
Lecture 14
Greedy algorithms!

1

Announcements

• Homework 6 due today

• Homework 7 out later today

• Second EthiCS lecture this Friday (same place and
time as regular lectures)

2

Roadmap

Graphs!

Asymptotic
Analysis

Dynamic
Programming

Greedy
Algs

The
Future!

More detailed schedule on the website!

MIDTERM

3

This week

• Greedy algorithms!

4

Greedy algorithms

• Make choices one-at-a-time.

• Never look back.

• Hope for the best.

5

Today

• One example of a greedy algorithm that does not
work:
• Knapsack again

• Three examples of greedy algorithms that do work:
• Activity Selection

• Job Scheduling

• Huffman Coding (if time) You saw these on
your pre-lecture

exercise!

6

Non-example

• Unbounded Knapsack.

7

• Unbounded Knapsack:
• Suppose I have infinite copies of all items.

• What’s the most valuable way to fill the knapsack?

• “Greedy” algorithm for unbounded knapsack:
• Tacos have the best Value/Weight ratio!

• Keep grabbing tacos!

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 39

8

Example where greedy works
Activity selection

Frisbee Practice

Orchestra

CS161 study
group

Sleep

CS110
Class

Theory Lunch

Theory Seminar

Combinatorics
Seminar

Underwater basket
weaving class

Math 51 Class

CS 161 Class

CS 166 Class

CS 161
Section

CS 161 Office
Hours

Swimming
lessons

Programming
team meeting

Social activity

time

You can only do one activity at a time, and you want to
maximize the number of activities that you do.

What to choose?

9

Activity selection

• Input:
• Activities a1, a2, …, an

• Start times s1, s2, …, sn

• Finish times f1, f2, …, fn

• Output:
• A way to maximize the number of activities you can do

today.
In what order should you
greedily add activities?

ai

time
si fi

10

Greedy Algorithm

a3a1

a4

a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.

• Repeat.

14

Greedy Algorithm

a3a1

a4

a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.

• Repeat.

15

Greedy Algorithm

a3a1

a4

a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.

• Repeat.

16

Greedy Algorithm

a3a1

a4

a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.

• Repeat.

17

Greedy Algorithm

a3a1

a4

a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.

• Repeat.

18

Greedy Algorithm

a3a1

a4

a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.

• Repeat.

19

Greedy Algorithm

a3a1

a4

a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.

• Repeat.

20

Greedy Algorithm

a3a1

a4

a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.

• Repeat.

21

At least it’s fast

• Running time:
• O(n) if the activities are already sorted by finish time.

• Otherwise, O(n log(n)) if you have to sort them first.

22

What makes it greedy?

• At each step in the algorithm, make a choice.
• Hey, I can increase my activity set by one,

• And leave lots of room for future choices,

• Let’s do that and hope for the best!!!

• Hope that at the end of the day, this results in a
globally optimal solution.

23

Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When the problem exhibits especially nice optimal

substructure.

3. The “greedy” approach is often the first you’d think of…
• Why are we getting to it now, in Week 8?

• Proving that greedy algorithms work is often not so easy…

(We will see why in a moment…)

24

Back to Activity Selection

a3a1

a4

a2

a5

a7

a6

time

• Pick activity you can add with the smallest finish time.

• Repeat.

25

Why does it work?

• Whenever we make a choice, we don’t rule out an
optimal solution.

a3a1

a4

a2

a5

a7

a6

time

a5
a3

a7

There’s some optimal solution that
contains our next choice

Our next
choice would
be this one:

26

Assuming that statement…

• We never rule out an optimal solution

• At the end of the algorithm, we’ve got some solution.

• So it must be optimal.

Lucky the Lackadaisical Lemur
27

We never rule out an optimal solution

• Suppose we’ve already chosen ai, and there is still
an optimal solution T* that extends our choices.

ai

a2

a7

a6

time

aj

ak

a3

28

We never rule out an optimal solution

• Suppose we’ve already chosen ai, and there is still
an optimal solution T* that extends our choices.

• Now consider the next choice we make, say it’s ak.

