
Lecture 17
Gale-Shapley (Deferred Acceptance) Algorithm

1

Announcements

• This week’s lectures (including this one) are NOT on
the final exam.

2

Recap: One way to greedy algorithms

• Greedy algorithms
• Make a series of choices.

• Choose this activity, then that one, ..

• Never backtrack.

• Show (or hope) that your choice never rules out success.
• At every step, there exists an optimal solution consistent with the

choices we’ve made so far.

• At the end of the day:
• you’ve built only one solution,

• never having ruled out success,

• so your solution must be correct.

3

4

• Greedy algorithms
• Make a series of choices.

• Choose this activity, then that one, ..

• Never backtrack.

• Instead: At each step, free to revert any of the choices we’ve
already made – as long as the solution is improving!

Recap: A different approach to greedy

ts

4

2

6

3

6

3

3

10

4

4

4

2

2

6

6

4

3

1

3

43

4

5

5

1

2

The value of a max flow from s to t
is equal to

the cost of a min s-t cut.

USA: s-t Min-Cut
USSR: s-t Max-Flow

Recap: Ford-Fulkerson algorithm
for s-t min-cut / max-flow

Stanford Students Stanford Swag

ts

1

1

1

1

1

1

1

1

1

1

1

1

Recap: used s-t max-flow
to solve assignment problems

Stanford Students Stanford Swag

ts

1

1

1

1

1

1

1

1

1

1

1

1

Today: matching when both sides
have preferences I want a CS161

CA to wear me!

Today

• Hospitals/residents problem

• Stable matchings
• Solve the hospitals/residents problem

• But can we find them?

• Deferred Acceptance Algorithm
• Find stable matchings!

• Discussion, applications and non-applications

The hospital residency problem

• After completing medical school, students are
finally ready to start their “residency” (similar to
job internship)

• Each doctor has a preference over different
hospitals.

• Each hospital has a preference over the doctors.

How should you match doctors with hospitals?

9

Simplifying assumption today:
Each hospital has 1 slot

One way to model this problem
• Each doctor has a preference over hospitals

• Each hospital has a preference over the doctor

How should you match doctors with hospitals?

10
n n

9

7

1
2

9

2

9
8

4

This slide just for intuition!

9

7

1
2

9

2

9
8

4

One way to model this problem
• Bipartite graph between doctors and hospitals

• Weights on edges = some function of preferences
 (highest weight = most preferred)

11
n n

This slide just for intuition!

9

7

1
2

9

2

9
8

4

One way to model this problem
• Bipartite graph between doctors and hospitals

• Weights on edges = some function of preferences

“Hungarian Algorithm” (CS261) finds a max weight matching

12
n n

This slide just for intuition:
You don’t need to know Hungarian Algorithm!

9

7

1
2

9

2

9
8

4

One way to model this problem
• Bipartite graph between doctors and hospitals

• Weights on edges = some function of preferences

“Hungarian Algorithm” (CS261) finds a max weight matching

13
n n

This slide just for intuition:
You don’t need to know Hungarian Algorithm!

14

“Each hospital/doctor has a list of preferences”

Missing step:
How does the algorithm get the preferences?

9

7

1
2

9

2

9
8

4

Where does your input come from?
… and what can go wrong if we don’t think about it carefully:

1. Some doctors may misreport their preferences

15
n n

−∞

−∞

9

7

1
2

9

2

9
8

4

Where does your input come from?
… and what can go wrong if we don’t think about it carefully:

1. Some doctors may misreport their preferences

2. Some doc+hospital may match outside your algorithm

16
n n

−∞

−∞

Today

• Hospitals/residents problem

• Stable matchings
• Solve the hospitals/residents problem

• But can we find them?

• Deferred Acceptance Algorithm
• Find stable matchings!

• Discussion, applications and non-applications

Stable Matching

18
n n

Stable Matching
Definition (blocking pair):

Given Matching M, (Doctor i, Hospital j) are a blocking pair
if they prefer each other to their assignment in M

19
n n

Stanford
wants

Doctor n

n really
wants

Stanford

Stable Matching

20
n n

Definition (blocking pair):

Given Matching M, (Doctor i, Hospital j) are a blocking pair
if they prefer each other to their assignment in M

Definition (stable matching):

M is a stable matching if there are no blocking pairs.

