,]l,
K[x—w; j-1] +v; }
: 0 0 0 0 * return K[\W,n]
j=0
_ 0 1 1 0
W = o | wa
0 1 4
v W Wl
0 1 4
b ¥ h J=3 h &
ltem: b
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example Forit 1
* K[x,j] = K[x, j-1]
o ifw, = x:
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,]l,
K[x—w; j-1] +v; }

0 0 0 0 e return K[W,n]

ltem: b
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example Forit 1
* K[x,j] = K[x, j-1]
o ifw, = x:
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,]l,
K[x—w; j-1] +v; }

0 0 0 0 e return K[W,n]

¥-|¥-

}
- |¥-
SNEN "N

ltem: b
current relevant Weight: 1 2 3 S e
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Example ot 21y

¢ K[XIJ] = K[XI J_l]

o ifw, = x:
x=0 x=1 = x=2 = x=3 © Kx,) = max{ Kix,J]
K[x—w; j-1] +v; }
: 0 0 0 0 * return K[\W,n]
j=0
_ 0 1 1 1
W o e
0 1 4 5
e h J=2 h ¢ -
0 1 4
b/ ks h J=3 h (&

ltem: b
current relevant Weight: 1 2 3 L
entry previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example Forit 1
* K[x,j] = K[x, j-1]
o ifw, = x:
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,]l,
K[x—w; j-1] +v; }

0 0 0 0 e return K[W,n]

;
-5 ¥

ltem:
current relevant Weight: S e
entry previous entry Value: Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Example ot 21y

¢ K[XIJ] = K[XI J_l]

o ifw, = x:
=0 x=1 x=2 x=3 © Klx,j] = max{ K[x,]l,
K[x—w; j-1] +v; }
: 0 0 0 0 * return K[\W,n]
j=0
0
W =
0
L E e
0
», = "
current relevant
entry previous entry Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example Forit 1
* K[x,j] = K[x, j-1]
o ifw, = x:
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,]l,
K[x—w; j-1] +v; }

0 0 0 0 e return K[W,n]

So the optimal solution is to
put one watermelon in your
knapsack!

ltem:
current relevant Weight:
entry previous entry Value: Capacity: 3

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. {
 Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable

person. You do this one!
(We did it on the slide in the previous
example, just not in the pseudocode!)?3

What have we learned?

* We can solve 0/1 knapsack in time O(nW).
* If there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a two-dimensional table, creating smaller
problems by restricting the set of allowable items.

94

Question

e How did we know which substructure to use in
which variant of knapsack?

Answer in retrospect:

This one made sense for
unbounded knapsack
because it doesn’t have
any memory of what
items have been used.

In 0/1 knapsack, we
can only use each item
once, so it makes sense

to leave out one item
at a time.

Operational Answer: try some stuff, see what works! 95

Example 3: Independent Set

if we still have time

An independent set
is a set of vertices
so that no pair has
an edge between
them.

* Given a graph with
weights on the
vertices...

* What is the
independent set with

g the largest wei§6ht?

Actually, this problem is NP-

complete.
So, we are unlikely to find an efficient algorithm.
e But if we also assume that the graph is a tree...

Atreeisa
connected
graph with no
cycles.

Problem:

find a maximal independent set in a tree (with vertex weights)’

G

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution

* Step 3: Use dynamic programming to find the value
of the optimal solution

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

98

Optimal substructure

e Subtrees are a natural candidate.
e There are two cases: ‘

1. The root of this tree is not in a

maximal independent set.

(U
A

99

Case 1:

the root is not in a maximal independent set

* Use the optimal solution ‘
from these smaller problemes.

{ \
, \ 3 \
R4 1 i “
p \ 1
’ \ | \
Y \ 1 \
/7 \ \
1
/ \ \
’ v |l \
V4 \ 1
/ 1 \
[\ I \
] ' 1
] 1 \
I 1 I \
| 11 \
| 1 1
1 1] i
\] I 1
‘\ / 1 !
_/ !
\\\ ---------------- \\ 100 '

Case 2:

the root is in an maximal independent set

 Then its children can’t be.