• If ak is in T*, we’re still on track.

ai

a2

a7

a6

time

aj

ak

a3

Greedy algorithm
would choose this one.

29

We never rule out an optimal solution

• Suppose we’ve already chosen ai, and there is still
an optimal solution T* that extends our choices.

• Now consider the next choice we make, say it’s ak.

• If ak is not in T*…

ai

a2

a7

a6

time

aj

ak

a3

Greedy algorithm
would choose this one.

30

We never rule out an optimal solution

• If ak is not in T*…

• Let aj be the activity in T* with the smallest end time.

• Now consider schedule T you get by swapping aj for ak

ai

a2

a7

a6

time

aj

ak

a3

Greedy algorithm
would choose this one.

ctd.

Consider this one.

31

We never rule out an optimal solution

• If ak is not in T*…

• Let aj be the activity in T* (after ai ends) with the
smallest end time.

• Now consider schedule T you get by swapping aj for ak

ai

a2

a7

a6

time

aj

ak

a3

ctd.

SWAP!

32

We never rule out an optimal solution

• This schedule T is still allowed.
• Since ak has the smallest ending time, it ends before aj.

• Thus, ak doesn’t conflict with anything chosen after aj.

• And T is still optimal.
• It has the same number of activities as T*.

ai

a2

a7

a6

time

aj

ak

a3

ctd.

SWAP!

33

We never rule out an optimal solution

• We’ve just shown:
• If there was an optimal solution that extends the choices

we made so far…

• …then there is an optimal schedule that also contains our
next greedy choice ak.

ai

a2

a7

a6

time

aj

ak

a3

ctd.

34

So the algorithm is correct

• We never rule out an optimal solution

• At the end of the algorithm, we’ve got some solution.

• So it must be optimal.

Lucky the Lackadaisical Lemur
35

So the algorithm is correct

• Inductive Hypothesis:
• After adding the t-th thing, there is an optimal solution that

extends the current solution.

• Base case:
• After adding zero activities, there is an optimal solution

extending that.

• Inductive step:
• We just did that!

• Conclusion:
• After adding the last activity, there is an optimal solution that

extends the current solution.
• The current solution is the only solution that extends the

current solution.
• So the current solution is optimal.

Plucky the Pedantic Penguin

36

Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When the problem exhibits especially nice optimal

substructure.

3. The “greedy” approach is often the first you’d think of…
• Why are we getting to it now, in Week 8?

• Proving that greedy algorithms work is often not so easy…

37

One Common strategy
for greedy algorithms

• Make a series of choices.

• Show that, at each step, our choice won’t rule out
an optimal solution at the end of the day.

• After we’ve made all our choices, we haven’t ruled
out an optimal solution, so we must have found
one.

38

One Common strategy (formally)
for greedy algorithms

• Inductive Hypothesis:
• After greedy choice t, you haven’t ruled out success.

• Base case:
• Success is possible before you make any choices.

• Inductive step:
• If you haven’t ruled out success after choice t, then you

won’t rule out success after choice t+1.

• Conclusion:
• If you reach the end of the algorithm and haven’t ruled

out success then you must have succeeded.

“Success” here means
“finding an optimal solution.”

39

One Common strategy
for showing we don’t rule out success

• Suppose that you’re on track to make an optimal
solution T*.
• E.g., after you’ve picked activity i, you’re still on track.

• Suppose that T* disagrees with your next greedy
choice.
• E.g., it doesn’t involve activity k.

• Manipulate T* in order to make a solution T that’s
not worse but that agrees with your greedy choice.
• E.g., swap whatever activity T* did pick next with activity

k.

40

Note on “Common Strategy”

• This common strategy is not the only way to prove
that greedy algorithms are correct!

• I’m emphasizing it in lecture because it often
works, and it gives you a framework to get started.

41

Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When the problem exhibits especially nice optimal

substructure.