Stable Matching

21

Definition (blocking pair):

Given Matching M, (Doctor i, Hospital j) are a blocking pair
if they prefer each other to their assignment in M

Definition (stable matching):

M is a stable matching if there are no blocking pairs.

For every unmatched pair (i, j):

• Doctor i prefers Hospital M(i) over Hospital j, or;

• Hospital j prefers Doctor M(j) over Doctor i

eq
u

ivalen
t

7

9

2

Unstable Matching and incentives

22
n n

−∞

−∞

Problems we identified with unstable matchings:

1. Some doctors may misreport their preferences

2. Some doc+hospital may match outside your algorithm

7

9

2

Stable Matching and incentives

23
n

−∞

−∞

Not obvious!
We’ll come back

to this later (if time)

With stable matching:

1. Will doctors misreport their preferences?

Stable Matching and incentives

n

This is the point of stable matching:
Only a blocking pair would prefer to match outside.

Stable matching = no blocking pairs!

With stable matching:

• Doctor+hospital never prefer to match outside algorithm!

24

Stable Matching Problem

25

How to find stable matchings!
(do they even exist?)

25

Stable Matching Problem

26

Stable Matching Problem

Input: each doctor/hospital submits
 a ranking (permutation) of {1,…,n}

Output: a stable matching

Stanford’s
preferences

1st Alice

2nd n

… …

nth Bob

Alice’s preferences

1st Stanford

2nd n

… …

nth UCSF

Definition (blocking pair):

Given Matching M, (Doctor i, Hospital j) are a blocking pair
if they prefer each other to their assignment in M

Definition (stable matching):

M is a stable matching if there are no blocking pairs.

26

Naïve attempt #1

Greedy algorithm:

Step 1- match all the pairs (i, j) such that
 j is i’s top choice, and i is j’s top choice

Step 2- hopefully recurse on the rest somehow…

• Observation: Step 1 never rules out any solution ☺

27

27

Greedy attempt #2:

Step 1- try to match every doctor to her favorite hospital
• Break ties by hospital preference

Step 2- hopefully recurse on the rest somehow…

28

A slightly more ambitious attempt

28

Greedy attempt #2:

Step 1- try to match every doctor to her favorite hospital
• Break ties by hospital preference

We’re already wrong!

29

A

B

C

x

y

Doctor’s #1 choice

Doctor’s #2 choice

Hospital’s #1 choice

A slightly more ambitious attemptThink-pair-share!

Matching (C,y) was a bad idea…
How could we avoid it?

• Step 1: A,B want x, C wants y
 so we match (A,x) and (C,y)
• But now (B,y) is blocking!

29

Today

• Hospitals/residents problem

• Stable matchings
• Solve the hospitals/residents problem

• But can we find them?

• Deferred Acceptance Algorithm
• Find stable matchings!

• Discussion, applications and non-applications

30

Questions?

31

Definition (blocking pair):

Given Matching M, (Doctor i, Hospital j) are a blocking pair
if they prefer each other to their assignment in M

Definition (stable matching):

M is a stable matching if there are no blocking pairs.

For every unmatched pair (i,j):

• Doctor i prefers Hospital M(i) over Hospital j, or;

• Hospital j prefers Doctor M(j) over Doctor i

eq
u

ivalen
t

Deferred Acceptance Algorithm
[Gale Shapley ‘62] -> 2012 Nobel Prize* in Econ!

*- Joint w/ Al Roth from Stanford

32

33

A

B

C

x

y

Doctor’s #1 choice

Doctor’s #2 choice

Hospital’s #1 choice

Deferred Acceptance Algorithm

Main idea: try to match each doctor to top choice;

if you discover a blocking pair, just switch the matching!

The issue was:
A,B want x, C wants y
we tried to match (A,x) and (C,y)
but then (B,y) was blocking!

A

B

C

x

y

Doctor’s #1 choice

Doctor’s #2 choice

Hospital’s #1 choice

Deferred Acceptance Algorithm

Main idea: try to match each doctor to top choice;

if you discover a blocking pair, just switch the matching!

A

B

C

x

y

Algorithm iteration 1:
A, B want x; C wants y
So we match (A,x) and (C,y)

34

The issue was:
A,B want x, C wants y
we tried to match (A,x) and (C,y)
but then (B,y) was blocking!

A

B

C

x

y

Doctor’s #1 choice

Doctor’s #2 choice

Hospital’s #1 choice

Deferred Acceptance Algorithm

Main idea: try to match each doctor to top choice;

if you discover a blocking pair, just switch the matching!