* Below that, use the optimal
solution from these smaller
subproblems.

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

102

Recursive formulation: try 1

* Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

e Alu] =

ZvEu.ChildI’en Alv]

max

weight(u) + ZvEu.grandchildren

When we implement this, how do
we keep track of this term?

C

Recursive formulation: try 2

Keep two arrays!

* Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

* Let B[u] =), Alv]

veu.children

ZvEu.Childl‘en Alv]
* Alu] = max

weight(w) + 2 children

e — -

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.
* Step 2: Find a for the value of

the optimal solution. ,

* Step 3: Use dynamic programming to find the value
of the optimal solution.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

105

A top-down DP algorithm

e MIS_subtree(u): ity
o if uis a leaf: tat Weeg/.oba/ rr,
. the , "l yse . VsS4 g
* Afu] = weight(u) rec"fs/'ve in all o
 Bu]=0 Calls.
* else:
e for vin u.children:
e MIS_subtree(v)
o Alu] = max{ 2 ew children ALV] , weight(u) + }

Running time?

e V| |S(T) * We visit each vertex once, and for
every vertex we do O(1) work:
* MIS_subtree(T.root) « Make a recursive call
e return A[T.FOOt] * Participate in summations of

parent node

* Running timeis O(|V|) e

Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

e MIS_subtree(u):

This js €Xactly the s

e ifuisa Ieaf:. Except We've gj. dme pseudocode
* return weight(u) 9T just caljj, Td the table 5y
n
* else: *tead of 100king o a1 Tee(V)
pA[V] Oor B[V]

* return max{), MIS_subtree(v),

veu.children

weight(u) + MIS_subtree(v) }

veugrandchildren

* MIS(T):
e return MIS_subtree(T.root)

107

Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

How often would we ask .
about the subtree rooted
here?

Once for this node
and once for

But we then ask . a

about this node

twice, and here. ‘ ‘

This will blow up exponentially
without using dynamic ‘ ‘
programming to take advantage ‘ ‘

of overlapping subproblems. 108

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. {
 Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable

person.
You do this one!
109

What have we learned?

* We can find maximal independent sets in trees in
time O(|V|) using dynamic programming!

* For this example, it was natural to implement our
DP algorithm in a top-down way.

Recap

* Today we saw examples of how to come up with
dynamic programming algorithms.
* Longest Common Subsequence
e Knapsack two ways
maximal independent set in trees.

* There is a recipe for dynamic programming
algorithms.

111

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

 Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

e Step 5: If needed, code this up like a reasonable
person.

112

/] C PROGRAMMING
LR S

Recap

mgifip.com

* Today we saw examples of how to come up with
dynamic programming algorithms.
* Longest Common Subsequence
e Knapsack two ways
maximal independent set in trees.

* There is a recipe for dynamic programming
algorithms.

 Sometimes coming up with the right substructure
takes some creativity
* Practice on homework! ©

* For even more practice check out additional
examples/practice problems in CLRS or section!

113

Next time

* Greedy algorithms!

Before next time

* Pre-lecture exercise: Greed is good!