3. The “greedy” approach is often the first you’d think of…
• Why are we getting to it now, in Week 8?

• Proving that greedy algorithms work is often not so easy…

42

Optimal sub-structure
in greedy algorithms

• Our greedy activity selection algorithm exploited a natural
sub-problem structure:

A[i] = number of activities you can do after the end of activity i

• How does this substructure relate to that of divide-and-
conquer or DP?

ai

a2

a7

a6

time

aj

ak a3

A[i] = solution to
this sub-problem

43

Sub-problem graph view

• Divide-and-conquer:

Big problem

sub-problemsub-problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

44

Sub-problem graph view

• Dynamic Programming:

Big problem

sub-problemsub-problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-problem

45

Sub-problem graph view

• Greedy algorithms:

Big problem

sub-sub-
problem

sub-problem

46

Sub-problem graph view

• Greedy algorithms:

Big problem

sub-sub-
problem

sub-problem

• Not only is there optimal sub-structure:
• optimal solutions to a problem are made up

from optimal solutions of sub-problems

• but each problem depends on only one
sub-problem.

Ollie the Over-achieving Ostrich

Write a DP version of activity selection
(where you fill in a table)! [See hidden

slides in the .pptx file for one way]

47

Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When they exhibit especially nice optimal substructure.

3. The “greedy” approach is often the first you’d think of…
• Why are we getting to it now, in Week 8?

• Proving that greedy algorithms work is often not so easy.

62

Let’s see a few more examples

63

Another example:

Scheduling
CS161 HW

Personal hygiene

Math HW

Econ HW

Practice musical instrument

Read lecture notes

Have a social life

Sleep

Administrative stuff for student club

Do laundry

Meditate

64

Scheduling
• n tasks

• Task i takes ti hours

• For every hour that passes until task i is done, pay ci

• CS161 HW, then Sleep: costs 10 ⋅ 2 + (10 + 8) ⋅ 3 = 74 units

• Sleep, then CS161 HW: costs 8 ⋅ 3 + (10 + 8) ⋅ 2 = 60 units

CS161 HW

Sleep

10 hours

8 hours

Cost: 2 units per
hour until it’s done.

Cost: 3 units per
hour until it’s done.

65

Optimal substructure

• This problem breaks up nicely into sub-problems:

Job A Job B Job C Job D

Suppose this is the optimal schedule:

Then this must be the optimal
schedule on just jobs B,C,D.

Why?

66

Optimal substructure

• This problem breaks up nicely into sub-problems:

Job A Job B Job C Job D

Suppose this is the optimal schedule:

Then this must be the optimal
schedule on just jobs B,C,D.

If not, then rearranging B,C,D
could make a better schedule

than (A,B,C,D)!

Optimal substructure

• Seems amenable to a greedy algorithm:

Job A Job B Job C Job D

Take the best job first Then solve this problem

Job BJob C Job D

Take the best job first Then solve this problem

Job BJob D

Take the best job first

(That one’s easy ☺)

Then solve this problem

68

What does “best”
mean?

• Of these two jobs, which should we do first?

• Cost(A then B) = x ⋅ z + (x + y) ⋅ w

• Cost(B then A) = y ⋅ w + (x + y) ⋅ z

Job A

Job B

x hours

y hours

Cost: z units per
hour until it’s done.

Cost: w units per
hour until it’s done.

AB is better than BA when:
𝑥𝑧 + 𝑥 + 𝑦 𝑤 ≤ 𝑦𝑤 + 𝑥 + 𝑦 𝑧
𝑥𝑧 + 𝑥𝑤 + 𝑦𝑤 ≤ 𝑦𝑤 + 𝑥𝑧 + 𝑦𝑧

𝑤𝑥 ≤ 𝑦𝑧
𝑤

𝑦
≤

𝑧

𝑥

What matters is the ratio:

cost of delay

time it takes

“Best” means
biggest ratio.69

Note: here we are defining x, y, z, and w. (We use ci and ti for these in
the general problem, but we are changing notation for just this thought
experiment to save on subscripts.)

Idea for greedy algorithm

• Choose the job with the biggest
cost of delay
time it takes

 ratio.

70

Lemma
This greedy choice doesn’t rule out success

• Suppose you have already chosen some jobs, and haven’t yet
ruled out success:

• Then if you choose the next job to be the one left that maximizes
the ratio cost/time, you still won’t rule out success.