A

B

C

x

y

Algorithm iteration 2(a):
Now notice that (B,y) is blocking 

35

The issue was:
A,B want x, C wants y
we tried to match (A,x) and (C,y)
but then (B,y) was blocking!

A

B

C

x

y

Doctor’s #1 choice

Doctor’s #2 choice

Hospital’s #1 choice

Deferred Acceptance Algorithm

Main idea: try to match each doctor to top choice;

if you discover a blocking pair, just switch the matching!

A

B

C

x

y

Algorithm iteration 2(b):
Add (B,y) to the matching ☺
(and remove (C,y))

36

The issue was:
A,B want x, C wants y
we tried to match (A,x) and (C,y)
but then (B,y) was blocking!

Main idea: try to match each doctor to top choice;

if you discover a blocking pair, just switch the matching!

Algorithm iteration 2(b):
Add (B,y) to the matching ☺
(and remove (C,y))

Deferred Acceptance Algorithm

A

B

C

x

y

Lucky the Lackadaisical Lemur

37

The issue was:
A,B want x, C wants y
we tried to match (A,x) and (C,y)
but then (B,y) was blocking!

Don’t worry
Just switch around
until no blocking pairs!

Main idea: try to match each doctor to top choice;

if you discover a blocking pair, just switch the matching!

Deferred Acceptance Algorithm

38

Almost-pseudo-code:
While there is an unmatched doctor i:
 Try to match i to next-favorite hospital on her list;

 If this hospital doesn’t have a doctor yet:
 Both Doctor i and hospital are happy with this new match ☺

 Else-if this hospital prefers its current match i’ over i:
 Doctor i remains unmatched

 Else-if this hospital prefers i over i’:
 Unmatch i’; Match (i, hospital)

Example run-through

39

DA Example Run 1

40

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, B, C

B, C, A

DA Example Run 1

41

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, B, C

B, C, A

DA Example Run 1

42

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, B, C

B, C, A

DA Example Run 1

43

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, B, C

B, C, A

DA Example Run 1

44

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, B, C

B, C, A

DA Example Run 1

45

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, B, C

B, C, A

Another example

46

DA Example Run 2

47

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, C, B

B, C, A

DA Example Run 2

48

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, C, B

B, C, A

DA Example Run 2

49

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, C, B

B, C, A

DA Example Run 2

50

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, C, B

B, C, A

DA Example Run 2

51

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, C, B

B, C, A

DA Example Run 2

52

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, C, B

B, C, A

DA Example Run 2

53

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, C, B

B, C, A

54

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, C, B

B, C, A

DA Example Run 2

55

freeDoctors ← Doctors

for all d in Doctors:

d.current ← 0

for all h in Hospitals:

h.doctor ← NIL

Deferred-Acceptance(Doctors,Hospitals):

// initialize

Deferred Acceptance Algorithm

while (exists d in freeDoctors)

h ← d.ranking[d.current++]

if (h is free)

h.doctor ← d

remove d from freeDoctors

else-if (h.rank[d] < h.rank[h.doctor])

add h.doctor to freeDoctors

h.doctor ← d

remove d from freeDoctors

return (h,h.doctor) for all h in Hospitals

// main loop

// h prefers d to
previous match

// h is d’s
next favorite

Think-pair-share!

Running time?

56

Deferred Acceptance Algorithm

while (exists d in freeDoctors)

h ← d.ranking[d.current++]

if (h is free)

h.doctor ← d

remove d from freeDoctors

else-if (h.rank[d] < h.rank[h.doctor])

add h.doctor to freeDoctors

h.doctor ← d

remove d from freeDoctors

return (h,h.doctor) for all h in Hospitals

// main loop

// h is d’s
next favorite

Running time:
Each iteration of
while loop = O(1)

Each iteration:
We +1 d.current
for some doctor

We always have:
d.current ≤ 𝑛

for every doctor

Therefore, total
run-time = 𝑂 𝑛2

(There are

𝑛 doctors…)

DA algorithm

• Does it work?

• Yes!

• Is it fast?

• O(n2) - this is linear in the input size!

At worst exhaust through every doctor’s
 preference list

57

Deferred Acceptance works!

Theorem: Given n doctors and n hospitals,
 DA algorithm outputs a complete stable matching.

Corollary: A stable matching exists.

(This is not obvious!)