114

	Slide 1: Lecture 13
	Slide 2: Last time
	Slide 3: Last time
	Slide 4: Today
	Slide 5: The goal of this lecture
	Slide 6: Longest Common Subsequence
	Slide 7: Longest Common Subsequence
	Slide 8: Longest Common Subsequence
	Slide 9: We sometimes want to find these
	Slide 10: Recipe for applying Dynamic Programming
	Slide 11: Step 1: Optimal substructure
	Slide 12: Recipe for applying Dynamic Programming
	Slide 13: Goal
	Slide 14: Two cases
	Slide 15: Two cases
	Slide 16: Recursive formulation of the optimal solution
	Slide 17: Recipe for applying Dynamic Programming
	Slide 18: LCS DP
	Slide 19: Example
	Slide 20: Example
	Slide 21: Recipe for applying Dynamic Programming
	Slide 22: Example
	Slide 23: Example
	Slide 24: Example
	Slide 25: Example
	Slide 26: Example
	Slide 27: Example
	Slide 28: Example
	Slide 29: Example
	Slide 30: Example
	Slide 31: Finding an LCS
	Slide 32: Recipe for applying Dynamic Programming
	Slide 33: Our approach actually isn’t so bad
	Slide 34: What have we learned?
	Slide 35: Example 2: Knapsack Problem
	Slide 36
	Slide 37: Some notation
	Slide 38: Recipe for applying Dynamic Programming
	Slide 39: Optimal substructure
	Slide 40: Optimal substructure
	Slide 41: Optimal substructure
	Slide 42: Recipe for applying Dynamic Programming
	Slide 43: Recursive relationship
	Slide 44: Recipe for applying Dynamic Programming
	Slide 45: Let’s write a bottom-up DP algorithm
	Slide 46: Can we do better?
	Slide 47: Recipe for applying Dynamic Programming
	Slide 48: Let’s write a bottom-up DP algorithm
	Slide 49: Let’s write a bottom-up DP algorithm
	Slide 50: Example
	Slide 51: Example
	Slide 52: Example
	Slide 53: Example
	Slide 54: Example
	Slide 55: Example
	Slide 56: Example
	Slide 57: Example
	Slide 58: Recipe for applying Dynamic Programming
	Slide 59: What have we learned?
	Slide 60
	Slide 61: Recipe for applying Dynamic Programming
	Slide 62: Optimal substructure: try 1
	Slide 63: This won’t quite work…
	Slide 64: Optimal substructure: try 2
	Slide 65: Our sub-problems:
	Slide 66: Relationship between sub-problems
	Slide 67: Two cases
	Slide 68: Two cases
	Slide 69: Two cases
	Slide 70: Two cases
	Slide 71: Two cases
	Slide 72: Recipe for applying Dynamic Programming
	Slide 73: Recursive relationship
	Slide 74: Recipe for applying Dynamic Programming
	Slide 75: Bottom-up DP algorithm
	Slide 76: Example
	Slide 77: Example
	Slide 78: Example
	Slide 79: Example
	Slide 80: Example
	Slide 81: Example
	Slide 82: Example
	Slide 83: Example
	Slide 84: Example
	Slide 85: Example
	Slide 86: Example
	Slide 87: Example
	Slide 88: Example
	Slide 89: Example
	Slide 90: Example
	Slide 91: Example
	Slide 92: Example
	Slide 93: Recipe for applying Dynamic Programming
	Slide 94: What have we learned?
	Slide 95: Question
	Slide 96: Example 3: Independent Set if we still have time
	Slide 97: Actually, this problem is NP-complete. So, we are unlikely to find an efficient algorithm.
	Slide 98: Recipe for applying Dynamic Programming
	Slide 99: Optimal substructure
	Slide 100: Case 1: the root is not in a maximal independent set
	Slide 101: Case 2: the root is in an maximal independent set
	Slide 102: Recipe for applying Dynamic Programming
	Slide 103: Recursive formulation: try 1
	Slide 104: Recursive formulation: try 2 Keep two arrays!
	Slide 105: Recipe for applying Dynamic Programming
	Slide 106: A top-down DP algorithm
	Slide 107: Why is this different from divide-and-conquer? That’s always worked for us with tree problems before…
	Slide 108
	Slide 109: Recipe for applying Dynamic Programming
	Slide 110: What have we learned?
	Slide 111: Recap
	Slide 112: Recipe for applying Dynamic Programming
	Slide 113: Recap
	Slide 114: Next time