• Proof sketch:
• Say Job B maximizes this ratio, but it’s not the next job in the opt. soln.

Job A Job BJob C Job DJob E

Already
chosen E

There’s some way to order
A, B,C, D that’s optimal…

Say greedy chooses job B

How can we manipulate the optimal solution
above to make an optimal solution where B is

the next job we choose after E?
1 minute think; (wait) 1 minute share

71

Lemma
This greedy choice doesn’t rule out success

• Suppose you have already chosen some jobs, and haven’t yet
ruled out success:

• Then if you choose the next job to be the one left that maximizes
the ratio cost/time, you still won’t rule out success.

• Proof sketch:
• Say Job B maximizes this ratio, but it’s not the next job in the opt. soln.

• Switch A and B! Nothing else will change, and we just showed that the
cost of the solution won’t increase.

• Repeat until B is first.

• Now this is an optimal schedule where B is first.

Job AJob BJob C Job D

Job AJob B Job C Job D

Job E

Job E

Job A Job BJob C Job DJob E

Already
chosen E

There’s some way to order
A, B,C, D that’s optimal…

Say greedy chooses job B

72

Back to our framework for proving
correctness of greedy algorithms

• Inductive Hypothesis:
• After greedy choice t, you haven’t ruled out success.

• Base case:
• Success is possible before you make any choices.

• Inductive step:
• If you haven’t ruled out success after choice t, then

you won’t rule out success after choice t+1.

• Conclusion:
• If you reach the end of the algorithm and haven’t

ruled out success then you must have succeeded.

73

Fill in the details!

Just did the
inductive step!

Greedy Scheduling Solution

• scheduleJobs(JOBS):
• Sort JOBS in decreasing order by the ratio:

• 𝒓𝒊 =
𝒄𝒊

𝒕𝒊
=

cost of delaying job i

time job i takes to complete

• Return JOBS

Running time: O(n log(n))

Now you can go about your schedule
peacefully, in the optimal way.74

What have we learned?

• A greedy algorithm works for scheduling

• This followed the same outline as the previous example:
• Identify optimal substructure:

• Find a way to make choices that won’t rule out an optimal
solution.
• largest cost/time ratios first.

Job A Job B Job C Job D

76

One more example
Huffman coding

• everyday english sentence
• 01100101 01110110 01100101 01110010 01111001 01100100 01100001

01111001 00100000 01100101 01101110 01100111 01101100 01101001
01110011 01101000 00100000 01110011 01100101 01101110 01110100
01100101 01101110 01100011 01100101

• qwertyui_opasdfg+hjklzxcv
• 01110001 01110111 01100101 01110010 01110100 01111001 01110101

01101001 01011111 01101111 01110000 01100001 01110011 01100100
01100110 01100111 00101011 01101000 01101010 01101011 01101100
01111010 01111000 01100011 01110110

77

One more example
Huffman coding

• everyday english sentence
• 01100101 01110110 01100101 01110010 01111001 01100100 01100001

01111001 00100000 01100101 01101110 01100111 01101100 01101001
01110011 01101000 00100000 01110011 01100101 01101110 01110100
01100101 01101110 01100011 01100101

• qwertyui_opasdfg+hjklzxcv
• 01110001 01110111 01100101 01110010 01110100 01111001 01110101

01101001 01011111 01101111 01110000 01100001 01110011 01100100
01100110 01100111 00101011 01101000 01101010 01101011 01101100
01111010 01111000 01100011 01110110

ASCII is pretty wasteful for
English sentences. If e shows
up so often, we should have a
shorter way of representing it!

78

Suppose we have some
distribution on characters

79

Suppose we have some
distribution on characters

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

For simplicity,
let’s go with this

made-up example

How to encode them as
efficiently as possible?

80

Try 0
(like ASCII)

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

000 011001 010 100 101

• Every letter is assigned a binary string
of three bits.

Wasteful!
• 110 and 111 are never used.
• We should have a shorter way of

representing A.

81

Try 1

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

0 100 01 10 11

• Every letter is assigned a binary string
of one or two bits.

• The more frequent letters get the
shorter strings.