58

Proof of Theorem

Theorem: Given n doctors and n hospitals,
 DA algorithm outputs a complete stable matching.

Proof: Follows from Claims 1+3 below…

59

Claim 1: At every iteration, current match is stable
w.r.t. non-free doctors and hospitals.

Claim 2: Once a hospital is matched, it remains matched
(possibly to a different doctor) until end of algorithm.

Claim 3: At the end of algorithm, every doctor/hospital is matched.

Proof of claims

60

Claim 1: At every iteration, current match is stable
w.r.t. non-free doctors and hospitals.
Proof by contradiction: Suppose (d,h) blocking pair.
→ d is currently matched to worse hospital than h.
→ d already tried to match to h.
→ h either refused d or left d later. Why?
→ h must be matched to better doctor than d – contradiction!

Claim 2: Once a hospital is matched, it remains matched
(possibly to a different doctor) until end of algorithm.
“Proof”: obvious from algorithm

Claim 3: At the end of algorithm, every doctor/hospital is matched.
Proof by contradiction: Suppose (d,h) still free.
End of algorithm → d already tried to match to h.
→ after that step, h wasn’t free → by Claim 2, contradiction!

Theorem: Given n doctors and n hospitals,
 DA algorithm outputs a complete stable matching.

Corollary: A stable matching exists.

61

Claim 1: At every iteration, current match is stable
w.r.t. non-free doctors and hospitals.

Claim 2: Once a hospital is matched, it remains matched
(possibly to a different doctor) until end of algorithm.

Claim 3: At the end of algorithm, every doctor/hospital is matched.

Deferred Acceptance works!

What have we learned?

Blocking Pair: A doctor and hospital that prefer each other over
their respective matches.

Stable Matching: A matching without blocking pairs!

Deferred Acceptance Algorithm

“Tentatively match each free doctor to best interested hospital.
Allow the hospital to leave match when a better doctor arrives.”

Runs in time 𝑂 𝑛2 = linear in input size ☺

62

Today

• Hospitals/residents problem

• Stable matchings
• Solve the hospitals/residents problem

• But can we find them?

• Deferred Acceptance Algorithm
• Find stable matchings!

• Discussion, applications and non-applications

The optimal stable matching?

DA algorithm found a stable matching…

• Is it optimal?

• What does optimality mean?

Theorem: The matching returned by DA is doctor-optimal,

i.e. every doctor is matched to the favorite hospital among those possible
in any stable matching.

Corollary: Order of popping from freeDoctors does not change the output.

Theorem: Doctors cannot gain from
misreporting their preferences.

64

Prove this
theorem!

7

9

2

Stable Matching and Incentives

• Doctor 2 may tell you he only wants to go to Stanford,
but…

65
n

−∞

−∞

Corollary: This won’t help him
if we find Stable Matching with DA!

The optimal stable matching?

Theorem: The matching returned by DA is hospital-worst,

i.e. every hospital is matched to least-favorite doctor
possible in any stable matching.

Caution: Hospitals can gain from
misreporting their preferences.

66

Think-pair-share:

How would you find a hospital-optimal stable matching?
Should actual matching be doctor- or hospital-optimal?

Prove this
theorem too!

What have we learned?
Doctor-optimality: The matching returned by DA is doctor-optimal
(but hospital-worst)

Truthful preferences corollary: Doctors cannot gain from
misreporting their preferences (but hospitals can).

67

Point:
It’s important to think about how our algorithms affect people.

Theorems can help!

Today

• Hospitals/residents problem

• Stable matchings
• Solve the hospitals/residents problem

• But can we find them?

• Deferred Acceptance Algorithm
• Find stable matchings!

• Discussion, applications and non-applications

Doctors vs Packets

• Suppose that instead of doctors and hospitals, you
want to match packets to servers on the internet.

6969
n n

Lecture17.pptx

Lecture17.pdf

Bonus Application #1

Doctors vs Packets

• Suppose that instead of doctors and hospitals, you
want to match packets to servers on the internet.

• When you own all the servers, you don’t have to worry
about them matching outside your algorithm...

• But it turns out that Deferred Acceptance is just very
fast in practice ☺

7070
n n

Lecture17.pdf

Bonus Application #1

Doctors vs Packets

• Suppose that instead of doctors and hospitals, you
want to match packets to servers on the internet.

• When you own all the servers, you don’t have to worry
about them matching outside your algorithm...