• Problem:
• Does 000 mean AAA or BA or AB?

82

Try 2: prefix-free coding

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

01 00101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101

Confusingly, “prefix-free codes” are also sometimes
called “prefix codes” (e.g. in CLRS).

83

Try 2: prefix-free coding

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

01 00101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101 F

Confusingly, “prefix-free codes” are also sometimes
called “prefix codes” (including in CLRS).

84

Try 2: prefix-free coding

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

01 00101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101 FB

Confusingly, “prefix-free codes” are also sometimes
called “prefix codes” (including in CLRS).

85

Try 2: prefix-free coding

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

01 00101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101 FBA

Question: What is the most efficient
way to do prefix-free coding?

That is, how can we use as few bits
as possible in expectation?

Confusingly, “prefix-free codes” are also sometimes
called “prefix codes” (including in CLRS).

86

(This is not it).

A prefix-free code is a tree

D: 16 A: 45

B:13F:5 C:12 E:9

0

0 0

0 0 1

1

1

1

1

00 01

100 101 110 111

As long as all the letters
show up as leaves, this

code is prefix-free.

B:13 below means that ‘B’
makes up 13% of the

characters that ever appear.

87

How good is a tree?

D: 16 A: 45

B:13F:5 C:12 E:9

0

0 0

0 0 1

1

1

1

1

00 01

100 101 110 111

• Imagine choosing a letter at random from the language.
• Not uniformly random, but according to our histogram!

• The cost of a tree is the expected length of the encoding of a random letter.

Expected cost of encoding a letter with this tree:
𝟐 𝟎. 𝟒𝟓 + 𝟎. 𝟏𝟔 + 𝟑 𝟎. 𝟎𝟓 + 𝟎. 𝟏𝟑 + 𝟎. 𝟏𝟐 + 𝟎. 𝟎𝟗 = 𝟐. 𝟑𝟗

Cost =

 ෍

𝑙𝑒𝑎𝑣𝑒𝑠 𝑥

 𝑃 𝑥 ⋅ depth(𝑥)

P(x) is the
probability
of letter x

The depth in the
tree is the length
of the encoding

88

Question

• Given a distribution P on letters, find the lowest-
cost tree, where

cost(tree) = ෍

leaves 𝑥

𝑃 𝑥 ⋅ depth(𝑥)
P(x) is the
probability
of letter x

The depth in the
tree is the length
of the encoding

89

Greedy algorithm

• Greedily build sub-trees from the bottom up.

• Greedy goal: less frequent letters should be further
down the tree.

90

Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

91

Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

92

Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

30

1

0

93

Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

30

1

0

55
1

0

94

Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

30

1

0

55
1

0

100
1

0

95

Solution
greedily build subtrees, starting with the infrequent letters

D: 16

A: 45

B:13

F:5

C:12

E:9

14

0 1

25

0 1

30

10

55
10

100

10

0

100 101 110

1110 1111

Expected cost of encoding a letter:
𝟏 ⋅ 𝟎. 𝟒𝟓

+
𝟑 ⋅ 𝟎. 𝟒𝟏

+
𝟒 ⋅ 𝟎. 𝟏𝟒

= 𝟐. 𝟐𝟒

96

What exactly was the algorithm?

• Create a node like for each letter/frequency
• The key is the frequency (16 in this case)

• Let CURRENT be the list of all these nodes.

• while len(CURRENT) > 1:
• X and Y ← the nodes in CURRENT with the smallest keys.

• Create a new node Z with Z.key = X.key + Y.key

• Set Z.left = X, Z.right = Y

• Add Z to CURRENT and remove X and Y

• return CURRENT[0]

D: 16

F:5 E:9

14

0 1

Y

Z

X
D: 16 A: 45 B:13 C:12

97

This is called Huffman Coding:

• Create a node like for each letter/frequency
• The key is the frequency (16 in this case)

• Let CURRENT be the list of all these nodes.

• while len(CURRENT) > 1:
• X and Y ← the nodes in CURRENT with the smallest keys.

• Create a new node Z with Z.key = X.key + Y.key

• Set Z.left = X, Z.right = Y

• Add Z to CURRENT and remove X and Y

• return CURRENT[0]

D: 16

F:5 E:9

14

0 1

Y

Z

X
D: 16 A: 45 B:13 C:12

98

Does it work?
• Yes.

• We will sketch a proof here.

• Same strategy:
• Show that at each step, the choices we are making

won’t rule out an optimal solution.

• Lemma:
• Suppose that x and y are the two least-frequent letters. Then

there is an optimal tree where x and y are siblings.

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

99

Lemma
proof idea

• Say that an optimal tree looks like this:

• What happens to the cost if we swap x for a?
• the cost can’t increase; a was more frequent than x, and we

just made a’s encoding shorter and x’s longer.

• Repeat this logic until we get an optimal tree with x and
y as siblings.
• The cost never increased so this tree is still optimal.

If x and y are the two least-frequent letters, there
is an optimal tree where x and y are siblings.

x

a

Lowest-level sibling
nodes: at least one of
them is neither x nor y

100

Lemma
proof idea

• Say that an optimal tree looks like this:

• What happens to the cost if we swap x for a?
• the cost can’t increase; a was more frequent than x, and we

just made a’s encoding shorter and x’s longer.

• Repeat this logic until we get an optimal tree with x and
y as siblings.
• The cost never increased so this tree is still optimal.

x y

Lowest-level sibling
nodes: at least one of
them is neither x nor y

If x and y are the two least-frequent letters, there
is an optimal tree where x and y are siblings.

101

Huffman Coding Works (idea)
• Show that at each step, the choices we are making

won’t rule out an optimal solution.

• Lemma:
• Suppose that x and y are the two least-frequent letters.

Then there is an optimal tree where x and y are siblings.

• That’s enough to show that we don’t rule out
optimality on the first step.

D: 16 A: 45 B:13 F:5C:12 E:9

0 1

14

102

Huffman Coding Works (idea)
• Show that at each step, the choices we are making

won’t rule out an optimal solution.

• Lemma:
• Suppose that x and y are the two least-frequent letters.

Then there is an optimal tree where x and y are siblings.

• That’s enough to show that we don’t rule out
optimality on the first step.

• To show that continue to not rule out optimality
once we start grouping stuff…

D: 16 A: 45 B:13 F:5C:12 E:9

0 1

25

0
1

1

0
14

30

103

Huffman Coding Works (idea)
• To show that continue to not rule out optimality

once we start grouping stuff…

• The basic idea is that we can treat the “groups” as
leaves in a new alphabet.

D: 16 A: 45 B:13 F:5C:12 E:9

0 1

25

0
1

1

0
14

30

104

Huffman Coding Works (idea)
• To show that continue to not rule out optimality

once we start grouping stuff…

• The basic idea is that we can treat the “groups” as
leaves in a new alphabet.

• Then we can use the lemma from before.

D: 16 A: 45 B:13 F:5C:12 E:9

0 1

25

0
1

1

0
14

30

105

DEF:30

BC:25

• See lecture notes or CLRS!

For a full proof

What have we learned?

• ASCII isn’t an optimal way* to encode English, since
the distribution on letters isn’t uniform.

• Huffman Coding is an optimal way!

• To come up with an optimal scheme for any
language efficiently, we can use a greedy algorithm.

• To come up with a greedy algorithm:
• Identify optimal substructure

• Find a way to make choices that won’t rule out an
optimal solution.
• Create subtrees out of the smallest two current subtrees.

*If all we care about is
number of bits.

108

Recap I

• Greedy algorithms!

• Three examples:
• Activity Selection

• Scheduling Jobs

• Huffman Coding
• If we had time

109

Recap II

• Greedy algorithms!

• Often easy to write down
• But may be hard to come up with and hard to justify

• The natural greedy algorithm may not always be
correct.

• A problem is a good candidate for a greedy
algorithm if:
• it has optimal substructure

• that optimal substructure is REALLY NICE
• solutions depend on just one other sub-problem.

110

Next time

• Greedy algorithms for Minimum Spanning Tree!