• But it turns out that Deferred Acceptance is just very
fast in practice ☺

7171

Bonus Application #1

Doctors vs Packets

72

See “Algorithmic Nuggets in Content Delivery“ (Maggs & Sitaraman, CCR’15)
for details on how Akamai uses Deferred Acceptance to match packets to servers

Bonus Application #1

Stanford Marriage Pact

73

Bonus (Non)application #2

Stanford Marriage Pact
• Matches between Stanford students who want to make a pact:

“If we don’t get married by time X, we’ll marry each other.”

• Historically, Gale-Shapley’s original paper talked about Stable Marriage

• men = doctors; women = hospitals.

• Original Marriage Pact used variant of Deferred Acceptance

• It doesn’t any more…

74

Bonus (Non)application #2

Recap

• Hospitals/residents problem

• Stable matchings
• Solve the hospitals/residents problem

• But can we find them?

• Deferred Acceptance Algorithm
• Find stable matchings!

• Discussion, applications and non-applications

Next time

• Quick and hand-wavey recap of past lectures.

• Algorithms beyond 161 …

76

	Slide 1: Lecture 17
	Slide 2: Announcements
	Slide 3: Recap: One way to greedy algorithms
	Slide 4: Recap: A different approach to greedy
	Slide 5: Recap: Ford-Fulkerson algorithm for s-t min-cut / max-flow
	Slide 6: Recap: used s-t max-flow to solve assignment problems
	Slide 7: Today: matching when both sides have preferences
	Slide 8: Today
	Slide 9: The hospital residency problem
	Slide 10: One way to model this problem
	Slide 11: One way to model this problem
	Slide 12: One way to model this problem
	Slide 13: One way to model this problem
	Slide 14
	Slide 15: Where does your input come from?
	Slide 16: Where does your input come from?
	Slide 17: Today
	Slide 18: Stable Matching
	Slide 19: Stable Matching
	Slide 20: Stable Matching
	Slide 21: Stable Matching
	Slide 22: Unstable Matching and incentives
	Slide 23: Stable Matching and incentives
	Slide 24: Stable Matching and incentives
	Slide 25: Stable Matching Problem
	Slide 26: Stable Matching Problem
	Slide 27: Naïve attempt #1
	Slide 28: A slightly more ambitious attempt
	Slide 29: A slightly more ambitious attempt
	Slide 30: Today
	Slide 31: Questions?
	Slide 32: Deferred Acceptance Algorithm [Gale Shapley ‘62] -> 2012 Nobel Prize* in Econ! *- Joint w/ Al Roth from Stanford
	Slide 33: Deferred Acceptance Algorithm
	Slide 34: Deferred Acceptance Algorithm
	Slide 35: Deferred Acceptance Algorithm
	Slide 36: Deferred Acceptance Algorithm
	Slide 37: Deferred Acceptance Algorithm
	Slide 38: Deferred Acceptance Algorithm
	Slide 39: Example run-through
	Slide 40: DA Example Run 1
	Slide 41: DA Example Run 1
	Slide 42: DA Example Run 1
	Slide 43: DA Example Run 1
	Slide 44: DA Example Run 1
	Slide 45: DA Example Run 1
	Slide 46: Another example
	Slide 47: DA Example Run 2
	Slide 48: DA Example Run 2
	Slide 49: DA Example Run 2
	Slide 50: DA Example Run 2
	Slide 51: DA Example Run 2
	Slide 52: DA Example Run 2
	Slide 53: DA Example Run 2
	Slide 54: DA Example Run 2
	Slide 55: Deferred Acceptance Algorithm
	Slide 56: Deferred Acceptance Algorithm
	Slide 57: DA algorithm
	Slide 58: Deferred Acceptance works!
	Slide 59: Proof of Theorem
	Slide 60: Proof of claims
	Slide 61: Deferred Acceptance works!
	Slide 62: What have we learned?
	Slide 63: Today
	Slide 64: The optimal stable matching?
	Slide 65: Stable Matching and Incentives
	Slide 66: The optimal stable matching?
	Slide 67: What have we learned?
	Slide 68: Today
	Slide 69: Doctors vs Packets
	Slide 70: Doctors vs Packets
	Slide 71: Doctors vs Packets
	Slide 72: Doctors vs Packets
	Slide 73: Stanford Marriage Pact
	Slide 74: Stanford Marriage Pact
	Slide 75: Recap
	Slide 76: Next time