• Pre-lecture exercise: thinking about MSTs

Before next time

111

	Slide 1: Lecture 14
	Slide 2: Announcements
	Slide 3: Roadmap
	Slide 4: This week
	Slide 5: Greedy algorithms
	Slide 6: Today
	Slide 7: Non-example
	Slide 8
	Slide 9: Example where greedy works Activity selection
	Slide 10: Activity selection
	Slide 14: Greedy Algorithm
	Slide 15: Greedy Algorithm
	Slide 16: Greedy Algorithm
	Slide 17: Greedy Algorithm
	Slide 18: Greedy Algorithm
	Slide 19: Greedy Algorithm
	Slide 20: Greedy Algorithm
	Slide 21: Greedy Algorithm
	Slide 22: At least it’s fast
	Slide 23: What makes it greedy?
	Slide 24: Three Questions
	Slide 25: Back to Activity Selection
	Slide 26: Why does it work?
	Slide 27: Assuming that statement…
	Slide 28: We never rule out an optimal solution
	Slide 29: We never rule out an optimal solution
	Slide 30: We never rule out an optimal solution
	Slide 31: We never rule out an optimal solution
	Slide 32: We never rule out an optimal solution
	Slide 33: We never rule out an optimal solution
	Slide 34: We never rule out an optimal solution
	Slide 35: So the algorithm is correct
	Slide 36: So the algorithm is correct
	Slide 37: Three Questions
	Slide 38: One Common strategy for greedy algorithms
	Slide 39: One Common strategy (formally) for greedy algorithms
	Slide 40: One Common strategy for showing we don’t rule out success
	Slide 41: Note on “Common Strategy”
	Slide 42: Three Questions
	Slide 43: Optimal sub-structure in greedy algorithms
	Slide 44: Sub-problem graph view
	Slide 45: Sub-problem graph view
	Slide 46: Sub-problem graph view
	Slide 47: Sub-problem graph view
	Slide 62: Three Questions
	Slide 63: Let’s see a few more examples
	Slide 64: Another example: Scheduling
	Slide 65: Scheduling
	Slide 66: Optimal substructure
	Slide 67: Optimal substructure
	Slide 68: Optimal substructure
	Slide 69: What does “best” mean?
	Slide 70: Idea for greedy algorithm
	Slide 71: Lemma This greedy choice doesn’t rule out success
	Slide 72: Lemma This greedy choice doesn’t rule out success
	Slide 73: Back to our framework for proving correctness of greedy algorithms
	Slide 74: Greedy Scheduling Solution
	Slide 76: What have we learned?
	Slide 77: One more example Huffman coding
	Slide 78: One more example Huffman coding
	Slide 79: Suppose we have some distribution on characters
	Slide 80: Suppose we have some distribution on characters
	Slide 81: Try 0 (like ASCII)
	Slide 82: Try 1
	Slide 83: Try 2: prefix-free coding
	Slide 84: Try 2: prefix-free coding
	Slide 85: Try 2: prefix-free coding
	Slide 86: Try 2: prefix-free coding
	Slide 87: A prefix-free code is a tree
	Slide 88: How good is a tree?
	Slide 89: Question
	Slide 90: Greedy algorithm
	Slide 91: Solution greedily build subtrees, starting with the infrequent letters
	Slide 92: Solution greedily build subtrees, starting with the infrequent letters
	Slide 93: Solution greedily build subtrees, starting with the infrequent letters
	Slide 94: Solution greedily build subtrees, starting with the infrequent letters
	Slide 95: Solution greedily build subtrees, starting with the infrequent letters
	Slide 96: Solution greedily build subtrees, starting with the infrequent letters
	Slide 97: What exactly was the algorithm?
	Slide 98: This is called Huffman Coding:
	Slide 99: Does it work?
	Slide 100: Lemma proof idea
	Slide 101: Lemma proof idea
	Slide 102: Huffman Coding Works (idea)
	Slide 103: Huffman Coding Works (idea)
	Slide 104: Huffman Coding Works (idea)
	Slide 105: Huffman Coding Works (idea)
	Slide 107: For a full proof
	Slide 108: What have we learned?
	Slide 109: Recap I
	Slide 110: Recap II
	Slide 111: Next time

